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We estimated an analytical solution of the displacement, stress, and temperature in a rotating isotropic homogeneous elastic
medium hollow sphere subjected to periodic loading and magnetic field. The coupled theory of thermoelasticity is applied to
determine an infinite velocity of heat propagation. The numerical calculations are carried out for the displacement, temperature,
and stresses.The results obtained are displayed graphically to illustrate the effect of initial stress, rotation, and magnetic field which
indicate to pronounce influence of rotation and magnetic field.

1. Introduction

The classical and generalized theories of coupled thermoe-
lasticity are extensively developed due to their many applica-
tions in the advanced structural design problems. Therefore,
it is crucial to obtain the deformation and temperature
distributions in the structures under thermal shock loads. In
the classical coupled problems of thermoelasticity, the first
time rate of change in the first invariant of the strain tensor
appears in the first law of thermodynamics, causing coupling
between the elastic and thermal fields. The mathematical
treatment of coupled thermoelasticity problems by analytical
methods is rather complicated. In basic problems of the
coupled thermoelasticity theory, such as the problems of
infinite and half spaces, analytical treatment can be found
in the literature. Also, there are a large number of articles,
in which numerical methods are used. Dynamical problems
of thermodiffusion in solids are discussed by Nowacki ([1–
3]). Lord and Shulman [4] introduced the first generalized
dynamical theory of thermoelasticity to calculate an infinite
speed for the waves due to the thermal field. The gener-
alized thermoelasticity for an isotropic media is illustrated
by Dhaliwal and Sherief [5]. Abd-Alla and Mahmoud [6]

studied the problem of magnetothermoelastic in rotating
nonhomogeneous orthotropic hollow cylinder under the
hyperbolic heat conduction model. Abd-Alla et al. [7] inves-
tigated thermal stresses in a nonhomogeneous orthotropic
elastic multilayered cylinder. A generalized magnetother-
moelasticity in a perfectly conducting medium is discussed
by Ezzat and Youssef [8]. Othman [9] studied effect of
rotation and relaxation time on thermal shock problem for a
half-space in generalized thermoviscoelasticity. Othman [10]
investigated Lord-Shulman theory under the dependence
of the modulus of elasticity on the reference temperature
in two-dimensional generalized thermoelasticity. Green and
Lindsay [11] developed the theory of thermoelasticity using
two thermal relaxation times to measure the origin of the
infinite speed.

Magnetothermoelasticity has a lot of applications in dive-
rse fields as geophysics, engineering, acoustics, and other
fields. Effect of rotation on plane waves of the general-
ized magnetothermoelasticity or electromagnetothermovis-
coelasticity with two relaxation times or rotation is pointed
out by Othman and Song [12, 13]. Sherief et al. [14] investi-
gated theory of generalized thermoelastic diffusion. Sherief
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and Saleh [15] discussed half-space problem in the theory of
generalized thermoelastic diffusion. Reflection of SV waves
from the free surface of an elastic solid in generalized
thermoelastic diffusion has been obtained by Singh [16].
Kumar and Kansal [17] discussed propagation of Lamb
waves in transversely isotropic thermoelastic diffusive plate.
Thermomechanical response of generalized thermoelastic
diffusion with one relaxation time due to time harmonic
sources was discussed by Ram et al. [18]. Aouadi [19]
examined the thermoelastic diffusion problem for an infinite
elastic body with spherical cavity. Abo-Dahab and Singh [20]
investigated the effect of magnetic field on wave propagation
in generalized thermoelastic solid with diffusion. Othman et
al. [21] discussed the effect of diffusion in a two-dimensional
problem of generalized thermoelasticity with Green-Naghdi
theory. Xia et al. [22] studied the influence of diffusion on
generalized thermoelastic problems of infinite body with a
cylindrical cavity. Deswal and Kalkal [23] studied the two-
dimensional generalized electromagnetothermoviscoelastic
problem for a half-space with diffusion. Abd-Alla and Abo-
Dahab [24] found the time-harmonic sources in a generalized
magnetothermoviscoelastic continuum with and without
energy dissipation. Abo-Dahab andMohamed [25] discussed
the effect of magnetic field and hydrostatic initial stress on
reflection phenomena of P and SV waves from a generalized
thermoelastic solid half-space. Abd-Alla et al. [26] studied
the generalized magnetothermoelastic Rayleigh waves in a
granular medium under the influence of a gravity field
and initial stress. Roychoudhuri and Mukhopadhyay [27]
discussed effect of rotation and relaxation times on plane
waves in generalized thermoviscoelasticity. Recently, some
newworks in isotropic or orthotropic elasticmedia have been
discussed in [28–31].

The present investigation is devoted to study the interac-
tion between the processes of elasticity, rotation, magnetic
field, initial stress, heat, and diffusion in an infinite elastic
solidwith a spherical cavity in the context of the coupled ther-
moelastic diffusion.The temperature, displacements, stresses,
diffusion concentration, and chemical potential are obtained
in the physical domain using the harmonic vibrations. The
problem of coupled thermoelasticity has been reduced as a
special case. The variations of rotation, magnetic field on the
stresses, displacements, and temperature distribution have
been studied and shown graphically.

2. Mathematical Formulation of the Problem

Let us consider a perfect electric conductor and linearized
Maxwell equation governing the electromagnetic field in
absence of the displacement current (SI) as in Roychoudhuri
and Mukhopadhyay [27] and Kraus [32]:

⃗
𝐽 = Curl ⃗ℎ,

Curl ⃗
𝐸 = −𝜇

𝑒

𝜕
⃗
ℎ

𝜕𝑡

,

div ⃗
ℎ = 0,

div ⃗
𝐸 = 0,

⃗
ℎ = Curl (�⃗� ∧ ⃗

𝐻) ,

⃗
𝐸 = −𝜇

𝑒
(

𝜕�⃗�

𝜕𝑡

∧
⃗

𝐻) ,

(1)

where �⃗� is the component of displacement vector, ⃗
ℎ the

perturbedmagnetic field vector, ⃗
𝐽 the electric current density

vector, ⃗
𝐸 the electric intensity vector, and 𝜇

𝑒
the magnetic

permeability. Applying an initial magnetic field vector ⃗
𝐻 =

(0, 0,𝐻
𝜙
) in spherical coordinates (𝑟, 𝜃, 𝜙) to (1) we have

�⃗� = 𝑢 (𝑟, 𝑡) 𝑒
𝑟
= (𝑢 (𝑟, 𝑡) , 0, 0) ,

⃗
𝐻 = (0, 0,𝐻

𝜙
) ,

⃗
𝐸 = −𝜇

𝑒
(0, −𝐻

𝜙

𝜕𝑢

𝜕𝑡

, 0) ,

⃗
𝐽 = (0,

−𝜕ℎ
𝜙

𝜕𝑟

, 0) ,

ℎ
𝜙
= −𝐻
𝜙
(

𝜕𝑢

𝜕𝑟

+

2𝑢

𝑟

) ,

⃗
𝐸 = (0, 𝐸

2
, 0) .

(2)

The elastic medium is rotating uniformly with the angular
velocity Ω = Ω𝑛, where 𝑛 is a unit vector representing the
direction of the axis of rotation. The displacement equation
of motion in the rotation frame has two additional terms
⃗
Ω∧ (

⃗
Ω∧ �⃗�)which is the centripetal acceleration due to time-

varying motion only and 2 ⃗
Ω ∧

⃗
�̇� is the Coriolis acceleration

which neglected, and ⃗
Ω = (0, Ω, 0).

The governing equation for an isotropic, homogeneous
elastic solid with generalized magnetothermoelastic under
effect of rotation is as follows.

(i) Equation of motion:

𝜕𝜎
𝑟𝑟

𝜕𝑟

+

2

𝑟
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2
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2
− Ω

2

𝑢) ; (3)

we know that
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Ω ∧ (

⃗
Ω ∧ 𝑢𝑒
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2
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,

(4)

where𝐹
𝑟

is defined as the radial component of Lorentz’s force,
which may be written as

⃗
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(
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⃗
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(5)
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(ii) Equation of heat conduction:

𝐾∇

2

𝑇 = 𝜌𝑐
𝛾
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0
(
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+
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) ,

(6)

where 𝑐V is the specific heat per unit mass, 𝐾 is the thermal
conductivity,𝑇 is the absolute temperature,𝑇

0
is the reference

temperature, 𝜌 is the density, 𝛾 = 𝛼
𝑐
(3𝜆 + 2𝜇), and 𝛼

𝑐
is the

thermal expansion.
For a spherical symmetric the nonvanishing components

may be written as

𝜎
𝑟𝑟
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2
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𝜕𝑢

𝜕𝑟

+
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) ,

(7)

where 𝜎
𝑖𝑗
(𝑖, 𝑗 = 1, 2, 3) are the stress components tensor and

𝜆 and 𝜇 are Lame’s constants.
Assume that themagnetic permeability 𝜇

𝑒
of the isotropic

hollow sphere equals the magnetic permeability of the
medium around it.

3. Boundary Conditions

The homogeneous initial conditions are supplemented by the
following boundary conditions:

𝑇 = 0 at 𝑟 = 𝑎,

𝑇 = 𝑇
0

at 𝑟 = 𝑏,

𝜎
𝑟𝑟
+ 𝜏
𝑟𝑟
= − 𝑃

0
𝑒

𝑖𝑤𝑡 at 𝑟 = 𝑏,

𝜎
𝑟𝑟
+ 𝜏
𝑟𝑟
= 0 at 𝑟 = 𝑎.

(8)

4. Solution of the Problem

Taking the harmonic vibrations we assume

𝑢 (𝑟, 𝑡) = 𝑢



(𝑟) 𝑒

𝑖𝑤𝑡

,

𝑇 (𝑟, 𝑡) = 𝑇



(𝑟) 𝑒

𝑖𝑤𝑡

,

(9)

where 𝜔 is the natural frequency of the vibration.

By using (7) and substituting into (3) and (6) then
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𝜕
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2
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2
]
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+ 𝜌Ω

2
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𝜕

2

𝑢

𝜕𝑡

2
,

(2𝜇 + 𝜆 + 𝜇
𝑒
𝐻

2

𝜙
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𝜕

2

𝑢

𝜕𝑟

2
+

2

𝑟

𝜕𝑢
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−
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𝑟

2
] − 𝛼
𝑐
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𝜕𝑇

𝜕𝑟

= 𝜌

𝜕

2

𝑢

𝜕𝑡

2
− 𝜌Ω

2

𝑢,
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𝜕

2

𝑇

𝜕𝑟

2
+

2

𝑟

𝜕𝑇

𝜕𝑟

] = 𝜌𝑐
𝛾

𝜕𝑇

𝜕𝑡

+ 𝛾𝑇
0

𝜕

𝜕𝑡

(

𝜕𝑢

𝜕𝑟

+

2𝑢

𝑟

) ;

(10)

by using

𝑢 (𝑟, 𝑡) = 𝑢



(𝑟) 𝑒

𝑖𝑤𝑡

,

𝑇 (𝑟, 𝑡) = 𝑇



(𝑟) 𝑒

𝑖𝑤𝑡

(11)

we get

(2𝜇 + 𝜆 + 𝜇
𝑒
𝐻

2

𝜑
) [

𝑑

2

𝑢



𝑑𝑟

2
+

2

𝑟

𝑑𝑢



𝑑𝑟

−

2𝑢



𝑟

2
]

− (3𝜆 + 2𝜇)

𝑑𝑇



𝑑𝑟

= − (𝜔

2

𝜌 + 𝜌Ω

2

) 𝑢



= −𝜌 (𝜔

2

+ Ω

2

) 𝑢



(𝑟) ,

(12)

𝐾[

𝑑

2

𝑇



𝑑𝑟

2
+

2

𝑟

𝑑𝑇



𝑑𝑟

] = 𝑖𝜌𝑐
𝛾
𝜔𝑇



+ 𝑖𝛾𝑇
0
𝜔(

𝑑𝑢



𝑑𝑟

+

2𝑢



𝑟

) .

(13)

Using the potential function𝜙∗ thenwe assume �⃗�⋅ ⃗𝑟 = 𝑑𝜙∗/𝑑𝑟
and (12) and (13) may be transformed to

(2𝜇 + 𝜆 + 𝜇
𝑒
𝐻

2

𝜙
) [

𝑑

3

𝜙

∗

𝑑𝑟

3
+

2

𝑟

𝑑

2

𝜙

∗

𝑑𝑟

2
−

2

𝑟

2

𝑑𝜙

∗

𝑑𝑟

]

− (3𝜆 + 2𝜇)

𝑑𝑇



𝑑𝑟

= −𝜌 (𝜔

2

+ Ω

2

)

𝑑𝜙

∗

𝑑𝑟

,
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(2𝜇 + 𝜆 + 𝜇
𝑒
𝐻

2

𝜙
)

𝑑

𝑑𝑟

[

𝑑

2

𝜙

∗

𝑑𝑟

2
+

2

𝑟

𝑑𝜙

∗

𝑑𝑟

]

− (3𝜆 + 2𝜇)

𝑑𝑇



𝑑𝑟

= −𝜌 (𝜔

2

+ Ω

2

)

𝑑𝜙

∗

𝑑𝑟

;

(14)

by integrating respect to 𝑟

(2𝜇 + 𝜆 + 𝜇
𝑒
𝐻

2

𝜙
) [

𝑑

2

𝜙

∗

𝑑𝑟

2
+

2

𝑟

𝑑𝜙

∗

𝑑𝑟

] − (3𝜆 + 2𝜇) 𝑇



= −𝜌 (𝜔

2

+ Ω

2

) 𝜙

∗

(2𝜇 + 𝜆 + 𝜇
𝑒
𝐻

2

𝜙
) ∇

2

𝜙

∗

− (3𝜆 + 2𝜇) 𝑇



= −𝜌 (𝜔

2

+ Ω

2

) 𝜙

∗

,

[(2𝜇 + 𝜆 + 𝜇
𝑒
𝐻

2

𝜙
) ∇

2

+ 𝜌 (𝜔

2

+ Ω

2

)] 𝜙

∗

= (3𝜆 + 2𝜇) 𝑇



.

(15)

From (13), we obtain

𝐾∇

2

𝑇



− 𝑖𝜌𝑐
𝛾
𝜔𝑇



=

𝑖𝛾𝑇
0
𝜔

(2𝜇 + 𝜆 + 𝜇
𝑒
𝐻

2

𝜙
)

[(3𝜆 + 2𝜇) 𝑇



− 𝜌 (𝜔

2

+ Ω

2

)] 𝜙

∗

,

𝐾∇

2

𝑇



− (𝑖𝜌𝑐
𝛾
𝜔𝑇



+

𝑖𝛾𝑇
0
𝜔 (3𝜆 + 2𝜇)

(2𝜇 + 𝜆 + 𝜇
𝑒
𝐻

2

𝜙
)

)𝑇



=

−𝑖𝛾𝑇
0
𝜔𝜌 (𝜔

2

+ Ω

2

) 𝜙

∗

(2𝜇 + 𝜆 + 𝜇
𝑒
𝐻

2

𝜙
)

.

(16)

Equation (15) can be written as

[

[

∇

2

+

𝜌 (𝜔

2

+ Ω

2

)

(2𝜇 + 𝜆 + 𝜇
𝑒
𝐻

2

𝜙
)

]

]

𝜙

∗

=

(3𝜆 + 2𝜇)

(2𝜇 + 𝜆 + 𝜇
𝑒
𝐻

2

𝜙
)

𝑇



.

(17)

Equation (16) takes the form

[

[

∇

2

+ (

𝑖𝜌𝑐
𝛾
𝜔

𝐾

+

𝑖𝛾𝑇
0
𝜔 (3𝜆 + 2𝜇)

(2𝜇 + 𝜆 + 𝜇
𝑒
𝐻

2

𝜙
)

)
]

]

𝑇



=

−𝑖𝛾𝑇
0
𝜔𝜌 (𝜔

2

+ Ω

2

) 𝜙

∗

(2𝜇 + 𝜆 + 𝜇
𝑒
𝐻

2

𝜙
)

(18)

which can be written also as

(∇

2

+ 𝛼

2

1
) 𝜙

∗

= 𝜂
1
𝑇



,

(∇

2

+ 𝛽

2

) 𝑇



= 𝜂
2
𝜙

∗

,

(19)

where

𝛼

2

1
=

𝜌 (𝜔

2

+ Ω

2

)

(2𝜇 + 𝜆 + 𝜇
𝑒
𝐻

2

𝜙
)

,

𝜂
1
=

(3𝜆 + 2𝜇)

(2𝜇 + 𝜆 + 𝜇
𝑒
𝐻

2

𝜙
)

,

𝛽

2

= − 𝑖(

𝜌𝑐
𝛾
𝜔

𝐾

+

𝛾𝑇
0
𝜔 (3𝜆 + 2𝜇)

(2𝜇 + 𝜆 + 𝜇
𝑒
𝐻

2

𝜙
)

) .

(20)

Decoupling (19) one may obtain

(∇

2

+ 𝑚

2

1
) (∇

2

+ 𝑚

2

2
) (𝜙

∗

, 𝑇



) = 0, (21)

where 𝑚
1
and 𝑚

2
are roots with positive real parts of
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Assuming the regularity conditions for ̇
𝑇 and 𝜙∗, the solu-
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where 𝐴
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Figure 1: Variation of the absolute values of the displacement 𝑢 with varies values of Ω,𝐻
𝜙
, 𝑅, and 𝑃 with respect to the radius 𝑟.
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Figure 2: Variation of the absolute values of the temperature 𝑇 with varies values of Ω,𝐻
𝜙
, 𝑅, and 𝑃 with respect to the radius 𝑟.
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Figure 3: Variation of the absolute values of the radial stress 𝜎
𝑟𝑟
with varies values of Ω,𝐻

𝜙
, 𝑅, and 𝑃 with respect to the radius 𝑟.
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Figure 4: Variation of the absolute values of the hoop stress 𝜎
𝑟𝑟
with varies values of Ω,𝐻

𝜙
, 𝑅, and 𝑃 with respect to the radius 𝑟.
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Figure 5: Variation of the absolute values of the radial Maxwell’s stress 𝜏
𝑟𝑟
with varies values of Ω,𝐻

𝜙
, 𝑅, and 𝑃 with respect to the radius 𝑟.
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𝐻

2

𝜙
)

+ 𝑏ℎ

(2)

0
(𝑚
1
𝑎) (𝜆 + 2𝜇 + 𝜇

𝑒
𝐻

2

𝜙
)

−𝑏ℎ

(2)

2
(𝑚
1
𝑎) (𝜆 + 2𝜇 + 𝜇

𝑒
𝐻

2

𝜙
))

− (3𝜆 + 2𝜇) ℎ

(2)

0
(𝑚
1
𝑎) ℎ

(2)

0
(𝑚
1
𝑏) 𝑇
0
𝛼
𝑐

× (4ℎ

(2)

1
(𝑚
1
𝑎) (𝜆 + 𝜇

𝑒
𝐻

2

𝜙
)

+ 𝑏ℎ

(2)

0
(𝑚
1
𝑎) (𝜆 + 2𝜇 + 𝜇

𝑒
𝐻

2

𝜙
)

− 𝑏ℎ

(2)

2
(𝑚
1
𝑎) (𝜆 + 2𝜇 + 𝜇

𝑒
𝐻

2

𝜙
)

+ (3𝜆 + 2𝜇) ℎ

(2)

0
(𝑚
1
𝑏) ℎ

(2)

0
(𝑚
2
𝑎) 𝑇
0
𝛼
𝑐

× (4ℎ

(2)

1
(𝑚
1
𝑎) (𝜆 + 𝜇

𝑒
𝐻

2

𝜙
)

+ 𝑏ℎ

(2)

0
(𝑚
1
𝑎) (𝜆 + 2𝜇 + 𝜇

𝑒
𝐻

2

𝜙
)

− 𝑏ℎ

(2)

2
(𝑚
1
𝑎) (𝜆 + 2𝜇 + 𝜇

𝑒
𝐻

2

𝜙
)

+ (3𝜆 + 2𝜇) ℎ

(2)

0
(𝑚
1
𝑎)

2

𝑇
0
𝛼
𝑐
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× (4ℎ

(2)

1
(𝑚
1
𝑏) (𝜆 + 𝜇

𝑒
𝐻

2

𝜙
)

+ 𝑏ℎ

(2)

0
(𝑚
1
𝑏) (𝜆 + 2𝜇 + 𝜇

𝑒
𝐻

2

𝜙
)

−𝑏ℎ

(2)

2
(𝑚
1
𝑏) (𝜆 + 2𝜇 + 𝜇

𝑒
𝐻

2

𝜙
))

− (3𝜆 + 2𝜇) ℎ

(2)

0
(𝑚
1
𝑎)

× ℎ

(2)

0
(𝑚
2
𝑎) 𝑇
0
𝛼
𝑐

× (4ℎ

(2)

1
(𝑚
1
𝑏) (𝜆 + 𝜇

𝑒
𝐻

2

𝜙
)

+ 𝑏ℎ

(2)

0
(𝑚
1
𝑏) (𝜆 + 2𝜇 + 𝜇

𝑒
𝐻

2

𝜙
)

−𝑏ℎ

(2)

2
(𝑚
1
𝑏) (𝜆 + 2𝜇 + 𝜇

𝑒
𝐻

2

𝜙
)))) ,

Δ
3
=

ℎ

(2)

0
(𝑚
2
𝑎) 𝑇
0

ℎ

(2)

0
(𝑚
1
𝑏) ℎ

(2)

0
(𝑚
2
𝑎) − ℎ

(2)

0
(𝑚
1
𝑎) ℎ

(2)

0
(𝑚
2
𝑏)

,

Δ
4
=

ℎ

(2)

0
(𝑚
1
𝑎) 𝑇
0

−ℎ

(2)

0
(𝑚
1
𝑏) ℎ

(2)

0
(𝑚
2
𝑎) + ℎ

(2)

0
(𝑚
1
𝑎) ℎ

(2)

0
(𝑚
2
𝑏)

,

Δ = −ℎ

(2)

0
(𝑚
1
𝑏) ℎ

(2)

0
(𝑚
2
𝑎)

× (4ℎ

(2)

1
(𝑚
1
𝑏) (𝜆 + 𝜇

𝑒
𝐻

2

𝜙
)

+ 𝑏ℎ

(2)

0
(𝑚
1
𝑏) (𝜆 + 2𝜇 + 𝜇

𝑒
𝐻

2

𝜙
)

−𝑏ℎ

(2)

2
(𝑚
1
𝑏) (𝜆 + 2𝜇 + 𝜇

𝑒
𝐻

2

𝜙
))

× (4ℎ

(2)

1
(𝑚
2
𝑎) (𝜆 + 𝜇

𝑒
𝐻

2

𝜙
)

+ 𝑏ℎ

(2)

0
(𝑚
2
𝑎) (𝜆 + 2𝜇 + 𝜇

𝑒
𝐻

2

𝜙
)

−𝑏ℎ

(2)

2
(𝑚
2
𝑎) (𝜆 + 2𝜇 + 𝜇

𝑒
𝐻

2

𝜙
))

+ ℎ

(2)

0
(𝑚
1
𝑎) ℎ

(2)

0
(𝑚
2
𝑏)

× (4ℎ

(2)

1
(𝑚
1
𝑏) (𝜆 + 𝜇

𝑒
𝐻

2

𝜙
)

+ 𝑏ℎ

(2)

0
(𝑚
1
𝑏) (𝜆 + 2𝜇 + 𝜇

𝑒
𝐻

2

𝜙
)

−𝑏ℎ

(2)

2
(𝑚
1
𝑏) (𝜆 + 2𝜇 + 𝜇

𝑒
𝐻

2

𝜙
))

× (4ℎ

(2)

1
(𝑚
2
𝑎) (𝜆 + 𝜇

𝑒
𝐻

2

𝜙
)

+ 𝑏ℎ

(2)

0
(𝑚
2
𝑎) (𝜆 + 2𝜇 + 𝜇

𝑒
𝐻

2

𝜙
)

−𝑏ℎ

(2)

2
(𝑚
2
𝑎) (𝜆 + 2𝜇 + 𝜇

𝑒
𝐻

2

𝜙
))

+ ℎ

(2)

0
(𝑚
1
𝑏) ℎ

(2)

0
(𝑚
2
𝑎)

× (4ℎ

(2)

1
(𝑚
1
𝑎) (𝜆 + 𝜇

𝑒
𝐻

2

𝜙
)

+ 𝑏ℎ

(2)

0
(𝑚
1
𝑎) (𝜆 + 2𝜇 + 𝜇

𝑒
𝐻

2

𝜙
)

−𝑏ℎ

(2)

2
(𝑚
1
𝑎) (𝜆 + 2𝜇 + 𝜇

𝑒
𝐻

2

𝜙
))

× (4ℎ

(2)

1
(𝑚
2
𝑏) (𝜆 + 𝜇

𝑒
𝐻

2

𝜙
)

+ 𝑏ℎ

(2)

0
(𝑚
2
𝑏) (𝜆 + 2𝜇 + 𝜇

𝑒
𝐻

2

𝜙
)

−𝑏ℎ

(2)

2
(𝑚
2
𝑏) (𝜆 + 2𝜇 + 𝜇

𝑒
𝐻

2

𝜙
))

− ℎ

(2)

0
(𝑚
1
𝑎) ℎ

(2)

0
(𝑚
2
𝑏)

× (4ℎ

(2)

1
(𝑚
1
𝑎) (𝜆 + 𝜇

𝑒
𝐻

2

𝜙
)

+ 𝑏ℎ

(2)

0
(𝑚
1
𝑎) (𝜆 + 2𝜇 + 𝜇

𝑒
𝐻

2

𝜙
)

−𝑏ℎ

(2)

2
(𝑚
1
𝑎) (𝜆 + 2𝜇 + 𝜇

𝑒
𝐻

2

𝜙
))

× (4ℎ

(2)

1
(𝑚
2
𝑏) (𝜆 + 𝜇

𝑒
𝐻

2

𝜙
)

+ 𝑏ℎ

(2)

0
(𝑚
2
𝑏) (𝜆 + 2𝜇 + 𝜇

𝑒
𝐻

2

𝜙
)

−𝑏ℎ

(2)

2
(𝑚
2
𝑏) (𝜆 + 2𝜇 + 𝜇

𝑒
𝐻

2

𝜙
)) .

(31)

Substituting about values of the constants into (4) yields

𝑢 (𝑟, 𝑡) =

1

Δ

[Δ
1
ℎ

(2)

1
(𝑚
1
𝑟) + Δ

2
ℎ

(2)

1
(𝑚
2
𝑟)] 𝑒

𝑖𝑤𝑡

,

𝑇 (𝑟, 𝑡) = [Δ
3
ℎ

(2)

0
(𝑚
1
𝑟) + Δ

3
ℎ

(2)

0
(𝑚
2
𝑟)] 𝑒

𝑖𝑤𝑡

.

(32)

Substitution by 𝑢 and 𝑇 into (25)–(27) yields

𝜎
𝑟𝑟
=

1

Δ

([[(𝜇 +

𝜆

2

) ℎ

(2)

0
(𝑚
1
𝑟)−(𝜇 +

𝜆

2

) ℎ

(2)

2
(𝑚
1
𝑟)] Δ

1

+ (𝜇 +

𝜆

2

) [ℎ

(2)

0
(𝑚
2
𝑟) − ℎ

(2)

2
(𝑚
2
𝑟)] Δ
2

+

2𝜆

𝑟

ℎ

(2)

1
(𝑚
1
𝑟) Δ
1
+

2𝜆

𝑟

ℎ

(2)

1
(𝑚
2
𝑟) Δ
2
)

−(3𝜆+2𝜇) 𝛼
𝑐
[Δ
3
ℎ

(2)

0
(𝑚
1
𝑟)+Δ

4
ℎ

(2)

0
(𝑚
2
𝑟)] ] 𝑒

𝑖𝑤𝑡

,

𝜎
𝜙𝜙
= 𝜎
𝜃𝜃
=

1

Δ

(

2

𝑟

(𝜆 + 𝜇) [Δ
1
ℎ

(2)

1
(𝑚
1
𝑟) + Δ

2
ℎ

(2)

1
(𝑚
2
𝑟)]

+ 𝜆 [

Δ
1

2

(ℎ

(2)

0
(𝑚
1
𝑟) − ℎ

(2)

2
(𝑚
1
𝑟))

+

Δ
2

2

(ℎ

(2)

0
(𝑚
2
𝑟) − ℎ

(2)

2
(𝑚
2
𝑟))]

− (3𝜆 + 2𝜇) 𝛼
𝑐

× [Δ
3
ℎ

(2)

0
(𝑚
1
𝑟) + Δ

4
ℎ

(2)

0
(𝑚
2
𝑟)] ) 𝑒

𝑖𝑤𝑡

,
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𝜏
𝑟𝑟
=

1

Δ

(𝜇
𝑒
𝐻

2

𝜙
[(

1

2

[ℎ

(2)

0
(𝑚
1
𝑟) − ℎ

(2)

2
(𝑚
1
𝑟)]

+

2

𝑟

ℎ

(2)

1
(𝑚
1
𝑟))Δ

1

+

1

2

[ (ℎ

(2)

0
(𝑚
2
𝑟) − ℎ

(2)

2
(𝑚
2
𝑟))

+

2

𝑟

ℎ

(2)

1
(𝑚
2
𝑟)] Δ
2
] 𝑒

𝑖𝑤𝑡

) .

(33)

6. Numerical Results and Discussion

In order to illustrate the theoretical results obtained in
the preceding section and to compare various theories of
thermoelasticity formulated earlier, we present some numer-
ical results for the physical constants. For the purposes of
numerical calculations, the copper material was chosen. The
constants of the problem given by Sokolnikoff [33] and
Thomas [34] are

𝐾 = 0.0921 × 10

13Wm−1K−1, 𝛼
𝑡
= 1.28 × 10

−9 K−1,

𝑐
𝑒
= 787 × 10

3 JKg−1K−1,

𝜌 = 2660Kgm−3, 𝜆 = 5.65 × 10

10Nm−2,

𝜇 = 2.46 × 10

10Nm−2,

𝜂 = 8886.73 sm−2, 𝑇
0
= 293K, 𝑎 = 0.5,

𝛽 = 220.9 × 10

9

, 𝜔 = 0.2.

(34)

The values of the absolute radial displacement |𝑢|, absolute
temperature distribution |𝑇|, absolute stresses |𝜎

𝑟𝑟
|, |𝜎
𝜃𝜃
|,

and absolute value of the radial Maxwell’s stress |𝜏
𝑟𝑟
|. The

output is plotted in Figures 1–5. Figure 1 shows the value of
radial displacement |𝑢| with respect to 𝑟 for different values
of the rotation Ω, magnetic field 𝐻

𝜙
, 𝑅, and initial stress 𝑃.

These figures indicate that the medium along 𝑟 undergoes
expansion deformation due to the thermal shock, while the
other shows the tension deformation.The effect of rotationΩ
and magnetic field𝐻

𝜙
on radial displacement becomes large

that increases and decreases with increasing of the rotation
and magnetic field, respectively, while there is no effect of 𝑅
and initial stress. At a given instant, the radial displacement
is finite, which is due to the effect of rotation, magnetic field,
𝑟 and initial stress.

Figure 2 shows that the value of temperature distribution
𝑇 with respect to 𝑟, while the solution is notably different
inside the sphere. This is due to the fact that the thermal
waves in the coupled theory travel with an infinite speed.The
effects of rotation Ω, magnetic field 𝐻

𝜙
, 𝑅, and initial stress

𝑃 on temperature distribution have been shown in Figure 2.
The temperature increases with increasing of the rotation and
magnetic field, while there is no effect of the 𝑅 and initial
stress 𝑃.

Figures 3 and 4 show the variations of absolute radial
stress |𝜎

𝑟𝑟
| and absolute tangential stress |𝜎

𝜙𝜙
| with respect

to the radius 𝑟, respectively. The values of radial stress and
tangential stress are increased with increasing of rotation and
magnetic field due to the effect of rotation and magnetic field
for all values of the radius 𝑟, while there is no effect of 𝑅 and
initial stress. For the values of |𝜎

𝑟𝑟
| and |𝜎

𝜙𝜙
|, depicting the

effect of rotation andmagnetic field. It is shown that the radial
stress is tension in its nature.

Figure 5 shows that the values of absolute values of the
radial Maxwell’s stress |𝜏

𝑟𝑟
| with respect to 𝑟. The effects of

rotationΩ, magnetic field𝐻
𝜙
, 𝑅, and initial stress 𝑃 on radial

Maxwell’s stress which it increases with increasing of rotation
and magnetic field, while there is no effect of 𝑅 and initial
stress.

7. Conclusion

Due to the complicated nature of the governing equations
of the magnetothermoelastic theory, the done works in this
field are unfortunately limited.Themethod used in this study
provides a quite successful in dealing with such problems.
This method gives exact solutions in the elastic medium
without any restrictions on the actual physical quantities that
appear in the governing equations of the considered problem.
Important phenomena are observed in these computations.

(i) It was found that large values of rotation andmagnetic
field give close results. The case is quite different
whenwe consider small value of rotation.The coupled
theory predicts infinite speeds of wave propagation.
The solutions are obtained in the context of thermoe-
lasticity theory.

(ii) Comparing Figures 1–5 for thermoelastic medium,
it was found that 𝑢, 𝜎

𝑟𝑟
, 𝜎
𝜙𝜙
, and 𝜏

𝑟𝑟
have the same

behavior in both media. But with the passage of
magnetic field and rotation, the numerical values of
𝑢, 𝜎
𝑟𝑟
, 𝜎
𝜙𝜙
, and 𝜏

𝑟𝑟
in thermoelastic medium are large

due to the influences of magnetic field, rotation, 𝑅,
and initial stress 𝑃.

(iii) The results presented in this paper will be very
helpful for researchers concerned with material sci-
ence, designers of new materials, low-temperature
physicists, and for those working on the development
of a theory of hyperbolic propagation of hyperbolic
thermodiffusion. Study of the phenomenon of rota-
tion, magnetic field, 𝑅, and initial stress is also used
to improve the conditions of oil extractions.
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