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This paper investigates the problem of projective synchronization in drive-response dynamical networks (DRDNs) with time-
varying delay and parameter mismatch via impulsive control. Owing to projective factor and parameter mismatch, complete
projective synchronization cannot be achieved.Therefore, a weak projective synchronization scheme is proposed to ensure that the
DRDNs are in a state of synchronization with an error level. Based on the stability analysis of the impulsive functional differential
equations, a generalmethod of theweak projective synchronizationwith the error level is derived inDRDNs.Numerical simulations
are provided to verify the correctness and effectiveness of the proposed method and results.

1. Introduction

A complex dynamical network is a set of coupled nodes
interconnected by edges, in which each node represents a
dynamical system. The structure of many real systems in
nature can be described by the complex dynamical networks,
such as social relationship networks, metabolic networks,
food chain, Internet, the World Wide Web, power grids, and
so on [1, 2]. This has led to much interest in the studies of
the complex dynamical networks. In particular, the synchro-
nization of complex networks has received much attention,
andmany interesting results on synchronizationwere derived
for various complex networks such as time invariant, time-
varying, discrete, and impulsive network models [3–11].

More recently, projective synchronization on dynamical
networks has been reported by Hu et al. in [12], in which the
projective synchronizationwith the desired scaling factor can
be realized in drive-response dynamical networks. Projective
synchronization has become a hot topic and attracted much
attention from authors in many fields, including chaotic
systems [13–16] and complex dynamical networks [17–20].
In these papers, the authors just consider the projective
synchronization in DRDNs with coupled partially linear
chaotic systems. However, there are always somemismatches

between drive system and response network systems in the
real world. Indeed, almost all complex dynamical networks
have different nodes, such as the nodes in network commu-
nity and the Internet, are in general different. In this case, the
DRDNs cannot synchronize completely. Nevertheless, when
parameter mismatch is small enough, the synchronization
error can converge to a small region containing the origin.
In [21], the authors investigated the effect of parameter
mismatch on lag synchronization of chaotic systems. In
[22], the synchronization of a class of coupled chaotic
delayed systems with parameters mismatch and stochastic
perturbation was studied. In [23], the weak synchronization
criterion of coupled delayed chaotic systems with parameters
mismatches was obtained. In [24], the authors studied the
synchronization of two coupled identical chaotic systems
with parameter mismatch via using periodically intermittent
control. In [25], theweak projective synchronization of neural
networkswithmixed time-varying delays andparametermis-
match was discussed. Unfortunately, there exist few results of
a weak projective synchronization method for DRDNs with
time-varying delay and parameter mismatch. Therefore, it is
worth proposing a weak projective synchronization method
in which the problems mentioned above are considered.
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Motivated by the above discussions, in this paper, we
introduce a drive-response dynamical network with time-
varying delay and parametermismatch. It is known that com-
plete synchronization is destroyed by parameter mismatch
and projective factor. We propose the weak projective syn-
chronization properties of this model via impulsive control.
Based on the obtained results, one can control the projective
synchronization error in a predetermined level. Results of
numerical example show the effectiveness of the proposed
approach. The rest of this paper is organized as follows. In
Section 2, the DRDNs model with parameter mismatch and
some preliminaries are given. In Section 3, some criteria for
the weak projective synchronization are derived. Numerical
simulations are shown in Section 4. The conclusion is finally
given in Section 5.

The notation throughout the paper is quite standard.
𝑅 and 𝑅

𝑛 denote the real number set and 𝑛-dimensional
Euclidean space, respectively. ‖ ⋅ ‖ stands for either the
Euclidean vector norm or its induced matrix 2-norm.
𝜆max(𝐴)(𝜆min(𝐴)) represents the maximum (minimum)
eigenvalue of the symmetric matrix 𝐴. 𝜇(𝐴) = 𝜆max(𝐴

𝑇

+ 𝐴).
sup denotes the upper bound. 𝐼

𝑛
is the identity matrix with

order 𝑛. Matrices, if not explicitly stated, are assumed to
have compatible dimensions. ⊗ is the Kronecker product of
two matrices. 𝑃𝐶([−𝜏, 0], 𝑅

𝑛

) denotes the set of all functions
of bounded variation and right-continuous on any compact
subinterval of [−𝜏, 0].

2. Model Description and Preliminaries

2.1. Model Description. In this paper, we consider DRDNs
with time-varying coupling delays and parameter mismatch
as follows:

�̇�
𝑑

(𝑡) = 𝐴
𝑑

𝑥
𝑑

(𝑡) + 𝐵
𝑑

𝑓 (𝑥
𝑑

(𝑡)) + 𝐶
𝑑

𝑔 (𝑥
𝑑

(𝑡 − 𝜏 (𝑡))) , (1)

�̇�
𝑟

𝑖
(𝑡) = 𝐴

𝑟

𝑖
𝑥
𝑑

(𝑡) + 𝐵
𝑟

𝑖
𝑓 (𝑥
𝑟

𝑖
(𝑡))

+ 𝐶
𝑟

𝑖
𝑔 (𝑥
𝑟

𝑖
(𝑡 − 𝜏 (𝑡))) + 𝛾

𝑁

∑

𝑗=1

𝑐
𝑖𝑗
Γ𝑥
𝑟

𝑗
(𝑡 − 𝜏
1

(𝑡)) ,

(2)

where the superscripts 𝑑 and 𝑟 stand for the drive sys-
tem and response networks, respectively. In (1), 𝑥

𝑑

(𝑡) =

(𝑥
𝑑

1
(𝑡), 𝑥
𝑑

2
(𝑡), . . . , 𝑥

𝑑

𝑛
(𝑡))
𝑇

∈ 𝑅
𝑛 denotes the state vector of the

drive system; 𝐴
𝑑, 𝐵
𝑑, and 𝐶

𝑑are constant 𝑛 × 𝑛 matrices. 𝑓 :

𝑅
𝑛

→ 𝑅
𝑛 and 𝑔 : 𝑅

𝑛

→ 𝑅
𝑛 are continuously differentiable

vector functions. In (2), 𝑥
𝑟

𝑖
(𝑡) = (𝑥

𝑟

𝑖1
(𝑡), 𝑥
𝑟

𝑖2
(𝑡), . . . , 𝑥

𝑟

𝑖𝑛
(𝑡))
𝑇

∈

𝑅
𝑛, 𝑖 = 1, 2, . . . , 𝑁, denotes the state vector of the 𝑖th node;𝐴𝑟

𝑖
,

𝐴
𝑟

𝑖
, and𝐴

𝑟

𝑖
are constant 𝑛×𝑛matrices. 𝜏(𝑡), 𝜏

1
(𝑡) are the time-

varying delays. The constant 𝛾 > 0 represents the coupling
strength of the network, and Γ ∈ 𝑅

𝑛×𝑛 is the inner-coupling
matrix;𝐶 = (𝑐

𝑖𝑗
)
𝑁×𝑁

∈ 𝑅
𝑁×𝑁 is the couplingmatrix, standing

for the coupling configuration of the network. If there is
connection between node 𝑖 and node (𝑖 ̸= 𝑗), 𝑐

𝑖𝑗
̸= 0; otherwise,

𝑐
𝑖𝑗

= 0. The row sum of 𝐶 is zero; that is, 𝑐
𝑖𝑖

= − ∑
𝑁

𝑗=1,𝑗 ̸= 𝑖
𝑐
𝑖𝑗
.

2.2. Preliminaries. In order to demonstrate this paper
clearly, we give some necessary definitions, assumptions, and

lemmas, which are useful in deriving projective synchroniza-
tion criteria.

Definition 1. The drive system (1) and response dynamical
networks (2) are said to be weak projective synchronized
with an error level 𝜍 > 0, if there exists a 𝑇 ≥ 0 such that
‖𝑥
𝑟

𝑖
(𝑡) − 𝜆𝑥

𝑑
(𝑡)‖ ≤ 𝜍 for all 𝑡 ≥ 𝑇, where 𝜆 is a desired scaling

factor.

Assumption 2. For any 𝑧
1
, 𝑧
2

∈ 𝑅
𝑛, there exist constants 𝑙

𝑓
>

0, 𝑙
𝑔

> 0, 𝑖 = 1, 2, . . . , 𝑁, such that ‖𝑓(𝑧
1
) − 𝑓(𝑧

2
)‖ ≤ 𝑙
𝑓
‖𝑧
1

−

𝑧
2
‖, ‖𝑔
𝑖
(𝑧
1
) − 𝑔
𝑖
(𝑧
2
)‖ ≤ 𝑙
𝑔
‖𝑧
1

− 𝑧
2
‖.

Assumption 3. 𝜏(𝑡) and 𝜏
1
(𝑡) are the time-varying delay

satisfying 0 ≤ 𝜏(𝑡), 𝜏
1
(𝑡) ≤ 𝜏, where 𝜏 is a positive constant.

Clearly, this assumption is certainly ensured if the time-
varying delay is a constant.

Remark 4. It should be pointed out that in Assumption 3
we do not require that the time-varying delay is differential
function with a bound of its derivative, which means that the
time-varying delay satisfying Assumption 3 includes a wide
range of functions.

Assumption 5. It is assumed that the trajectory of the drive
system (1) is bounded with

Ω = {𝑥
𝑑

(𝑡) |

𝑥
𝑑

(𝑡)


≤ 𝛿} , ∀𝑡 ≥ −𝜏. (3)

Remark 6. Assumption 5 is reasonable due to its chaotic
feature.

Lemma 7 (see [26]). Let 𝑃 ∈ 𝑅
𝑛×𝑛 be a symmetric positive

definite matrix and 𝑃 = 𝑄
𝑇

𝑄. For any 𝑥, 𝑦 ∈ 𝑅
𝑛 and 𝐴 ∈ 𝑅

𝑛×𝑛

such that

(1) 𝑥
𝑇

𝐴
𝑇

𝑃𝐴𝑥 ≤ ‖𝑄𝐴𝑄
−1

‖
2

𝑥
𝑇

𝑃𝑥

(2) 𝑥
𝑇

(𝐴
𝑇

𝑃 + 𝑃𝐴)𝑥 ≤ 2𝜇(𝑄𝐴𝑄
−1

)𝑥
𝑇

𝑃𝑥

(3) |𝑥
𝑇

𝑃𝑦| ≤ √𝑥𝑇𝑃𝑥√𝑦𝑇𝑃𝑦.

Lemma 8 (see [26]). Let 0 ≤ 𝜏(𝑡), 𝜏
1
(𝑡), 𝜏
2
(𝑡), . . . , 𝜏

𝑚
(𝑡) ≤

𝜏, 𝜏 = max(𝜏, 𝜏
1
, 𝜏
2
, . . . , 𝜏

𝑚
), 𝐹(𝑡, 𝑢, 𝑢

1
, . . . , 𝑢

𝑚
) : 𝑅

+

×

𝑚+1

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑅 × ⋅ ⋅ ⋅ × 𝑅 → 𝑅 be nondecreasing in 𝑢

𝑖
for each fixed (𝑡,

𝑢, 𝑢
1
, . . . , 𝑢

𝑖−1
, 𝑢
𝑖+1

, 𝑢
𝑚

), 𝑖 = 1, 2, . . . , 𝑚, and let 𝐼
𝑘
(𝑢) : 𝑅 →

𝑅 be nondecreasing in 𝑢. Suppose that 𝑢(𝑡) and 𝜐(𝑡) satisfy

𝐷
+

𝑢 (𝑡) ≤ 𝐹 (𝑡, 𝑢 (𝑡) , 𝑢
1

(𝑡 − 𝜏
1

(𝑡)) , . . . , 𝑢
𝑚

(𝑡 − 𝜏
𝑚

(𝑡))) ,

𝑡 ≥ 0,

𝑢 (𝑡
𝑘
) ≤ 𝐼
𝑘
𝑢 (𝑡
𝑘
) , 𝑘 ∈ 𝑁,

𝐷
+

𝜐 (𝑡) > 𝐹 (𝑡, 𝜐 (𝑡) , 𝜐
1

(𝑡 − 𝜏
1

(𝑡)) , . . . , 𝜐
𝑚

(𝑡 − 𝜏
𝑚

(𝑡))) ,

𝑡 ≥ 0,

𝜐 (𝑡
+

𝑘
) ≥ 𝐼
𝑘
𝜐 (𝑡
𝑘
) , 𝑘 ∈ 𝑁;

(4)
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then 𝑢(𝑡) ≤ 𝜐(𝑡) for −𝜏 ≤ 𝑡 ≤ 0 implies that 𝑢(𝑡) ≤ 𝜐(𝑡) for
𝑡 ≥ 0, where the right and upper Dini’s derivative 𝐷

+

𝑢(𝑡) is
defined as 𝐷

+

𝑢(𝑡) = lim
ℎ→0

+((𝑢(𝑡 + ℎ) − 𝑢(𝑡))/ℎ).

The aim of this paper is to discuss the weak projective
synchronization in the DRDNs with time-varying delay and
parameters mismatches. We choose the impulsive controller
𝐵
𝑖𝑘
which is a 𝑛×𝑛 constant matrix.Thus, the drive system (1)

and response networks (2) can be rewritten as the following
impulsive differential equations:

�̇�
𝑑

(𝑡) = 𝐴
𝑑

𝑥
𝑑

(𝑡) + 𝐵
𝑑

𝑓 (𝑥
𝑑

(𝑡)) + 𝐶
𝑑

𝑔 (𝑥
𝑑

(𝑡 − 𝜏 (𝑡))) ,

�̇�
𝑟

𝑖
(𝑡) = 𝐴

𝑟

𝑖
𝑥
𝑑

(𝑡) + 𝐵
𝑟

𝑖
𝑓 (𝑥
𝑟

𝑖
(𝑡)) + 𝐶

𝑟

𝑖
𝑔 (𝑥
𝑟

𝑖
(𝑡 − 𝜏 (𝑡)))

+ 𝛾

𝑁

∑

𝑗=1

𝑐
𝑖𝑗
Γ𝑥
𝑟

𝑗
(𝑡 − 𝜏
1

(𝑡)) , 𝑡 ̸= 𝑡
𝑘
,

Δ𝑥
𝑟

𝑖
= 𝑥
𝑟

𝑖
(𝑡
+

𝑘
) − 𝑥
𝑟

𝑖
(𝑡
−

𝑘
) = 𝐵
𝑖𝑘

[𝑥
𝑟

𝑖
− 𝜆𝑥
𝑑

] ,

𝑡 = 𝑡
𝑘
, 𝑘 = 1, 2, . . . ,

(5)

where the impulsive time instants 𝑡
𝑘
satisfy 0 = 𝑡

0
< 𝑡
1

< 𝑡
2

<

⋅ ⋅ ⋅ < 𝑡
𝑘

< ⋅ ⋅ ⋅ and lim
𝑘→∞

𝑡
𝑘

= +∞, 𝑥
𝑟

𝑖
(𝑡
+

𝑘
) = lim

𝑡→ 𝑡
+

𝑘

𝑥
𝑟

𝑖
(𝑡),

𝑥
𝑟

𝑖
(𝑡
−

𝑘
) = lim

𝑡→ 𝑡
−

𝑘

𝑥
𝑟

𝑖
(𝑡). Moreover, any solution of (5) is left

continuous at each 𝑡
𝑘
; that is, 𝑥𝑟

𝑖
(𝑡
−

𝑘
) = 𝑥
𝑟

𝑖
(𝑡
𝑘
).

Letting 𝑒
𝑖
(𝑡) = 𝑥

𝑟

𝑖
(𝑡) − 𝜆𝑥

𝑑

(𝑡), then the synchronization
error system between the drive system and the response
network can be written as

̇𝑒
𝑖
(𝑡) = 𝐴

𝑟

𝑖
𝑒
𝑖
(𝑡) + 𝐵

𝑟

𝑖
𝑓 (𝑒
𝑖
(𝑡)) + 𝐶

𝑟

𝑖
𝑔 (𝑒
𝑖
(𝑡 − 𝜏 (𝑡)))

+ 𝑐

𝑁

∑

𝑗=1

𝑐
𝑖𝑗
Γ𝑒
𝑗
(𝑡 − 𝜏
1

(𝑡))

+ ℎ̃
𝑖
(𝑥
𝑑

(𝑡) , 𝜏 (𝑡) , 𝜆) , 𝑡 ̸= 𝑡
𝑘
,

Δ𝑒
𝑖
= 𝐵
𝑖𝑘

𝑒
𝑖
, 𝑡 = 𝑡

𝑘
,

(6)

where 𝑓(𝑒
𝑖
(𝑡)) = 𝑓(𝑥

𝑟

𝑖
(𝑡)) − 𝑓(𝜆𝑥

𝑑

(𝑡)), 𝑔(𝑒
𝑖
(𝑡 − 𝜏(𝑡))) =

𝑔(𝑥
𝑟

𝑖
(𝑡−𝜏(𝑡)))−𝑔(𝜆𝑥

𝑑

(𝑡−𝜏(𝑡))) and ℎ̃
𝑖
(𝑥
𝑑

(𝑡), 𝜏(𝑡), 𝜆) = 𝜆(𝐴
𝑟

𝑖
−

𝐴)𝑥
𝑑

(𝑡) + 𝐵
𝑟

𝑖
𝑓(𝜆𝑥
𝑑

(𝑡)) − 𝜆𝐵
𝑑

𝑓(𝑥
𝑑

(𝑡)) + 𝐶
𝑟

𝑖
𝑔(𝜆𝑥
𝑑

(𝑡 − 𝜏(𝑡))) −

𝜆𝐶
𝑑

𝑔(𝑥
𝑑

(𝑡 − 𝜏(𝑡))).
Let 𝑒(𝑡) = (𝑒

𝑇

1
(𝑡), 𝑒
𝑇

2
(𝑡), . . . , 𝑒

𝑇

𝑁
(𝑡))
𝑇, rewriting (6) in its

compact form

̇𝑒 (𝑡) = (𝐼
𝑁

⊗ 𝐴
𝑟

𝑖
) 𝑒 (𝑡) + (𝐼

𝑁
⊗ 𝐵
𝑟

𝑖
) 𝐹 (𝑒 (𝑡)) + (𝐼

𝑁
⊗ 𝐶
𝑟

𝑖
)

× 𝐺 (𝑒 (𝑡 − 𝜏 (𝑡))) + 𝛾 (𝐶 ⊗ Γ) 𝑒 (𝑡 − 𝜏
1

(𝑡))

+ 𝐻 (𝑥
𝑑

(𝑡) , 𝜏 (𝑡) , 𝜆) , 𝑡 ̸= 𝑡
𝑘
,

𝑒 (𝑡
+

𝑘
) = (𝐼

𝑁𝑛
+ (𝐼
𝑁

⊗ 𝐵
𝑖𝑘

)) 𝑒 (𝑡
𝑘
) , 𝑡 = 𝑡

𝑘
, 𝑘 = 1, 2, . . . ,

(7)

where 𝐹(𝑒(𝑡)) = (𝑓
𝑇

(𝑒
1
(𝑡)), 𝑓

𝑇

(𝑒
2
(𝑡)), . . . , 𝑓

𝑇

(𝑒
𝑁

(𝑡)))
𝑇,

𝐺(𝑒(𝑡 − 𝜏(𝑡))) = (𝑔
𝑇

(𝑒
1
(𝑡 − 𝜏(𝑡))), 𝑔

𝑇

(𝑒
2
(𝑡 − 𝜏(𝑡))), . . . ,

𝑔
𝑇

(𝑒
𝑁

(𝑡 − 𝜏(𝑡))))
𝑇 and 𝐻(𝑥

𝑑

(𝑡), 𝜏(𝑡), 𝜆) = (ℎ̃
𝑇

1
(𝑥
𝑑

(𝑡),

𝜏(𝑡), 𝜆), . . . , ℎ̃
𝑇

𝑁
(𝑥
𝑑

(𝑡), 𝜏(𝑡), 𝜆))
𝑇.

The initial condition of the error system (7) is defined as
𝑒(𝑠) = 𝜙(𝑠), −𝜏 ≤ 𝑠 < 0, where 𝜙(⋅) ∈ 𝐶([−𝜏, 0], 𝑅

𝑛

). ‖𝜙‖ =

sup
−𝜏≤𝑠≤0

‖𝜙(𝑠)‖ is used to denote the norm of a function
𝜙 ∈ 𝐶([−𝜏, 0], 𝑅

𝑛

). It is assumed that (7) has a unique solution
with respect to initial condition.

3. Main Results

In this section, by combining the stability analysis of impul-
sive functional differential equations, some sufficient condi-
tions for weak projective synchronization in drive-response
dynamical networks with time-varying delay and parameter
mismatch under impulsive control are given below.

Theorem 9. Under Assumptions 2, 3, and 5, let a nonsingular
matrix 𝑄 ∈ 𝑅

𝑁𝑛×𝑁𝑛, 0 < 𝜌 = sup{𝑡
𝑘

− 𝑡
𝑘−1

} < ∞, and
sup
𝑡≥0

‖𝐻(𝑡, 𝑥
𝑑

(𝑡), 𝜆)‖ ≤ 𝜔 < ∞. If the following inequalities
hold


𝐼
𝑁𝑛

+ 𝑄 (𝐼
𝑁

⊗ 𝐵
𝑖𝑘

) 𝑄
−1


≤ 𝛽, 0 < 𝛽 < 1, (8)

2 ln𝛽

𝜌
+ 𝑎 + 𝛽

−2

𝑏 + 𝛽
−2

𝑐 < 0, (9)

where𝛼 = −𝑎−(2 ln𝛽/𝜌), 𝑎 = max
1≤𝑖≤𝑁

[(𝜇[𝑄(𝐼
𝑁

⊗𝐴
𝑟

𝑖
)𝑄
−1

])+

(2𝑙
𝑓
𝜆max(𝑃)‖𝐼

𝑁
⊗ 𝐵
𝑟

𝑖
‖ + 𝑙
𝑔
𝜆max(𝑃)‖𝐼

𝑁
⊗ 𝐶
𝑟

𝑖
‖𝜁)/𝜆min(𝑃) +

‖𝑃‖
2

/𝜉𝜆min(𝑃) + 𝛾], 𝑏 = 𝑙
𝑔
𝜆max(𝑃)‖𝐼

𝑁
⊗ 𝐶
𝑟

𝑖
‖/𝜁𝜆min(𝑃), 𝑐 =

𝛾‖𝑄(𝐶 ⊗ Γ)𝑄
−1

‖
2, 𝜁 and 𝜉 are positive constants. ] > 0 is a

unique solution of ] − 𝛼 + 𝛽
−2

𝑏𝑒
]𝜏

+ 𝛽
−2

𝑐𝑒
]𝜏
1 = 0. Then, the

error system (7) can converge globally exponentially to the small
region 𝑀 containing the origin, where 𝑀 = {𝑒(𝑡) ∈ 𝑅

𝑁𝑛

|

‖𝑒(𝑡)‖ ≤ (𝜔/𝛽)√𝜉/(𝛼 − 𝛽−2𝑏 − 𝛽−2𝑐)}, which implies the weak
projective synchronization in DRDNs is achieved.

Proof. Consider the following Lyapunov functional:

𝑉 (𝑡) = 𝑒
𝑇

(𝑡) 𝑃𝑒 (𝑡) , (10)

where 𝑃 is a symmetric matrix and 𝑃 = 𝑄
𝑇

𝑄.
For 𝑡 ̸= 𝑡

𝑘
, the time derivative of𝑉(𝑡) along the trajectories

of (7) is

�̇� (𝑡) = 2𝑒
𝑇

(𝑡) 𝑃 ̇𝑒 (𝑡)

= 2𝑒
𝑇

(𝑡) 𝑃 [ (𝐼
𝑁

⊗ 𝐴
𝑟

𝑖
) 𝑒 (𝑡) + (𝐼

𝑁
⊗ 𝐵
𝑟

𝑖
) 𝐹 (𝑒 (𝑡))

+ (𝐼
𝑁

⊗ 𝐶
𝑟

𝑖
) 𝐺 (𝑒 (𝑡 − 𝜏 (𝑡)))

+ 𝛾 (𝐶 ⊗ Γ) 𝑒 (𝑡 − 𝜏
1

(𝑡))

+ 𝐻 (𝑥
𝑑

(𝑡) , 𝜏 (𝑡) , 𝜆)]
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= 𝑒
𝑇

(𝑡) [(𝐼
𝑁

⊗ 𝐴
𝑟

𝑖
)
𝑇

𝑃 + 𝑃 (𝐼
𝑁

⊗ 𝐴
𝑟

𝑖
)] 𝑒 (𝑡)

+ 2𝛾𝑒
𝑇

(𝑡) 𝑃 (𝐶 ⊗ Γ) 𝑒 (𝑡 − 𝜏
1

(𝑡))

+ 2𝑒
𝑇

(𝑡) 𝑃 (𝐼
𝑁

⊗ 𝐵
𝑟

𝑖
) 𝐹 (𝑒 (𝑡))

+ 2𝑒
𝑇

(𝑡) 𝑃 (𝐼
𝑁

⊗ 𝐶
𝑟

𝑖
) 𝐺 (𝑒 (𝑡 − 𝜏 (𝑡)))

+ 2𝑒
𝑇

(𝑡) 𝑃𝐻 (𝑥
𝑑

(𝑡) , 𝜏 (𝑡) , 𝜆) .

(11)

From Lemmas 7-8 and Assumption 2, it is clear that

�̇� (𝑡)

≤ 𝜇 (𝑄 (𝐼
𝑁

⊗ 𝐴
𝑖
) 𝑄
−1

) 𝑒
𝑇

(𝑡) 𝑃𝑒 (𝑡) +
‖𝑃‖
2

𝜉
‖𝑒 (𝑡)‖

2

+ 𝜉

𝐻 (𝑥
𝑑

(𝑡) , 𝜏 (𝑡) , 𝜆)


2

+ 2𝑙
𝑓
𝜆max (𝑃)

𝐼
𝑁

⊗ 𝐵
𝑟

𝑖

 ‖𝑒 (𝑡)‖
2

+ 2𝑙
𝑔
𝜆max (𝑃)

𝐼
𝑁

⊗ 𝐶
𝑟

𝑖

 ‖𝑒 (𝑡)‖ ‖𝑒 (𝑡 − 𝜏 (𝑡))‖

+ 2𝛾√𝑒𝑇 (𝑡) 𝑃𝑒 (𝑡)

× √𝑒𝑇 (𝑡 − 𝜏
1

(𝑡)) (𝐶 ⊗ Γ)
𝑇

𝑃 (𝐶 ⊗ Γ) 𝑒 (𝑡 − 𝜏
1

(𝑡))

≤ max
1≤𝑖≤𝑁

[ (𝜇 [𝑄 (𝐼
𝑁

⊗ 𝐴
𝑟

𝑖
) 𝑄
−1

])

+

2𝑙
𝑓
𝜆max (𝑃)

𝐼
𝑁

⊗ 𝐵
𝑟

𝑖

 + 𝑙
𝑔
𝜆max (𝑃)

𝐼
𝑁

⊗ 𝐶
𝑟

𝑖

 𝜁

𝜆min (𝑃)

+
‖𝑃‖
2

𝜉𝜆min (𝑃)
+ 𝛾] 𝑒

𝑇

(𝑡) 𝑃𝑒 (𝑡)

+

𝑙
𝑔
𝜆max (𝑃)

𝐼
𝑁

⊗ 𝐶
𝑟

𝑖



𝜁𝜆min (𝑃)
𝑒
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑃𝑒 (𝑡 − 𝜏 (𝑡))

+ 𝛾

𝑄 (𝐶 ⊗ Γ) 𝑄

−1


2

𝑒
𝑇

(𝑡 − 𝜏
1

(𝑡))

× 𝑃𝑒 (𝑡 − 𝜏
1

(𝑡)) + 𝜉𝜔
2

= 𝑎𝑉 (𝑡) + 𝑏𝑉 (𝑡 − 𝜏 (𝑡)) + 𝑐𝑉 (𝑡 − 𝜏
1

(𝑡)) + 𝜉𝜔
2

.

(12)

When 𝑡 = 𝑡
𝑘
, one gets

𝑉 (𝑡
+

𝑘
) = 𝑒
𝑇

(𝑡
𝑘
) (𝐼
𝑁𝑛

+ (𝐼
𝑁

⊗ 𝐵
𝑖𝑘

))
𝑇

× 𝑃 (𝐼
𝑁𝑛

+ (𝐼
𝑁

⊗ 𝐵
𝑖𝑘

)) 𝑒 (𝑡
𝑘
)

≤

𝐼
𝑁𝑛

+ 𝑄 (𝐼
𝑁

⊗ 𝐵
𝑖𝑘

) 𝑄
−1



2

𝑒
𝑇

(𝑡
𝑘
) 𝑃𝑒 (𝑡

𝑘
)

= 𝛽
2

𝑉 (𝑡
𝑘
) , 𝑘 = 1, 2, . . . .

(13)

For any 𝜀 > 0, let 𝜐(𝑡) be a unique solution of the following
impulsive delayed system:

̇𝜐 (𝑡) = 𝑎𝜐 (𝑡) + 𝑏𝜐 (𝑡 − 𝜏 (𝑡)) + 𝑐𝜐 (𝑡 − 𝜏
1

(𝑡)) + 𝜉𝜔
2

+ 𝜀,

𝑡 ̸= 𝑡
𝑘
,

𝜐 (𝑡
+

𝑘
) = 𝛽
2

𝜐 (𝑡
𝑘
) , 𝑘 ∈ 𝑁,

𝜐 (𝑠) = 𝜆max (𝑃)
𝜙 (𝑠)



2

, −𝜏 ≤ 𝑠 ≤ 0.

(14)

From Lemma 8 and 𝑉(𝑡) ≤ ‖𝜙(𝑡)‖
2 for −𝜏 ≤ 𝑡 ≤ 0, we

conclude that 𝑉(𝑡) ≤ 𝜐(𝑡), for 𝑡 > 0.
The trivial solution of the comparison system is

𝜐 (𝑡) = 𝑤 (𝑡, 0) 𝜐 (0)

+ ∫

𝑡

0

𝑤 (𝑡, 𝑠) (𝑏𝜐 (𝑠 − 𝜏 (𝑠)) + 𝑐𝜐 (𝑠 − 𝜏
1

(𝑠))

+ 𝜉𝜔
2

+ 𝜀) 𝑑𝑠,

(15)

where 𝑤(𝑡, 𝑠), 0 ≤ 𝑠 ≤ 𝑡 is Cauchy matrix of the linear
impulsive system.

Since 0 < 𝛽 < 1, 𝑡
𝑘

− 𝑡
𝑘−1

≤ 𝜌, one has

𝑤 (𝑡, 𝑠) = 𝑒
𝑎(𝑡−𝑠)

∏

𝑠<𝑡
𝑘
≤𝑡

𝛽
2

≤ 𝑒
(−𝛼−2 ln𝛽/𝜌)(𝑡−𝑠)

𝛽
2(((𝑡−𝑠)/𝜌)−1)

≤ 𝛽
−2

𝑒
−𝛼(𝑡−𝑠)

, 0 ≤ 𝑠 ≤ 𝑡.

(16)

Let 𝜎 = 𝛽
−2

𝜆max(𝑃)sup
−𝜏≤𝑠≤0

‖𝜙(𝑠)‖
2, from (15) and (16),

one has

𝜐 (𝑡) ≤ 𝛽
−2

𝑒
−𝛼𝑡

𝜐 (0)

+ ∫

𝑡

0

𝑒
−𝛼(𝑡−𝑠)

𝛽
−2

× [𝑏𝜐 (𝑠 − 𝜏 (𝑠)) + 𝑐𝜐 (𝑠 − 𝜏
1

(𝑠)) + 𝜉𝜔
2

+ 𝜀] 𝑑𝑠

≤ 𝜎𝑒
−𝛼𝑡

+ ∫

𝑡

0

𝑒
−𝛼(𝑡−𝑠)

𝛽
−2

× [𝑏𝜐 (𝑠 − 𝜏 (𝑠)) + 𝑐𝜐 (𝑠 − 𝜏
1

(𝑠)) + 𝜉𝜔
2

+ 𝜀] 𝑑𝑠.

(17)

Denote 𝜑(]) = ] − 𝛼 + 𝛽
−2

𝑏𝑒
]𝜏

+ 𝛽
−2

𝑐𝑒
]𝜏
1 ; from (9), one

has 𝛼 > 0, 𝑏 > 0, 𝑐 > 0, 𝛼 − 𝛽
−2

𝑏 − 𝛽
−2

𝑐 > 0, 𝜑(0) < 0,
𝜑(+∞) > 0, 𝜑



(]) = 1 + 𝛽
−2

𝑏𝜏𝑒
]𝜏

+ 𝛽
−2

𝑐𝜏
1
𝑒
]𝜏
1 > 0; then

𝜑(]) = 0 has a unique solution ] > 0. Since 𝛽
−2

(𝜉𝜔
2

+ 𝜀) > 0,
] > 0, 𝛼 − 𝛽

−2

𝑏 − 𝛽
−2

𝑐 > 0, and 𝛽
−2

> 1; we derive that

𝜐 (𝑡) ≤ 𝛽
−2 sup
−𝜏≤𝑠≤0

𝜐 (𝑠) < 𝜎𝑒
−]𝑡

+
𝜉𝜔
2

+ 𝜀

𝛽2𝛼 − 𝑏 − 𝑐
, −𝜏 ≤ 𝑡 ≤ 0.

(18)
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In the following, we will prove that the following inequal-
ity holds:

𝜐 (𝑡) < 𝜎𝑒
−]𝑡

+
𝜉𝜔
2

+ 𝜀

𝛽2𝛼 − 𝑏 − 𝑐
, 𝑡 > 0. (19)

If it is not true, there exists a 𝑡
∗

> 0 such that

𝜐 (𝑡
∗

) ≥ 𝜎𝑒
−]𝑡∗

+
𝜉𝜔
2

+ 𝜀

𝛽2𝛼 − 𝑏 − 𝑐
, (20)

𝜐 (𝑡) < 𝜎𝑒
−]𝑡

+
𝜉𝜔
2

+ 𝜀

𝛽2𝛼 − 𝑏 − 𝑐
, 𝑡 < 𝑡

∗

. (21)

From Assumption 3, (17), and (21), we obtain

𝜐 (𝑡
∗

)

≤ 𝜎𝑒
−𝛼𝑡
∗

+ ∫

𝑡
∗

0

𝑒
−𝛼(𝑡
∗
−𝑠)

𝛽
−2

× [𝑏𝜐 (𝑠 − 𝜏 (𝑠)) + 𝑐𝜐 (𝑠 − 𝜏
1

(𝑠)) + 𝜉𝜔
2

+ 𝜀] 𝑑𝑠

< 𝑒
−𝛼𝑡
∗

(𝜎 +
𝜉𝑁𝜔
2

+ 𝜀

𝛽2𝛼 − 𝑏 − 𝑐
)

+ 𝑒
−𝛼𝑡
∗

∫

𝑡
∗

0

𝑒
𝛼𝑠

𝛽
−2

𝑏 (𝜎𝑒
−](𝑠−𝜏(𝑠))

+
𝜉𝜔
2

+ 𝜀

𝛽2𝛼 − 𝑏 − 𝑐
) 𝑑𝑠

+ 𝑒
−𝛼𝑡
∗

∫

𝑡
∗

0

𝑒
𝛼𝑠

𝛽
−2

𝑐 (𝜎𝑒
−](𝑠−𝜏

1
(𝑠))

+
𝜉𝜔
2

+ 𝜀

𝛽2𝛼 − 𝑏 − 𝑐
) 𝑑𝑠

+ 𝑒
−𝛼𝑡
∗

∫

𝑡
∗

0

𝑒
𝛼𝑠

𝛽
−2

(𝜉𝜔
2

+ 𝜀) 𝑑𝑠

≤ 𝑒
−𝛼𝑡
∗

{𝜎 +
𝜉𝜔
2

+ 𝜀

𝛽2𝛼 − 𝑏 − 𝑐
+ 𝛽
−2

𝜎 (𝑏𝑒
]𝜏

+ 𝑐𝑒
]𝜏
1) 𝑒

]𝜏

× ∫

𝑡
∗

0

𝑒
(𝑎−])𝑠

𝑑𝑠

+ (

𝛽
−2

(𝑏 + 𝑐) (𝜉𝜔
2

+ 𝜀)

𝛽2𝛼 − 𝑏 − 𝑐
+

𝜉𝜔
2

+ 𝜀

𝛽2
)

× ∫

𝑡
∗

0

𝑒
𝑎𝑠

𝑑𝑠}

= 𝜎𝑒
−𝜆𝑡
∗

+
𝜉𝜔
2

+ 𝜀

𝛽2𝛼 − 𝑏 − 𝑐

(22)

which contradicts with (20). Consequently, (19) holds.
Let 𝜀 → 0; then one obtains

𝑉 (𝑡) = ‖𝑒 (𝑡)‖
2

≤ 𝜐 (𝑡) ≤ 𝜎𝑒
−𝜆𝑡

+
𝜉𝜔
2

𝛽2𝛼 − 𝑏 − 𝑐
. (23)

Thus, one has

‖𝑒 (𝑡)‖ ≤ √𝜎𝑒
−(]/2)𝑡

+
𝜔

𝛽
√

𝜉

𝛼 − 𝛽−2𝑏 − 𝛽−2𝑐
. (24)

When 𝑡 → ∞, the synchronization error system (7) con-
verges exponentially to a small region 𝑀 containing the ori-
gin:𝑀 = {𝑒(𝑡) ∈ 𝑅

𝑁𝑛

| ‖𝑒(𝑡)‖ ≤ (𝜔/𝛽)√𝜉/(𝛼 − 𝛽−2𝑏 − 𝛽−2𝑐)},
which implies that the DRDNs achieve the weak projective
synchronization. The proof is completed.

By further estimating the value of 𝐻(𝑥
𝑑

(𝑡), 𝜏(𝑡), 𝜆) and
selecting 𝜉 appropriately, we have Corollary 10.

Corollary 10. Under Assumptions 2, 3, and 5, suppose a
nonsingular matrix 𝑄 ∈ 𝑅

𝑁𝑛×𝑁𝑛, 0 < 𝜌 = sup{𝑡
𝑘

− 𝑡
𝑘−1

} < ∞,
and 𝛿|𝜆|[‖𝐴

𝑟

𝑖
− 𝐴‖ + (‖𝐵

𝑟

𝑖
‖ + ‖𝐵

𝑑

‖)𝑙
𝑓

+ (‖𝐶
𝑟

𝑖
‖ + ‖𝐶

𝑑

‖)𝑙
𝑔
] ≤

𝜔
𝑖
. For given synchronization scaling factor 𝜆, if the following

inequalities hold


𝐼
𝑁𝑛

+ 𝑄 (𝐼
𝑁

⊗ 𝐵
𝑖𝑘

) 𝑄
−1


≤ 𝛽, 0 < 𝛽 < 1, (25)

2 ln𝛽

𝜌
+ 𝑎 + 𝛽

−2

𝑏 + 𝛽
−2

𝑐 < 0, (26)

where 𝛼 = −𝑎 − (2 ln𝛽/𝜌), 𝑏 = 𝑙
𝑔
𝜆max(𝑃)‖𝐼

𝑁
⊗ 𝐶
𝑟

𝑖
‖/𝜁𝜆min(𝑃),

𝑎 = max
1≤𝑖≤𝑁

[(𝜇[𝑄(𝐼
𝑁

⊗ 𝐴
𝑟

𝑖
)𝑄
−1

]) + 𝛾 + (‖𝑃‖
2

/𝜉𝜆min(𝑃)) +

((2𝑙
𝑓
𝜆max(𝑃)‖𝐼

𝑁
⊗ 𝐵
𝑟

𝑖
‖ + 𝑙
𝑔
𝜆max(𝑃)‖𝐼

𝑁
⊗ 𝐶
𝑟

𝑖
‖𝜁)/𝜆min(𝑃))],

𝑐 = 𝛾‖𝑄(𝐶 ⊗ Γ)𝑄
−1

‖
2 and ] > 0 is an unique solution

of ] − 𝛼 + 𝛽
−2

𝑏𝑒
]𝜏

+ 𝛽
−2

𝑐𝑒
]𝜏
1 = 0, then, the error system

(7) can converge globally exponentially to the small region 𝑀

containing the origin, where 𝑀 = {𝑒(𝑡) ∈ 𝑅
𝑁𝑛

| ‖𝑒(𝑡)‖ ≤

(𝜔/𝛽)√(𝜉/(𝛼 − 𝛽−2𝑏 − 𝛽−2𝑐))}, which implies that the weak
projective synchronization in DRDNs is achieved.

Remark 11. For simplicity, we consider the equidistant impul-
sive interval 𝑡

𝑘
− 𝑡
𝑘−1

= Δ, and the impulsive control gain
matrix 𝐵

𝑘
= 𝑏
0
𝐼
𝑛
, 𝑘 = 1, 2, . . ., in Theorem 9. If the following

condition holds Δ < −2(1 + 𝑏
0
)
2 ln |1 + 𝑏

0
|/((1 + 𝑏

0
)
2

𝑎 + 𝑏 + 𝑐),
−2 < 𝑏

0
< 0, then the DRDNs achieve weak projective

synchronization.

4. Numerical Simulation

In this section, an example is presented to show the effective-
ness of the proposed scheme. To show the advantage of the
criteria based on matrix measure, a scalar Ikeda oscillator is
investigated in the context ofweak projective synchronization
in the following example.

The dynamics of Ikeda oscillator is described by

�̇� = −𝑑𝑥 + 𝑒 sin (𝑥 (𝑡 − 𝜏 (𝑡))) . (27)

System (26) exhibits chaotic behavior when 𝑑 = 1, 𝑒 = 4 and
𝜏(𝑡) = 2, as shown in Figure 1. It is known that the chaotic
attractor of system (27) is contained in the set Ω = {𝑥 ∈ 𝑅 |

|𝑥| ≤ 4}.



6 Journal of Applied Mathematics

−1 0 1 2 3
−1

4

0

1

2

3

4

x
(t
)

x(t − 2)

Figure 1: Chaotic attractor of system (27).

The corresponding response network systems with
parameter mismatch are given by

�̇�
𝑟

𝑖
(𝑡) = − (𝑑 − 0.001𝑖) 𝑥

𝑟

𝑖
(𝑡) + (𝑒 − 0.001𝑖) sin (𝑥

𝑟

𝑖
(𝑡 − 𝜏 (𝑡)))

+ 𝛾

4

∑

𝑗=1

𝑐
𝑖𝑗
Γ𝑥
𝑟

𝑗
(𝑡 − 𝜏
1

(𝑡)) .

(28)

Then, the controlled DRDNs are described as follows:

�̇�
𝑑

= −𝑥
𝑑

+ 4 sin (𝑥
𝑑

(𝑡 − 𝜏 (𝑡))) ,

�̇�
𝑟

𝑖
(𝑡) = − (1 − 0.001𝑖) 𝑥

𝑟

𝑖
(𝑡) + (4 − 0.001𝑖) sin (𝑥

𝑟

𝑖
(𝑡 − 𝜏 (𝑡)))

+ 𝛾

4

∑

𝑗=1

𝑐
𝑖𝑗
Γ𝑥
𝑟

𝑗
(𝑡 − 𝜏
1

(𝑡)) 𝑡 ̸= 𝑡
𝑘
, 𝑖 = 1, 2, 3, 4,

Δ𝑒
𝑖
= 𝑏
0
𝑒
𝑖
(𝑡
−

𝑘
) , 𝑡 = 𝑡

𝑘
, 𝑘 = 1, 2, . . . ,

(29)

choosing the coupling configuration matrix

𝐶 = (

−2 1 1 0

1 −1 0 0

2 1 −3 0

0 0 1 −1

) . (30)

In the numerical simulations, we assume that 𝜉 = 1,
𝜁 = 𝛾 = 0.1, 𝑏

0
= −0.9, (1 + 𝑏

0
)
2

= 0.01 > 0. Γ =

𝑃 = 1, 𝑄 = 𝐼
𝑁𝑛

. The two coupling delays are 𝜏(𝑡) = 2

and 𝜏
1
(𝑡) = 2 + 0.02 sin 𝑡, respectively. After calculations,

getting 𝑎 = 38.092, 𝑏 = 0.3999, 𝑐 = 1.814, one has Δ <

0.0177. Taking the impulsive interval Δ = 𝑡
𝑘+1

− 𝑡
𝑘

= 0.01,
then, it is easy to verify that all conditions in Corollary 10 are
satisfied. The projective synchronization error is defined by
‖𝑒(𝑡)‖ = √(𝑥

𝑖1
− 𝜆𝑥
1
)
2

+ (𝑦
𝑖2

− 𝜆𝑦
2
)
2, 𝑖 = 1, 2, 3, 4. When 𝜆 =

−0.5, as shown in Figures 2–4. Figure 2 shows attractors of
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3

4
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x
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)
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Figure 2: Chaotic attractors of systems (27) and (28) with 𝜆 = −0.5.
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Figure 3: The trajectories of state variables with 𝜆 = −0.5.

the DRDNs networkmodel. Figure 3 displays time evolutions
of state trajectories of the controlled DRDNs (29). The
evolution process of the error does not converge to zero as
shown in Figure 4; from Figure 4, it is easy to see that the
projective synchronization is not achieved. The numerical
results show that the impulsive controlling scheme for the
drive-response coupled dynamical networkmodel with time-
varying delays is effective.

5. Conclusion

In this paper, the problem of weak projective synchronization
in DRDNs with time-varying coupling delay and parameter
mismatch has been investigated by employing impulsive con-
trol scheme. Some criteria for realizing the weak projective
synchronization are established based on the stability analysis
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Figure 4: Time evolution of ‖𝑒(𝑡)‖ of coupled networks (29).

of impulsive functional differential equations. Moreover, the
DRDNs can be synchronized exponentially within a small
error; the error upper bound of weak projective synchroniza-
tion is estimated easily by the theoretical criteria. Finally, the
numerical examples show the effectiveness of the proposed
results. However, the results of theoretical analysis in this
paper are still conservative. Meanwhile, since the surround-
ing environment is complex variable, it is desirable to inves-
tigate weak projective synchronization problem for complex
dynamical networks with noise, stochastic disturbances, and
so on, so we will further investigate these problems in the
future.
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