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Let X be a Banach space and 𝐶
𝑛
a family of connected subsets of 𝑅 × 𝑋. We prove the existence of unbounded components in

superior limit of {𝐶
𝑛
}, denoted by lim𝐶

𝑛
, which have prescribed shapes. As applications, we investigate the global behavior of

the set of positive periodic solutions to nonlinear first-order differential equations with delay, which can be used for modeling
physiological processes.

1. Introduction and the Main Results

The connectivity result on the fixed set of a 1-parameter
family of maps, which goes back to Leray and Schauder
[1] and was proved in its full generality by Browder [2], is
a useful tool in the study of global continua of solutions
on nonlinear differential equations. Costa and Gonçalves
[3] stated and proved a suitable version for the study of
nonlinear boundary value problems at resonance. Massabò
and Pejsachowicz [4] generalized the main results of [1, 2] to
the 𝑛-parameter family of compact vector fields. The above
results were established when the parameter(s) changes in
a bounded set. Sun and Song [5] proved the existence of
unbounded connected component of 1-parameter family of
compact vector fields, where the parameter varies on whole
real line. All of these results play important roles in the study
of nonlinear functional analysis and nonlinear differential
equations.

For clearly reading, we firstly recall Kuratowski’s defini-
tions and notations in [6].

LetM be ametric space. Let {𝐶
𝑛
| 𝑛 = 1, 2, . . .} be a family

of subsets of M. Then the superior limit D of {𝐶
𝑛
} is defined

by

D := lim𝐶
𝑛
= {𝑥 ∈ 𝑀 | ∃ {𝑛

𝑖
} ⊂ N, 𝑥

𝑛𝑖
∈ 𝐶

𝑛𝑖
,

such that 𝑥
𝑛𝑖

󳨀→ 𝑥} .

(1)

A component of a set M means a maximal connected
subset ofM.

Definition 1. Let 𝑋 be a Banach space with the norm ‖ ⋅ ‖.
Let 𝜁 be a component of solutions in R × 𝑋. 𝜁 meets (𝑎, 0)
and infinity means that there existed a sequence {(𝜆

𝑘
, 𝑢

𝑘
)} ⊂

[𝜁 \ {(𝑎, 0)}] such that (𝜆
𝑘
, 𝑢

𝑘
) → (𝑎, 0) as 𝑘 → ∞.

For 𝜌, 𝛽 ∈ (0,∞), let us denote

𝐵
𝜌
:= {𝑢 ∈ 𝑋 | ‖𝑢‖ ≤ 𝜌} ,

Ω
𝛽,𝜌

:= ([0,∞) × 𝑋) \ {(𝜂, 𝑢) ∈ [𝛽,∞) × 𝑋 | ‖𝑢‖ ≤ 𝜌} .

(2)

Let {C
𝑛
} be a family of connected subsets of R × 𝑋. The

purpose of this paper is to study the existence of unbounded
components in limC

𝑛
which have prescribed shapes.

More precisely, we will prove the following theorems.

Theorem 2. Let𝑋 be a Banach space and let {C
𝑛
} be a family

of connected subsets of [0,∞) × 𝑋. Assume that
(A1) there exist 0 < 𝜎 < 𝑟 < ∞ and 𝜆

∗
∈ (0,∞), such that

C
𝑛
∩ {(𝜇, 𝑦) | 0 < 𝜇 ≤ 𝜆

∗
+ 𝜎, 𝑟 − 𝜎 ≤

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩 ≤ 𝑟 + 𝜎} = 0;

(3)

(A2) 𝜂
𝑛

→ 0
+ andC

𝑛
meets (𝜂

𝑛
, 0) and infinity;
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(A3) for every𝑅 > 0, (⋃∞

𝑛=1
C
𝑛
)⋂B

𝑅
is a relatively compact

set of R × 𝑋, where

B
𝑅

= {(𝜇, 𝑥) ∈ R × 𝑋 |
󵄨󵄨󵄨󵄨𝜇

󵄨󵄨󵄨󵄨 < 𝑅, ‖𝑥‖ ≤ 𝑅} . (4)

Then there exists a componentC in limC
𝑛
satisfying

(a) Cmeets (0, 0) and infinity;
(b) C ∩ {(𝜇, 𝑦) | 0 < 𝜇 ≤ 𝜆

∗
, ‖𝑦‖ = 𝑟} = 0.

Theorem 3. Let 𝑎 ∈ R be a constant. Let𝑋 be a Banach space,
and let {C

𝑛
} be a family of connected subsets ofR×𝑋. Assume

that

(H1) C
𝑛
∩ ((−∞, 𝑎] × 𝑋) = 0;

(H2) there exist 0 < 𝜎 < 𝑟 < ∞ and 𝑏 ∈ (𝑎,∞), such that

C
𝑛
∩ {(𝜇, 𝑦) | 𝜇 ≥ 𝑏 − 𝜎, 𝑟 − 𝜎 ≤

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩 ≤ 𝑟 + 𝜎} = 0; (5)

(H3) 𝜂
𝑘
> 𝑎 for all 𝑘 ∈ N, 𝜂

𝑘
→ +∞ and C

𝑛
meets (𝜂

𝑛
, 0)

and infinity in ([𝑎,∞) × 𝑋) \ Ω
𝑏,𝑟
;

(H4) for every 𝑅 > 0, (⋃∞

𝑛=1
C
𝑛
) ∩B

𝑅
is a relatively compact

set of R × 𝑋.

Then there exists a componentC in limC
𝑛
such that

(a) both C ∩ Ω
𝑏,𝑟

and C ∩ (([𝑎,∞) × 𝑋) \ Ω
𝑏,𝑟

) are
unbounded;

(b) C ∩ {(𝜇, 𝑦) | 𝜇 ≥ 𝑏, ‖𝑦‖ = 𝑟} = 0.

2. Proofs of the Main Results

To prove Theorems 2 and 3, we need the following prelim-
inary result, which is proved by Ma and An [7] by using
Whyburn lemma, and the method of Sun and Song to prove
[6, Lemma 2.2].

Lemma 4 (see [7, Lemma 2.2]). Let 𝐸 be a Banach space with
the norm ‖ ⋅ ‖

𝐸
. Let {𝐷

𝑛
} be a family of connected subsets of 𝐸.

Assume that

(i) there exist 𝑧
𝑛
∈ 𝐷

𝑛
, 𝑛 = 1, 2, . . ., and 𝑧

∗

∈ 𝐸, such that
𝑧
𝑛

→ 𝑧
∗;

(ii) lim
𝑛→∞

𝑟
𝑛
= ∞, where 𝑟

𝑛
= sup{‖𝑥‖

𝐸
| 𝑥 ∈ 𝐷

𝑛
};

(iii) for every 𝑅 > 0, (⋃∞

𝑛=1
𝐷
𝑛
) ∩ 𝐵

𝑅
is a relatively compact

set of 𝐸, where

𝐵
𝑅

= {𝑥 ∈ 𝐸 | ‖𝑥‖
𝐸
≤ 𝑅} . (6)

Then there exists an unbounded component C in lim𝐷
𝑛
and

𝑧
∗

∈ C.

Proof of Theorem 2. (a) It is a direct consequence of
Lemma 4.

(b) Assume, on the contrary, that the conclusion is not
true.Then there exists (𝜇∗, 𝑢∗) ∈ C with 𝜇

∗

≤ 𝜆
∗
and ‖𝑢

∗

‖ =

𝑟. Hence, there exists {(𝜂
𝑛𝑘
, 𝑢

𝑛𝑘
)} ⊂ C

𝑛
, such that

lim
𝑘→∞

𝜂
𝑛𝑘

= 𝜇
∗

, lim
𝑘→∞

𝑢
𝑛𝑘

= 𝑢
∗

. (7)

Thus, there exists 𝑘
0
∈ N, such that, for 𝑘 ≥ 𝑘

0
,

𝜂
𝑛𝑘

< 𝜆
∗

+
𝜎

2
, 𝑟 −

𝜎

2
≤

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛𝑘

󵄩󵄩󵄩󵄩󵄩
≤ 𝑟 +

𝜎

2
. (8)

However, this contradicts (3).
Proof of Theorem 3. (a) Since 𝜂

𝑘
→ ∞, we may assume that

𝜂
𝑘
> 𝑏, 𝑘 ∈ N. (9)

So, it follows from conditions (ii) and (iii) thatC
𝑛
meets {𝑏}×

𝐵
𝑟
and infinity in ([𝑎,∞) × 𝑋) \ Ω

𝑏,𝑟
.

For each (𝑏, V) ∈ ({𝑏} × 𝐵
𝑟
) ∩ D, let E(𝑏, V)(⊂ D) be a

component containing (𝑏, V). Let

𝜍 (𝑏, V) := sup {𝜆 | (𝜆, 𝑢) ∈ E (𝑏, V) , 𝑢 ∈ 𝐵
𝑟
} . (10)

Set

Π := {(𝑏, V) | (𝑏, V) ∈ ({𝑏} × 𝐵
𝑟
) ∩ D, E (𝑏, V)

is unbounded in ([𝑎,∞) × 𝑋) \ Ω
𝑏,𝑟

} .

(11)

Then Π ̸= 0 since

(C
𝑗
∩ ({𝑏} × 𝐵

𝑟
)) ⊆ Π, 𝑗 ∈ N. (12)

From Lemma 4, it follows thatΠ is closed in [0,∞)×𝑋, and,
furthermore, Π is compact in [0,∞) × 𝑋.

Let

Σ
⬦

:= ⋃

(𝑏,V)∈Π
E (𝑏, V) . (13)

By Lemma 4, lim 𝐶
𝑛

∩ (([𝑎,∞) × 𝑋) \ Ω
𝑏,𝑟

) contains a
component 𝜁 which meets {𝑏} × 𝐵

𝑟
and infinity in (([𝑎,∞) ×

𝑋) \ Ω
𝑏,𝑟

). Obviously

𝜁 ∈ Σ
⬦

. (14)

If 𝜍(𝑏, V) = +∞ for some (𝑏, V) ∈ Π, then Theorem 3
holds.

Assume, on the contrary, that 𝜍(𝑏, V) < +∞ for all (𝑏, V) ∈

Π.
For every (𝑏, V) ∈ Π, let E⊳

(𝑏, V) be the component
in E(𝑏, V) ∩ ([𝑏,∞) × 𝐵

𝑟
) which contains (𝑏, V). Using the

standard method, we can find a bounded open set 𝑈(𝑏, V) in
[𝑏,∞) × 𝐵

𝑟
, such that

E
⊳

(𝑏, V) ⊂ 𝑈 (𝑏, V) , 𝜕𝑈 (V) ∩ Σ
⬦

= 0 (15)

and for every (𝑏, V) ∈ Π,

sup {𝜆 | (𝜆, 𝑢) ∈ 𝑈 (𝑏, V)} < ∞, (16)

where 𝜕𝑈(V) and 𝑈(V) are the boundary and closure of 𝑈(V)
in [𝑏,∞) × 𝐵

𝑟
, respectively.

Evidently, the following family of the open sets of {𝑏}×𝐵
𝑟

{𝑈 (𝑏, V) ∩ ({𝑏} × 𝐵
𝑟
) | (𝑏, V) ∈ Π} (17)
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is an open covering of Π. Since Π is compact set in {𝑏} × 𝐵
𝑟
,

there exist V
1
, . . . , V

𝑚
such that (𝑏, V

𝑖
) ∈ Π (𝑖 = 1, . . . , 𝑚), and

the family of open sets in {𝑏} × 𝐵
𝑟
:

{𝑈 (𝑏, V
𝑖
) ∩ ({𝑏} × 𝐵

𝑟
) | 𝑖 = 1, . . . , 𝑚} (18)

is a finite open covering of Π. This implies that

Π ⊆ {𝑈 (𝑏, V
𝑖
) ∩ ({𝑏} × 𝐵

𝑟
) | 𝑖 = 1, . . . , 𝑚} . (19)

Let

𝑈
1
=

𝑚

⋃

𝑖=1

𝑈 (𝑏, V
𝑖
) . (20)

Then 𝑈
1
is a bounded open set in [𝑏,∞) × 𝐵

𝑟
,

𝜕𝑈
1
∩ ( ⋃

(𝑏,V)∈Π
E
⊳

(𝑏, V)) = 0, 𝜕𝑈
1
∩ Σ

⬦

= 0 (21)

and by (16), we have

sup {𝜆 | (𝜆, 𝑢) ∈ 𝑈
1
} < ∞, (22)

where 𝜕𝑈
1
and 𝑈

1
are the boundary and closure of 𝑈

1
in

[𝑏,∞) × 𝐵
𝑟
, respectively.

Now, (22) together with (19) and (21) implied that

sup {𝜆 | (𝜆, 𝑢) ∈ Σ
⬦

, 𝑢 ∈ 𝐵
𝑟
} < ∞. (23)

However, this contradicts 𝜆
𝑛

→ ∞.
Therefore, there exists (𝑏, V∗) ∈ Π such that 𝜁 := E(𝑏, V∗)

which is unbounded in both [𝑏,∞) × 𝐵
𝑟
and ([𝑎,∞) × 𝑋) \

([𝑏,∞) × 𝐵
𝑟
).

(b) By a fully analogous argument as in the proof of
Theorem 2(b) (with minor modifications), one can immedi-
ately obtain the desired results.

3. Application to Functional
Differential Equations

In recent years, there has been considerable interest in the
existence of 𝜔-periodic solutions of the equation

𝑢
󸀠

(𝑡) = 𝑎 (𝑡) 𝑔 (𝑢 (𝑡)) 𝑢 (𝑡) − 𝜆ℎ (𝑡) 𝑓 (𝑢 (𝑡 − 𝜏 (𝑡))) , 𝑡 ∈ R,

(24)

where 𝑎, ℎ ∈ 𝐶(R, [0,∞)) are 𝜔-periodic functions and
𝜏 is a continuous 𝜔-periodic function. Equation (24) has
been proposed as a model for a variety of physiological
processes and conditions including production of blood cells,
respiration, and cardiac arrhythmias. See, for example, [8–20]
and the references therein.

Recently, Wang [18] used the fixed point index [20, 21] to
study the existence, multiplicity, and nonexistence of positive
solutions of (24) under the following assumptions.

(C1) 𝑎, ℎ ∈ 𝐶(R, [0,∞)) are 𝜔-periodic functions, ∫𝜔
0

𝑎(𝑡)

𝑑𝑡 > 0, ℎ(𝑡) > 0 on [0, 𝜔]; 𝜏 ∈ 𝐶(R,R) is 𝜔-periodic
functions.

(C2) 𝑓, 𝑔 : [0,∞) → [0,∞) are continuous. 0 < 𝑙 ≤

𝑔(𝑠) ≤ 𝐿 for 𝑠 > 0, 𝑙, 𝐿 are given positive constants.
𝑓(𝑠) > 0 for 𝑠 > 0.

Let 𝜎 := 𝑒
−∫

𝜔

0
𝑎(𝑡)𝑑𝑡 and denote

𝑀(𝑟) := max
0≤𝑡≤𝑟

{𝑓 (𝑡)} ,

𝑚 (𝑟) := min{𝑓 (𝑡) :

𝜎
𝐿

(1 − 𝜎
𝑙

)

1 − 𝜎𝐿
𝑟 ≤ 𝑡 ≤ 𝑟} ;

𝑓
0
:= lim

𝑢→0
+

𝑓 (𝑢)

𝑢
, 𝑓

∞
:= lim

𝑢→+∞

𝑓 (𝑢)

𝑢
.

(25)

His results provide no any information about the global
behavior of the set of positive solutions of (24).

In this section, we will use Theorems 2 and 3 to establish
several results on the global behavior of the set of positive
solutions of (24), and, accordingly, we get some existence and
multiplicity results of positive solutions of (24).

We will work essentially in the Banach space 𝑋 = {𝑢 ∈

𝐶[0, 𝜔] | 𝑢 is 𝜔-periodic.} with sup norm ‖ ⋅ ‖.
By a positive solution of (24), wemean a pair (𝜆, 𝑢), where

𝜆 > 0 and 𝑢 is a solution of (24) with 𝑢 > 0 on [0, 𝜔].
Let Σ ⊂ R+

× 𝐸 be the closure of the set of positive
solutions of (24).

We extend the function 𝑓 to a continuous function 𝑓

defined on R in such a way that 𝑓 > 0 for all 𝑠 < 0. For
𝜆 > 0, we then look at arbitrary solutions 𝑢 of the eigenvalue
problem

− 𝑢
󸀠

(𝑡) + 𝑎 (𝑡) 𝑔 (𝑢 (𝑡)) 𝑢 (𝑡) = 𝜆ℎ (𝑡) 𝑓 (𝑢 (𝑡 − 𝜏 (𝑡))) ,

𝑡 ∈ R, 𝑢 is 𝜔-periodic.
(26)

It was shown in [18] that (26) is equivalent to

𝑢 (𝑡) = 𝜆∫

𝑡+𝜔

𝑡

𝐺
𝑢
(𝑡, 𝑠) ℎ (𝑠) 𝑓 (𝑢 (𝑠 − 𝜏 (𝑠))) 𝑑𝑠, (27)

where

𝐺
𝑢
(𝑡, 𝑠) =

𝑒
−∫

𝑠

𝑡
𝑎(𝜃)𝑔(𝑢(𝜃))𝑑𝜃

1 − 𝑒
−∫

𝜔

0
𝑎(𝜃)𝑔(𝑢(𝜃))𝑑𝜃

, 𝑡 ≤ 𝑠 ≤ 𝑡 + 𝜔. (28)

By the positivity of Green’s function 𝐺
𝑢
(⋅, ⋅), ℎ(⋅), and 𝑓(⋅),

such solutions are positive. Therefore, the closure of the set
of nontrivial solutions (𝜆, 𝑢) of (24) in R+

× 𝑋 is exactly Σ.
Next, we consider the spectrum of the linear eigenvalue

problem

− 𝑢
󸀠

(𝑡) + 𝑎 (𝑡) 𝑐𝑢 (𝑡) = 𝜆ℎ (𝑡) 𝑢 (𝑡 − 𝜏 (𝑡)) ,

𝑡 ∈ R, 𝑢 is 𝜔-periodic.
(29)

Lemma5. Let 𝑐 be a positive constant.Then the linear problem
(29) has a unique eigenvalue 𝜆

⬦

(𝑐), which is positive and
simple, and the corresponding eigenfunction 𝜓(⋅) is of one sign.

Proof. Define an operator 𝑇 : 𝑋 → 𝑋 by

𝑇𝑢 (𝑡) = 𝜆∫

𝑡+𝜔

𝑡

𝐺
𝑢
(𝑡, 𝑠) ℎ (𝑠) 𝑓 (𝑢 (𝑠 − 𝜏 (𝑠))) 𝑑𝑠. (30)
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Let 𝐾 be the cone

𝐾 = {𝑢 ∈ 𝑋 | 𝑢 ≥ 0} . (31)

Then it follows from [18, Lemma 2.2] that 𝑇 : 𝐾 →

𝐾 is strongly positive and completely continuous. Thus,
the desired result is a direct consequence of Krein-Rutman
Theorem, cf. [22, Theorem 19.3].

Theorem 6. Let (C1)-(C2) hold. Assume that

(C3) 𝑓
0
= ∞ = 𝑓

∞
.

Then Σ contains a componentC satisfying

(1) Cmeets (0, 0) and (0,∞);
(2) for every 𝑟 > 0, there exists 𝜇(𝑟) > 0, such that

C ∩ {(𝜇, 𝑢) ∈ (0, 𝜇 (𝑟)) × 𝑋 | ‖𝑢‖ = 𝑟} = 0. (32)

Corollary 7. Let (C1)–(C3) hold.Then there is a constant 𝜂
∗
>

0 such that (24) has at least two positive solutions as 0 < 𝜆 <

𝜂
∗
.

Proof. Let

𝐵 := sup {𝜆 | (𝜆, 𝑢) ∈ C} ,

𝜂
∗
:= sup {𝜇 (𝑟) | 𝑟 ∈ (0,∞)} .

(33)

Then 0 < 𝜂
∗

≤ 𝐵. It is easy to see from Theorem 6 that (24)
has at least two positive solutions as 0 < 𝜆 < 𝜂

∗
.

Denote the cone 𝐾 in 𝑋 by

𝐾 = {𝑢 ∈ 𝑋 | 𝑢 (𝑡) ≥ 0 on [0, 𝜔] , 𝑢 (𝑡) ≥ 𝛿 ‖𝑢‖} ,

𝛿 :=

𝜎
𝐿

(1 − 𝜎
𝑙

)

1 − 𝜎𝐿
,

(34)

and for 𝑟 > 0, let

𝐾
𝑟
= {𝑢 ∈ 𝐾 | ‖𝑢‖ < 𝑟} . (35)

Define an operator 𝑇
𝜆
: 𝐾 → 𝑋 by

𝑇
𝜆
𝑢 (𝑡) = 𝜆∫

𝑡+𝜔

𝑡

𝐺
𝑢
(𝑡, 𝑠) ℎ (𝑠) 𝑓 (𝑢 (𝑠 − 𝜏 (𝑠))) 𝑑𝑠,

𝑡 ∈ [0, 𝜔] .

(36)

Lemma 8 (see [18]). Assume that (C1)-(C2) hold. Then 𝑇
𝜆

:

𝐾 → 𝐾 is completely continuous.

Lemma 9. Let (C1)-(C2) hold. If 𝑢 ∈ 𝜕𝐾
𝑟
, 𝑟 > 0, then

󵄩󵄩󵄩󵄩𝑇𝜆𝑢
󵄩󵄩󵄩󵄩 ≤ 𝜆

𝑀
𝑟

1 − 𝜎𝑙
∫

𝜔

0

ℎ (𝑠) 𝑑𝑠, (37)

where 𝑀
𝑟
= 1 + max

𝛿𝑟≤𝑠≤𝑟
{𝑓(𝑠)}.

Proof. It is well known fromWang [18] that

𝜎
𝐿

1 − 𝜎𝐿
≤ 𝐺

𝑢
(𝑡, 𝑠) ≤

1

1 − 𝜎𝑙
, 𝑡 ≤ 𝑠 ≤ 𝑡 + 𝜔. (38)

This together with the fact that ℎ is 𝜔-periodic and 𝑢(𝑡) ≥ 𝛿𝑟

on [0, 𝜔] implies that

󵄩󵄩󵄩󵄩𝑇𝜆𝑢
󵄩󵄩󵄩󵄩 ≤ 𝜆

𝑀
𝑟

1 − 𝜎𝑙
∫

𝑡+𝜔

𝑡

ℎ (𝑠) 𝑑𝑠 = 𝜆
𝑀

𝑟

1 − 𝜎𝑙
∫

𝜔

0

ℎ (𝑠) 𝑑𝑠. (39)

To prove above Theorem 6, we define 𝑓
[𝑛]

: [0,∞) →

[0,∞) by

𝑓
[𝑛]

(𝑠) =

{{{

{{{

{

𝑓 (𝑠) , 𝑠 ∈ (
1

𝑛
,∞) ,

𝑛𝑓 (
1

𝑛
) 𝑠, 𝑠 ∈ [0,

1

𝑛
] .

(40)

Then 𝑓
[𝑛]

∈ 𝐶([0,∞), [0,∞)) with

𝑓
[𝑛]

(𝑠) > 0, ∀𝑠 ∈ (0,∞) , (𝑓
[𝑛]

)
0

= 𝑛𝑓(
1

𝑛
) > 0.

(41)

By (C3), it follows that

lim
𝑛→∞

(𝑓
[𝑛]

)
0

= ∞. (42)

Now let us consider the auxiliary family of the equations

𝑢
󸀠

(𝑡) = 𝑎 (𝑡) 𝑔 (𝑢 (𝑡)) 𝑢 (𝑡) − 𝜆ℎ (𝑡) 𝑓
[𝑛]

(𝑢 (𝑡 − 𝜏 (𝑡))) ,

𝑚𝑡 ∈ R, 𝑢 is 𝜔-periodic.
(43)

Let 𝜉, 𝜒 ∈ 𝐶[0,∞) be such that

𝑓
[𝑛]

(𝑠) = (𝑓
[𝑛]

)
0

𝑠 + 𝜉 (𝑠) = 𝑛𝑓(
1

𝑛
) 𝑠 + 𝜉 (𝑠) ,

𝑔 (𝑠) = 𝑔 (0) + 𝜒 (𝑠) .

(44)

Note that

lim
𝑠→0
+

𝜉 (𝑠)

𝑠
= 0, lim

𝑠→0
+

𝜒 (𝑠) = 0. (45)

Define a linear operator 𝐴 : 𝐷(𝐴) ⊂ 𝑋 → 𝑋

(𝐴𝑢) (𝑡) = −𝑢
󸀠

(𝑡) + 𝑎 (𝑡) 𝑔 (0) 𝑢 (𝑡) , 𝑢 ∈ 𝐷 (𝐴) , (46)

with

𝐷 (𝐴) = {𝑢 ∈ 𝐶
1

[0, 𝜔] | 𝑢 is 𝜔-periodic.} . (47)

From [18], it follows that 𝐴
−1

: 𝑋 → 𝑋 is compact and
continuous.

Now (43) can be rewritten to the form

𝑢 (𝑡) = 𝜆𝐴
−1

[ℎ (⋅) (𝑓
[𝑛]

)
0

𝑢 (⋅ − 𝜏 (⋅))] (𝑡)

+ 𝐴
−1

𝑁(𝜆, 𝑢 (⋅)) (𝑡) ,

(48)
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where

𝑁(𝜆, 𝑢 (⋅)) (𝑡) := [𝑎 (⋅) 𝜒 (𝑢 (⋅)) 𝑢 (⋅)

−𝜆ℎ (⋅) 𝜉 (𝑢 (⋅ − 𝜏 (⋅)))] (𝑡) .

(49)

It is easy to check that

lim
‖𝑢‖→0

𝑁(𝜆, 𝑢)

‖𝑢‖
= 0, uniformly on bounded 𝜆 intervals.

(50)

It is easy to check that (48) is equivalent to

𝐴𝑢 = 𝜆ℎ (⋅) (𝑓
[𝑛]

)
0

𝑢 (⋅ − 𝜏 (⋅)) (𝑡) + 𝑁 (𝜆, 𝑢 (⋅)) (𝑡) . (51)

Let us consider (48) as a bifurcation problem from the trivial
solution 𝑢 ≡ 0.

Since (𝑓
[𝑛]

)
0
> 0, the results of Nonlinear Krein-Rutman

Theorem (see Dancer [22] and Zeidler [23, Corollary 15.12])
for (48) can be stated as follows: there exists a continuum
C[𝑛]

+
of positive solutions of (48) joining (𝜆

⬦

(𝑔(0))/(𝑓
[𝑛]

)
0
, 0)

to infinity in 𝐾. Moreover, C[𝑛]

+
\ {(𝜆

⬦

(𝑔(0))/(𝑓
[𝑛]

)
0
, 0)} ⊂

int𝐾 and (𝜆
⬦

(𝑔(0))/(𝑓
[𝑛]

)
0
, 0) is the only bifurcation point

of (48) lying on trivial solutions line 𝑢 ≡ 0.

Proof of Theorem 6. Let us verify that {C[𝑛]

+
} satisfies all of the

conditions of Theorem 2.
It follows from (42) that 𝜆⬦(𝑔(0))/(𝑓[𝑛]

)
0
=: 𝜂

𝑛
→ 0 as

𝑛 → ∞. Therefore, (A2) holds.
Let 𝑟 > 0 be fixed. Then there exists 𝑛

0
∈ N, such that

1

𝑛
≤ 𝛿𝑟. (52)

Thus

𝑀
𝑟
(𝑓) = 𝑀

𝑟
(𝑓

[𝑛]

) , 𝑛 ≥ 𝑛
0
. (53)

From this and Lemma 9, it follows that there exists 𝜆
∗
(𝑟)with

0 < 𝜆
∗
(𝑟) < 𝑟(1 − 𝜎

𝑙

)/𝑀
𝑟
∫
𝜔

0

ℎ(𝑠)𝑑𝑠, such that (48) has no
solution (𝜆, 𝑢) with

‖𝑢‖ = 𝑟, 0 < 𝜆 < 𝜆
∗
(𝑟) . (54)

Since 𝑟 is arbitrary, we see that (A1) is satisfied.

(A3) can be deduced directly from the Arzela-Ascoli The-
orem and the definition of 𝑓[𝑛].

Therefore, the superior limit of {C[𝑛]

+
} contains an

unbounded componentC with (0, 0) ∈ C.
Moreover,C ∩ {(𝜇, 𝑦) | 0 < 𝜇 ≤ 𝜆

∗
(𝑟), ‖𝑦‖ = 𝑟} = 0.

Finally, we show thatCmeets (0, 0) and (0,∞).
Let {𝜇

𝑛
, 𝑦

𝑛
} ⊂ C with

󵄨󵄨󵄨󵄨𝜇𝑛
󵄨󵄨󵄨󵄨 +

󵄩󵄩󵄩󵄩𝑦𝑛
󵄩󵄩󵄩󵄩 󳨀→ ∞. (55)

We claim that 𝜇
𝑛

→ 0
+.

Assume on the contrary that 𝜇
𝑛

→ +∞. Let

V
𝑛
(𝑡) =

𝑦
𝑛
(𝑡)

󵄩󵄩󵄩󵄩𝑦𝑛
󵄩󵄩󵄩󵄩

. (56)

Then

V󸀠
𝑛
(𝑡) = 𝑎 (𝑡) 𝑔 (𝑦

𝑛
(𝑡)) V

𝑛
(𝑡) − 𝜇

𝑛
ℎ (𝑡)

×
𝑓 (𝑦

𝑛
(𝑡 − 𝜏 (𝑡)))

𝑦
𝑛
(𝑡 − 𝜏 (𝑡))

V
𝑛
(𝑡 − 𝜏 (𝑡)) , 𝑡 ∈ R,

(57)

V
𝑛
∈ 𝑋. (58)

So V󸀠
𝑛
(𝑡) < 0 on [0, 𝜔] as 𝑛 → ∞. This contradicts (58). Thus

(55) implies that
󵄩󵄩󵄩󵄩𝑦𝑛

󵄩󵄩󵄩󵄩 󳨀→ ∞. (59)

Assume on the contrary that 𝜇
𝑛

→ 𝛼 > 0 ( after taking a
subsequence and relabeling if necessary).

Since 𝑦
𝑛
(𝑡) ≥ 𝛿‖𝑦

𝑛
‖ on [0, 𝜔], it follows from (59) that

𝑦
𝑛
(𝑡) → ∞ uniformly on [0, 𝜔]. This together with 𝑓

∞
= ∞

implies V󸀠
𝑛
(𝑡) < 0 on [0, 𝜔] as 𝑛 → ∞. This contradicts (58)

again.

Theorem 10. Let (C1)-(C2) hold. Assume that

(C4) 𝑓
0
= 0; 𝑓

∞
= 0.

Then Σ contains a componentC satisfying the following.

(1) For given 𝑏̂ > 0,

sup {𝜆 | (𝜆, 𝑢) ∈ (C ∩ Ω̂
𝑏,1

)} = +∞. (60)

(2) For every 𝑟 > 0, there exists 𝜂(𝑟) > 0, such that

C ∩ {(𝜇, 𝑢) ∈ [𝜇 (𝑟) ,∞) × 𝑋 | ‖𝑢‖ = 𝑟} = 0. (61)

Corollary 11. Let (C1)-(C2) and (C4) hold. Then there is a
constant 𝜂∗ > 0 such that (24) has at least two positive solutions
as 𝜆 > 𝜂

∗.

ToproveTheorem 10, we define𝑓[𝑛] as in (40).Notice that
(C4) implies that

lim
𝑛→∞

(𝑓
[𝑛]

)
0

= 0. (62)

Let 𝜉, 𝜒 be the function satisfying (44)-(45).
Now (43) can be rewritten to the form

𝑢 (𝑡) = 𝜆𝐴
−1

[ℎ (⋅) (𝑓
[𝑛]

)
0

𝑢 (⋅ − 𝜏 (⋅))] (𝑡)

+ 𝐴
−1

𝑁(𝜆, 𝑢 (⋅)) (𝑡) ,

(63)

where

𝑁(𝜆, 𝑢 (⋅)) (𝑡) := [𝑎 (⋅) 𝜒 (𝑢 (⋅)) 𝑢 (⋅)

−𝜆ℎ (⋅) 𝜉 (𝑢 (⋅ − 𝜏 (⋅)))] (𝑡) .

(64)

It is easy to check that

lim
‖𝑢‖→0

𝑁(𝜆, 𝑢)

‖𝑢‖
= 0, uniformly on bounded 𝜆 intervals.

(65)
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Let us consider (63) as a bifurcation problem from the trivial
solution 𝑢 ≡ 0.

By similar method to deal with (48) in which 𝑓
0

= ∞,
we have from (𝑓

[𝑛]

)
0

> 0 and [23, Corollary 15.12]) that
there exists a continuum C[𝑛]

+
of positive solutions of (63)

joining (𝜆
⬦

(𝑔(0))/(𝑓
[𝑛]

)
0
, 0) to infinity in𝐾. Moreover,C[𝑛]

+
\

{(𝜆
⬦

(𝑔(0))/(𝑓
[𝑛]

)
0
, 0)} ⊂ int 𝐾 and (𝜆

⬦

(𝑔(0))/(𝑓
[𝑛]

)
0
, 0) is

the only bifurcation point of (48) lying on trivial solutions
line 𝑢 ≡ 0.

Lemma 12. Assume that (C1)-(C2) hold. If 𝑢 ∈ 𝜕𝐾
𝑟
, 𝑟 > 0,

then

󵄩󵄩󵄩󵄩𝑇𝜆𝑢
󵄩󵄩󵄩󵄩 ≥ 𝜆

𝜎
𝐿

𝑚̂
𝑟

1 − 𝜎𝐿
∫

𝜔

0

ℎ (𝑠) 𝑑𝑠, (66)

where

𝑚̂
𝑟
= min

𝛿𝑟≤𝑥≤𝑟

{𝑓 (𝑥)} . (67)

Proof. Since 𝜎
𝐿

/(1 − 𝜎
𝐿

) ≤ 𝐺
𝑢
(𝑡, 𝑠) and 𝑓(𝑢(𝑡)) ≥ 𝑚̂

𝑟
for 𝑡 ∈

[0, 𝜔], it follows that

󵄩󵄩󵄩󵄩𝑇𝜆𝑢
󵄩󵄩󵄩󵄩 ≥ 𝜆∫

𝑡+𝜔

𝑡

𝐺
𝑢
(𝑡, 𝑠) ℎ (𝑠) 𝑓 (𝑢 (𝑠)) 𝑑𝑠

≥ 𝜆
𝜎
𝐿

𝑚̂
𝑟

1 − 𝜎𝐿
∫

𝑡+𝜔

𝑡

ℎ (𝑠) 𝑑𝑠 ≥ 𝜆
𝜎
𝐿

𝑚̂
𝑟

1 − 𝜎𝐿
∫

𝜔

0

ℎ (𝑠) 𝑑𝑠.

(68)

Lemma 13. Assume that (C1)-(C2) and (C4) hold, and let 𝐼 be
a compact subinterval of (0,∞). Then

‖𝑢‖ ≤ 𝑀
𝐼
, (𝜆, 𝑢) ∈ {(𝜆, 𝑢) ∈ 𝐶

[𝑛]

+
| 𝜆 ∈ 𝐼} (69)

for some positive constant 𝑀
𝐼
, independent of 𝑛, 𝜆, and 𝑢.

Proof. Assume on the contrary that there exists a sequence
{(𝜇

𝑘
, 𝑦

𝑘
)} ⊂ C[𝑛]

+
∩ (𝐼 × 𝐾) such that

󵄩󵄩󵄩󵄩𝑦𝑘
󵄩󵄩󵄩󵄩 󳨀→ ∞. (70)

Set V
𝑘
(𝑡) = 𝑦

𝑘
(𝑡)/‖𝑦

𝑘
‖. Then

󵄩󵄩󵄩󵄩V𝑘
󵄩󵄩󵄩󵄩 = 1, (71)

V󸀠
𝑛
(𝑡) = 𝑎 (𝑡) 𝑔 (𝑦

𝑛
(𝑡)) V

𝑛
(𝑡) − 𝜇

𝑛
ℎ (𝑡)

×
𝑓 (𝑦

𝑛
(𝑡 − 𝜏 (𝑡)))

𝑦
𝑛
(𝑡 − 𝜏 (𝑡))

V
𝑛
(𝑡 − 𝜏 (𝑡)) , 𝑡 ∈ R,

(72)

V
𝑛
∈ 𝑋. (73)

By (72), {V󸀠
𝑛
} is bounded in𝑋. This together with the fact that

{𝜇
𝑛
} ⊂ 𝐼 implies that there exists (𝜇

∗
, V

∗
) ∈ 𝐼 × 𝑋 with

󵄩󵄩󵄩󵄩V∗
󵄩󵄩󵄩󵄩 = 1, (74)

such that

lim
𝑘→∞

(𝜇
𝑘
, V

𝑘
) = (𝜇

∗
, V

∗
) , in R × 𝑋, (75)

(after choosing a subsequence and relabeling if necessary).
Since {𝑔(𝑢

𝑛
)} is bounded in𝑋, {𝑔(𝑢

𝑛
)} is bounded in 𝐿

2

(0, 𝜔),
and subsequently, 𝑔(𝑢

𝑛
) ⇀ 𝑔 for some 𝑔 ∈ 𝐿

2

(0, 𝜔). By the
standard method, we can prove that

𝑙 ≤ 𝑔 (𝑡) ≤ 𝐿, a.e. 𝑡 ∈ [0, 𝜔] . (76)

Moreover, combining (75) and (76) with the assumption
𝑓
∞

= 0 and the corresponding integral equations of (72) and
(73) and using Lebesgue dominated convergence theorem,we
conclude that

V󸀠
∗
(𝑡) − 𝑎 (𝑡) 𝑔 (𝑡) V∗ = 0, a.e. 𝑡 ∈ R, (77)

V
∗
∈ 𝑋. (78)

Note that 𝑎(𝑡)𝑔(𝑡)V∗ ≥ 0 and 𝑎(𝑡)𝑔(𝑡)V∗ ̸≡ 0 on [0, 𝜔].
This means that V

∗
(0) < V

∗
(𝜔). However, this contradicts

(78).

Now, we are in the position to proveTheorem 10.

Proof of Theorem 10 (sketched). Fixed 𝑟 > 0. From Lemma 12,
it follows that (63) has no solution if

𝜆 > 𝜆
∗

(𝑟) =: 1 +
𝑟

(𝜎𝐿 𝑚̂
𝑟
/ (1 − 𝜎𝐿)) ∫

𝜔

0

ℎ (𝑠) 𝑑𝑠

. (79)

Applying Lemma 13, it is easy to verify that {C[𝑛]

+
} satisfies

all of the conditions of Theorem 3. So, there exists a compo-
nentC in lim C[𝑛]

+
such that

(a) both C ∩ Ω
𝜆
∗
(1),1

and (C ∩ (([𝑎,∞) × 𝑋) \ Ω
𝜆
∗
(1),1

))

are unbounded;

(b) C ∩ {(𝜇, 𝑦) | 𝜇 ≥ 𝜆
∗

(1), ‖𝑦‖ = 1} = 0.

Lemma 13 guarantees thatC satisfies

sup {𝜆 | (𝜆, 𝑢) ∈ (C ∩ Ω
𝜆
∗
(1),1

)} = +∞. (80)

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The authors are very grateful to the anonymous referees for
their valuable suggestions.The research was supported by the
NSFC (nos. 11301059 and 11361054) and HSSF of Ministry of
Education of China (no. 13YJA790078).



Journal of Applied Mathematics 7

References

[1] J. Leray and J. Schauder, “Topologie et équations fonctionnelles,”
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[4] I. Massabò and J. Pejsachowicz, “On the connectivity properties
of the solution set of parametrized families of compact vector
fields,” Journal of Functional Analysis, vol. 59, no. 2, pp. 151–166,
1984.

[5] J. Sun and F. Song, “A property of connected components and
its applications,”Topology and Its Applications, vol. 125, no. 3, pp.
553–560, 2002.

[6] G. T. Whyburn, Topological Analysis, Princeton University
Press, 1958.

[7] R. Ma and Y. An, “Global structure of positive solutions for
superlinear second order 𝑚-point boundary value problems,”
Topological Methods in Nonlinear Analysis, vol. 34, no. 2, pp.
279–290, 2009.

[8] W. S. C. Gurney, S. P. Blythe, and R. M. Nisbet, “Nicholson’s
blowflies revisited,” Nature, vol. 287, no. 5777, pp. 17–21, 1980.

[9] M. C. Mackey and L. Glass, “Oscillation and chaos in physio-
logical control systems,” Science, vol. 197, no. 4300, pp. 287–289,
1977.
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