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We introduce a new generalized resolvent in a Banach space and discuss some of its properties. Using these properties, we obtain an
iterative scheme for finding a point which is a fixed point of relatively weak nonexpansive mapping and a zero of monotone mapping.
Furthermore, strong convergence of the scheme to a point which is a fixed point of relatively weak nonexpansive mapping and a

zero of monotone mapping is proved.

1. Preliminaries

Let E be a real Banach space with dual E*. We denote by J the
normalized duality mapping from E into 2¥ , defined by

Je={f e B (o f) = 1P = 1L O

where (-,-) denotes the generalized duality pairing. It is well
known that if E* is strictly convex, then ] is single valued and
if E is uniformly smooth, then ] is uniformly continuous on
bounded subsets of E. Moreover, if E is a reflexive and strictly
convex Banach space with a strictly convex dual, then ™" is
single valued, one-to-one, and surjective, and it is the duality
mapping from E* into E and thus JJ ™' = I. = [*and J '] =
I = I (see [1]). We note that, in a Hilbert space H, J is the
identity mapping.

Let E be a smooth, reflexive, and strictly convex Banach
space. We define the function V, : Ex E — Rby

V, (0,%) = 2 = 2 Uy, x) + |y 2)

forall x € E,y € E. Let C be a nonempty closed convex
subset of E. For an arbitrary point x of E, consider the set {z €
C:Vy(z,x) = minyecVz(y, x)}. In 1996, Alber [2] introduced

generalized projection Il : E — C from Hilbert space to
uniformly convex and uniformly smooth Banach space:

v (Tlgx, x) = minV; (y, x). (3)

Such a mapping I1 is called the generalized projection.
Applying the definitions of V, and J, a functional V': E* x
E — Ris defined by the following formula:

V(xhy)=V,(J'x"y), V¥x"€E', yeE (4)

In the following, we will make use of the following
lemmas.

Lemma 1 (see [3]). Let E be a real smooth Banach space and

let A: E — 2% be a maximal monotone mapping; then A™'0
is a closed and convex subset of E and the graph of A, G(A),
is demiclosed in the following sense, for all x,, € D(A) with
x, — xinE and forall y, € Ax, with y, — yinE implying
that x € D(A) and y € Ax.

Lemma 2 (see [2]). Let C be a nonempty closed and convex
subset of a real reflexive, strictly convex, and smooth Banach
space E and let x € E. Then, y € C and

V, (3, Hex) + <V, (TIex, x) <V, (1, %) (5)
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Lemma 3 (see [2]). Let C be a convex subset of a real smooth
Banach space E. Let x € E and x, € C. Then, V,(xy,x) =
inf{V,(z,x) : z € C} ifand only if

<Z—x0,]x0—]x> = 0. (6)

Lemma 4 (see [4]). Let E be a real smooth and uniformly
convex Banach space and let {x,} and {y,} be two sequences
of E. If either {x,} or {y,} is bounded and V,(x,, y,) — 0as
n — oo, thenx, -y, — 0,asn — oo.

Let E* be a smooth Banach space and let D* be a nonempty
closed convex subset of E*. A mapping R* : D* — D" is called
generalized nonexpansive if F(R") + @ and

V (R*x*,]fly*) < V (x*’]fly*) ,

Vx" € D", y* € F(R"),

where F(R") is the set of fixed points of R".

Let C be a nonempty closed convex subset of E, and let T be
a mapping from C into itself. We denote by F(T') the set of fixed
points of T. A point of p in C is said to be a strong asymptotic
fixed point of T if C contains a sequence {x,} which converges
strongly to p such that the strong lim,, _, . (Tx, — x,) = 0. The
set of strong asymptotic fixed points of T will be denoted by
E(T). A mapping T from C into itself is called weak relatively
nonexpansive if F(T) = F(T) and V,(p, Tx) < V,(p, x) for all
x e€Candp e F(T) (see[5]).

Let E be a smooth Banach space and let C be a nonempty
closed convex subset of E. A mapping R : C — C is called
generalized nonexpansive if F(R) # @ and

V,(Rx,y) <V, (x,y), VxeC, ye F(R), (8)

where F(R) is the set of fixed points of R. Let E be a reflexive
and smooth Banach space and let B ¢ E* x E be a maximal
monotone operator. For each A > 0 and x € E, Ibaraki and
Takahashi [6] considered the set

Lhwx:={z€E:xez+ABJ(2)}. 9)
Such a J, is called the generalized resolvent and is denoted by
J, = +ABJ)"". (10)

By sunny nonexpansive retractions, they discussed the existence
of a retraction R of E onto C such that, for any x € E,

(x=Rex, J (Rex) =T (y)) 20, VyeC, (1)

where E is a smooth Banach space and C is nonempty closed
subset of E (see [7]).

In [7], Zegeye and Shahzad studied the following iterative
scheme for finding a zero point of a maximal strongly monotone
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mapping A in a real uniformly smooth and uniformly convex
Banach space E. Then the sequence {x,} generated by

X, € K, chosenarbitrary,
Yn = ]_1 (]'xn - (XnAxn) >
z, =Ty,
Hy={veK:¢(v.z) <¢ (v y) <¢(v.x)},
Hn = {V € Hn—l n Wn—l : ¢(V’Zn)
<) <P (x)} (12
W, = E,
W,={veH,_ nW, :

<xn_v’]x0 _]xn> 2 0}’

Xpp1 = H (%), n=1

H,nW,

converges strongly to T y-1onp(r)(xg), where T 4-10np(r is the
generalized projection from E onto A™'0 n F(T).

In this paper, motivated by Alber [2], Ibaraki and Taka-
hashi [6], and Zegeye and Shahzad [7], we first introduce the
generalized resolvent and discuss its properties. Secondly, we
give an iterative scheme for finding a point which is a fixed
point of relatively weak nonexpansive mapping and a zero of
monotone mapping. Finally, we show its convergence.

2. The Generalized Resolvent ], and
Some of Its Properties

Let E* be a reflexive and smooth Banach space and let B ¢
E x E* be a maximal monotone operator. For each A > 0 and
x € E, consider the set:

Jix" = {z* €E* :x* ez +ABJ! (z*)} (13)

Ifzi + \w = x", 2 + \w) = x",w € B '(z)),
w; € BJ"'(2}), then we have from the monotonicity of B that

(w -wl, 77 (@) -1 () 2 0, (14)

and hence

<x* ;ZT -z ;z;’]_l (z)-T" (Z;‘)> >0. (15
So, we obtain

<x*_zf—(x*_z;),]’1 (z5) -7 (z;)>20, 16)
and hence

(25 -20,07"(z) =T (z3)) 2 0. 17)



Journal of Applied Mathematics

This implies z; = z,. Then, Jyx" consists of one point. We
also denote the domain and the range of Jyx* by D(J;) =
R(I* + ABJ ") and R(J}) = D(BJ "), respectively, where I*
is the identity on E*. Such a J; : E* — E" is called the
generalized resolvent of B and is denoted by

Ji= (1 + A7) (18)
We get some properties of ]/’{ and (B]_l)’lo.

Proposition 5. Let E* be a reflexive and strictly convex
Banach space with a Fréchet differentiable norm and let B C
E x E* be a maximal monotone operator with B~'0# @. Then,
the following hold:
(1) D(J;) = E* for each A > 0;
) B H 1o = F(Jy) for each A > 0, where F(J}) is the
set of fixed points of ] ;
(3) (BI"") 10 is closed;
(4) J; : E* — E" is generalized nonexpansive for each
A>0.

Proof. (1) From the maximality of B, we have

R(J+AB)=E", VA>0. 19)
Hence, for each x* € E*, there exists x € E such that
x* € Jx + ABx. Since E is reflexive and strictly convex, J
is bijective. Therefore, there exists z* € E” such that x =
J7Y(z*). Therefore, we have
x* e (2") + ABI T (2%)
(20)
=z"+AB] "' (z*) c R(I" + AB] ") = D(J}).
This implies E* ¢ D(J;). D(Jy) c E" is clear. So, we have
D(];) =E".
(2) Let A > 0. Then, we have
x"€F(])) =[x =x" = x" ex" + AB] "' (x*)
= 0eAB] ' (x*) = 0eB] " (x*)

= x" ¢ (B]*I)_IO.
(21)

(3) Let {x} ¢ (B0 with x; — x*. From x\ «
(BI™H)'0, we have ]71(x;) e B7!o. Since J7! is norm to
norm continuous and B0 is closed, we have that J ™ (x;) —
J'(x*) e B'0. This implies x* € (BJ™")7'0. That is,
(BI'H) 0 is closed.

(4) Let x* € E*, y* € E*,z" € E*,and A > 0. By
Definition (2) and calculating that

v (x*)]—lz*) +V (Z*)]—ly*)
Z*

_ ”x*HZ + 2 ) <x*)]—lz*

2 2 (22)
* *  r—1 *%
I+ 27 - 24270y

_ V(X*,]_ly*) +2 <Z* _ x*,]—lz* _ ]—ly*

we have that
vV (X*,]_ly*) =V (x*,]—lz*) +V (Z*,]_ly*)
(23)
+2 <X* _ z*’]flz* _ ]71)/*

Let x* € E*, y* € F(J;), and A > 0. From the above formula,
we have

V(x*)]—ly*) — V(x*,]_llix*) + V(];x*,]_ly*)
(24)
+2 <X* _ ];x*,f_lf,\x* _ ]—ly*
Since ((x* — Jyx")/A) € B]_l(];[x*) and 0 € B/ '(y*), we
have
(x* =5 T x" =T yT) 2 0. (25)
Therefore, we get
Vv (x*’]—ly*) SV (X*,]_II;{X*) +V (];x*’]—ly*)
(26)
>V (Iix' Ty,

That is, J; is generalized nonexpansive on E*. O

Theorem 6 (see [8]). Let E be a Banach space and let A C
E x E* be a maximal monotone operator with A~ 0# Q. If E*
is strictly convex and has a Fréchet differentiable norm, then,
for each x € E, lim, _, (J + AA) " J(x) exists and belongs to
A7,

Using Theorem 6, we get the following result.

Theorem 7. Let E* be a uniformly convex Banach space with
a Fréchet differentiable norm and let B C E X E* be a maximal
monotone operator with B™'0# Q. Then the following hold:

(1) for each x™ € E*, lim, _, ]y x" exists and belongs to
B Ho;
(2) if R*x" = lim, _, o, Jyx" for each x* € E”, then R" is
a sunny generalized nonexpansive retraction of E* onto
(B]7)0.
Proof. (1) By defining a mapping Q, from E to E by
Qux:=(I+N"'B)x, VxeE A>0,  (27)

we have, for all x* € E*,A > 0, J;x" = ]QA]_I(x*). In fact,
define

X = QU () = [T (T+ M7 B) T (x7). (28)
Then, we have
x"eJ(I+NM7'B)J " (x}) = (I" +AB] ') x},  (29)
and hence x) = J; x". From Theorem 6, we get
Ali_}mooQ,\]’1 (x*)=ueB0. (30)

If E* is uniformly convex, then E has a Fréchet differentiable
norm. So, J is norm to norm continuous. Since B0 is closed,
we have

Alim ];x* = Alim ]Q,\fl (x*)=Jue JB'0 = (B]’l)_lo-
(31



(2) We define a mapping R* from E* to E* by

R*x" := lim Jyx",

— 00

vx" € E". (32)
Letu® € (B )0 = F(Jyx*). Then,R*u* = lim, _,  ,Jyu" =

limy _, ou" = u". Therefore, R* is a retraction of E* onto
(BJ™H10. Since x* € Jyx" + /\B]fl(];x*), we have

vz e (B17) o,

(33)

and hence
(x" = Tix" ) x") =T (2))y 20 (34)
Letting A — 0, we get
(x-R'x" T R x)-T(z)) =0, vz* e (B) 0.
(35)

From Proposition 5, R* is sunny and generalized nonexpan-
sive. This implies that R* is a sunny generalized nonexpansive
retraction of E* onto (BJ1)'0. O

3. An Iterative Scheme for Finding a Zero
Point of a Monotone Mapping by J;

Now we construct an iterative scheme which converges
strongly to a point which is a fixed point of relatively weak
nonexpansive mapping and a zero of monotone mapping.

Theorem 8. Let E* be a uniformly convex Banach space and
uniformly smooth Banach space. Let A C E x E* be a maximal
monotone operator. Let C be a nonempty closed convex subset
of E. Let T : C — C be a relatively weak nonexpansive
mapping with A 0N F(T) # @. Assume that 0 < o, < a < 1 is
a sequence of real numbers. Then, the sequence {x,} generated

by

x, € C, A, — +00,

Yo =T (@)%, + (1= ) Iy J%, )
i = (r+rarh)
2, = Ty,
Hy ={v e C:V,(v.2)) <V, (0 35) < V3 (0 %)}
H,={veH, 0 W, ,:V,(v,z,)< V; (v, 3,) <V (v x,)}
W, =C,

W,={veH, nW,_ :{v—x,,Jx,— Jx,) <0},

Xpp1 = H (%), n=1

H,nW,
(36)
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converges strongly to T1 y-1onp(r)(Xg), where T14-19npr is the
generalized projection from E onto A~'0 N F(T).

Proof. We first show that H,, and W, are closed and convex for
each n > 0. From the definition of H, and W, it is obvious
that H,, is closed and W, is closed and convex for each nn > 0.
We show that H,, is convex. Since

Hn = {V € Hn—l n Wn—l : VZ (V’ Zn) < V2 (V’ yn)}

(37)
n {V € Hn—l n Wn—l : V2 (V’ yn) < V2 (V> xn)} >
V,(v, y,) < V,(v, x,,) is equivalent to
2T, = Ta) +all + Il <0, 38)
and V, (v, z,)) < V,(v, y,,) is equivalent to
20 Iy, = Jz,) + |zl + |xal” < 0, (39)

it follows that H,, is convex.

Next, we show that F =: A™'0n F(T) ¢ H, N W, for each
n > 0. Let p € F; then relatively weak nonexpansiveness of T
and generalized nonexpansiveness of | ;{ give that

v, (p:20) = V2 (P, Tyo) < V2 (ps 30)
=V, (p, J! ((xolxo +(1-0ap) ]jojxo))
= oI + o xo + (1 = ) T Txo

-2 <P> aoJx + (1 - o) ];0]x0>

IN

I2I” = 204 (p. Jx0) =2 (1= a9) {p. T} J%o)

. 2
WES

+ a0||]x0||2 +(1-0ap)

o (Il = 20 p.J%0) + ol
+(1-a0) (Il -2 (p I3 %) + i o)
Vs (ps x0) + (1= 0) Vs (p, T T3 %o )
)V (p:J5,]%0)
agVy (prxo) + (1 - ) V (1 Jx,)
)

Vs (> x0) + (1 =) Vo (P, %) = Vs (ps %) -
(40)

Vs (P, %) + (1 -y

IN

IN

Thus, we give that p € H,,. On the other hand, it is clear that
p € C.Thus, F ¢ Hy N W, and, therefore, x; = Tl nw,
is well defined. Suppose that F ¢ H,_; N W,_, and {x,} is
well defined. Then, the methods in (40) imply that V,(p, z,,) <
Vo (p, v,) < V,(p,x,) and p € H,. Moreover, it follows from
Lemma 3 that

<P — Xp ]xn - ]x0> >0, (41)

which implies that p € W,,. Hence F ¢ H, N W, and x,,,, =
Iy w, is well defined. Then, by induction, F ¢ H, "W, and
the sequence generated by (36) is well defined for each n > 0.
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Now, we show that {x,} is a bounded sequence and
converges to a point of F. Let p € F. Since x,,,; = ITy , (xo)
and H,NW, c H,_, NW,_, foralln > 1, we have

Vy (%5 %) < V3 (X415 %) (42)

for all n > 0. Therefore, {V,(x,,x,)} is nondecreasing. In
addition, it follows from definition of W,, and Lemma 3 that
x, = Iy (xo). Therefore, by Lemma 2 we have

Vy (%, %) = V, (1‘:’[ (%0) ,x0>

<V, (px0) = Vo (o x,) < Vs (P %) »

for each p € F(T) ¢ W, for all n > 0. Therefore, {V,(x,, x,)}
is bounded. This together with (40) implies that the limit
of {V,(x,,x,)} exists. Put lim,_, ., V,(x,,x,) = d. From
Lemma 2, we have, for any positive integer m, that

(43)

V2 (xn+m’ xn) = V2 <xn+m’ H (X0)> < VZ (xn+m>x0)
w,

-V, <H (%) » x0> i

W,

n

=V, (xn+m’ xo) -V, ('xn’ xo) >

for all m > 0. The existence of lim,, _, .V, (x,,, x,) implies that
lim, _, V5 (X,, %,) = 0. Thus, Lemma 4 implies that

Xppin — X, — 0 as n — 00, (45)

and hence {x,} is a Cauchy sequence. Therefore, there exists
apointq € E such thatx, — gasn — oo. Since x,,,, € H,,
we have V,(x,,1,2,) < Vy(x,.1,¥,) < V5(x,,1>x,). Thus by
Lemma 4 and (45) we get that

Xpe1 — 2, — 0, Xpo1 = Vo — 0 asn— 00, (46)

and hence |x, — I < lIx,.1 — %, + Ix,.; — ¥, — Oas
n — oo. Furthermore, since ] is uniformly continuous on
bounded sets, we have

,,1220 "]an - ]zn“ = ,}H%O “]xn - ]yn” =0, (47)

which implies that

||]xn+1 - ]Tyn" —  asn — 00. (48)

Since ™' is also uniformly norm-continuous on bounded
sets, we obtain

=0. (49)

m %0 = Tyl = Tim |77 0 =TTy,
Therefore, from (46), (49), and ||y, — Ty,ll < llx,.1 — Ty, +
llx,,— v,.|l, we obtain that lim,, _, |ly,,—Ty,l = 0. This together
with the fact that {x,} (and hence {y,}) converges strongly
to g € E and the definition of relatively weak nonexpansive
mapping implies that g € F(T'). Furthermore, from (36) and

(47), we have that (1 — e, )IJ} Jx, = Jx,|l = Jx, = Iyl — 0
asn — o0o.Thus, fromlim, _, ,J} Jx, =lim,_,,Jx, = Jq €

JAT'0 = (A]_l)’lo, we obtain that g € A7lo.
Finally, we show that g = Tl4-1qp(xy) asn — oo.
From Lemma 2, we have

v, <‘1’ 1_[ (x0)>+V2< H (xo),x0>£V2 (4> xo) -
A~1ONE(T) A~YONE(T)
(50)

On the other hand, since x,,,; = Iy ~, (xp) and F ¢ H,NW,
for all n > 0, we have by Lemma 2 that

V; < H (x0) ’xn+1> +V; (%415 %)
A (T)

~10nF

(51)
<V, < H (xo),x0>.
AONE(T)
Moreover, by the definition of V,(x, y), we get that
nlergOVz (X1 %) = V2 (g, %) - (52)

By combining (50) and (52), we obtain that V,(g,x,) =
V(T 410051y (%9) Xo)- Therefore, it follows from the unique-
ness of IT 419 gy (o) that g = 1 y-15np(r) (%0). This completes
the proof. O

Remark 9. If in Theorem 8 we have that T = I, the identity
map on E, then we get the following.

Corollary 10. Let E* be a uniformly convex Banach space and
uniformly smooth Banach space. Let A C Ex E* be a maximal
monotone operator. Let C be a nonempty closed convex subset
of E with A™'0# Q. Assume that 0 < a, < a < 1 is a sequence
of real numbers. Then, the sequence {x,,} generated by

x, € C, A, — +00,

— * * * —1\"L
yn:] l(ocn]xn"' (1_“n)])tn]xn)’ ])Ln:(I +/\nA] 1) >
Hy={veC:V,(v,2y) <V, (v, ) <V, (. %)},
Hn: {V € Hn—l n Wn—l : VZ (V’ Zn)S V2 (V’ yn)S VZ (V’ xn)} ’
WO = C,

W,={veH,_,nW,_, : (v-x,,]x, - Jx,) <0},

Xnt1 = 1—[ (xO)’ nxl

H,nW,
(53)

converges strongly to I, where I1,-1, is the generalized
projection from E onto A™0.

Remark 11. We have compared the results of [2, 6, 7] with the
result in this paper.



(1) In [6], Ibaraki and Takahashi introduced the general-
ized resolvent J; : E — E, which was denoted by

J, = +ABJ)"". (54)

In this paper, we introduce the generalized resolvent Jy :
E* — E*, which is denoted by

J; = (1 +AB) (55)

(2) In [6], Ibaraki and Takahashi defined a sunny gener-
alized nonexpansive retraction R of E onto BJ 10 :

Rx := lim J,x, Vx¢€E. (56)
A— 00

In this paper, we define a sunny generalized nonexpansive
retraction R* of E* onto (BJ 1) 0 :

R*x" = lim Jyx", Vxe€E" (57)
A— 00

(3) In [7], Zegeye and Shahzad proved the strong conver-
gence theorem of the sequence {x,} generated by (12). Using
J;» in this paper, we construct an iterative scheme in E*,
which converges strongly to a point which is a fixed point
of a relatively weak nonexpansive mapping and a zero of a
monotone mapping.

The results we have obtained in this paper are studied in
E*, which is different from others.
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