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A graph 𝐺 with 𝑞 edges is said to be harmonious, if there is an injection 𝑓 from the vertices of 𝐺 to the group of integers modulo 𝑞
such that when each edge 𝑥𝑦 is assigned the label 𝑓(𝑥) +𝑓(𝑦) (mod 𝑞), the resulting edge labels are distinct. In this paper, we study
the existence of harmonious labeling for the corona graphs of a cycle and a graph 𝐺 and for the corona graph of𝐾

2
and a tree.

1. Introduction

Harmonious graphs naturally arose in the study of modular
version of error-correcting codes and channel assignment
problems. Graham and Sloane [1] defined a (𝑝, 𝑞)-graph 𝐺 of
order 𝑝 and size 𝑞 to be harmonious, if there is an injective
function 𝑓 : 𝑉(𝐺) → Z

𝑞
, where Z

𝑞
is the group of integers

modulo 𝑞, such that the induced function 𝑓∗ : 𝐸(𝐺) → Z
𝑞
,

defined by 𝑓∗(𝑥𝑦) = 𝑓(𝑥) + 𝑓(𝑦) for each edge 𝑥𝑦 ∈ 𝐸(𝐺), is
a bijection.

The function 𝑓 is called harmonious labeling and the
image of 𝑓 denoted by Im(𝑓) is called the corresponding set
of vertex labels.

When𝐺 is a tree or, in general for a graph𝐺with𝑝 = 𝑞+1,
exactly one label may be used on two vertices.

Graham and Sloane [1] proved that if a harmonious graph
has an even number of edges 𝑞 and the degree of every vertex
is divisible by 2𝑘, then 𝑞 is divisible by 2𝑘+1. This necessary
condition is called the harmonious parity condition. They
also proved that if 𝑓 is harmonious labeling of a graph 𝐺

of size 𝑞, then so is 𝑎𝑓 + 𝑏 labeling, where 𝑎 is an invertible
element of Z

𝑞
and 𝑏 is any element of Z

𝑞
.

Chang et al. [2] define an injective labeling 𝑓 of a graph𝐺
with 𝑞 edges to be strongly 𝑐-harmonious, if the vertex labels
are from the set {0, 1, . . . , 𝑞 − 1} and the edge labels are from
the set {𝑓∗(𝑥𝑦) = 𝑓(𝑥)+𝑓(𝑦) : 𝑥𝑦 ∈ 𝐸(𝐺)} = {𝑐, 𝑐+1, . . . , 𝑐+

𝑞 − 1}. Grace [3, 4] called such labeling sequential. In the case

of a tree, Grace allows the vertex labels to range from 0up to 𝑞.
Strongly 1-harmonious graph is called strongly harmonious.

By taking the edge labels of a sequentially labeled graph
with 𝑞 edges modulo 𝑞, we obviously obtain a harmoniously
labeled graph. It is not known if there is a graph that can be
harmoniously labeled but not sequentially labeled.More than
50 papers have been published on harmonious labeling and
comprehensive information can be found in [5]. Similarly,
labeling of special types of crown graphs is examined in [6].

In this paper, we study the existence of harmonious
labeling for the graphs obtained by corona operation between
a cycle and a graph 𝐺 and also between 𝐾

2
and a tree or 𝐾

2

and a unicyclic graph.

2. Main Results

In this section, we present the results related to corona graphs.
The corona operation between two graphs was introduced by
Frucht and Harary [7]. Given two graphs𝐺 of order 𝑝 and𝐻,
the corona of 𝐺 with𝐻, denoted by 𝐺 ⊙ 𝐻, is the graph with
𝑉(𝐺 ⊙ 𝐻) = 𝑉(𝐺) ∪ ⋃

𝑝

𝑖=1
𝑉(𝐻
𝑖
), and 𝐸(𝐺 ⊙ 𝐻) = 𝐸(𝐺) ∪

⋃
𝑝

𝑖=1
(𝐸(𝐻
𝑖
) ∪ {(V

𝑖
, 𝑢) : V

𝑖
∈ 𝑉(𝐺) and 𝑢 ∈ 𝑉(𝐻

𝑖
)}). In other

words, a corona graph is obtained from two graphs,𝐺 of order
𝑝 and𝐻, taking one copy of 𝐺 and 𝑝 copies of𝐻 and joining
by an edge the 𝑖th vertex of 𝐺 to every vertex in the 𝑖th copy
of𝐻.
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Grace [4] showed that 𝐶
2𝑛+1

⊙ 𝐾
1
is harmonious and

conjectured that 𝐶
2𝑛
⊙𝐾
1
is harmonious.This conjecture has

been proved by Liu andZhang [8] and Liu [9]. Singh in [10, 11]
has proved that𝐶

𝑛
⊙𝐾
2
and𝐶

𝑛
⊙𝐾
3
are sequential for all odd

𝑛 > 1. Santhosh [12] has shown that 𝐶
𝑛
⊙ 𝑃
4
is sequential for

all odd 𝑛 ≥ 3.
The join of two graphs 𝐺 and𝐻, denoted by 𝐺+𝐻, is the

graphwhere𝑉(𝐺)∩𝑉(𝐻) = 0 and each vertex of𝐺 is adjacent
to all vertices of 𝐻. When 𝐻 = 𝐾

1
, this is the corona graph

𝐾
1
⊙ 𝐺.
Graham and Sloane [1] showed harmonious labeling of

the join of the path𝑃
𝑛
and𝐾

1
, that is, the fan𝐹

𝑛
= 𝑃
𝑛
+𝐾
1
, and

harmonious labeling of the double fan 𝑃
𝑛
+ 𝐾
2
. Later, Chang

et al. [2] gave harmonious labeling of the join of the star 𝑆
𝑛

and𝐾
1
.

The next result shows that if join of a graph 𝐺 and 𝐾
1
is

strongly harmonious, then the corona of a cycle and the graph
𝐺 admitted harmonious labeling.

Theorem 1. Let𝐺 be a graph of order 𝑝 and size 𝑞. If𝐺+𝐾
1
is

strongly harmonious with the 0 label on the vertex of 𝐾
1
, then

𝐶
𝑛
⊙ 𝐺 is harmonious for all odd 𝑛 ≥ 3.

Proof. Let 𝐺 be a (𝑝, 𝑞)-graph and 𝐺 + 𝐾
1
strongly harmo-

nious with the 0 label on the vertex 𝑥 ∈ 𝐾
1
. Then, there exists

labeling𝑓 : 𝑉(𝐺+𝐾
1
) → {0, . . . , 𝑝+𝑞−1} such that𝑓(𝑥) = 0

and the edge labels are from the set {𝑓∗(𝑢V) = 𝑓(𝑢) + 𝑓(V) :
𝑢V ∈ 𝐸(𝐺 + 𝐾

1
)} = {1, 2, . . . , 𝑝 + 𝑞}.

Now, for 𝑛 odd, 𝑛 ≥ 3, we consider the corona graph
𝐶
𝑛
⊙𝐺with 𝑛(𝑝+1) vertices and Γ = 𝑛(𝑝+𝑞+1) edges. Denote

the vertices and edges of the cycle 𝐶
𝑛
such that 𝑉(𝐶

𝑛
) =

{𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
} and 𝐸(𝐶

𝑛
) = {𝑥

𝑖
𝑥
𝑖+1

: 1 ≤ 𝑖 ≤ 𝑛 − 1} ∪ {𝑥
𝑛
𝑥
1
}.

By the symbol 𝑦𝑖, we denote a vertex in the 𝑖th copy of 𝐺,
denoted by 𝐺

𝑖
, corresponding to the vertex 𝑦 in 𝐺; that is,

𝑦 ∈ 𝑉(𝐺) and 𝑦𝑖 ∈ 𝑉(𝐺
𝑖
).

We define the vertex labeling 𝑔 : 𝑉(𝐶
𝑛
⊙ 𝐺) → {0, 1, . . .,

Γ − 1} in the following:

𝑔 (𝑥
𝑖
) = (𝑝 + 𝑞 + 1) (𝑖 − 1) , for 1 ≤ 𝑖 ≤ 𝑛,

𝑔 (𝑦
𝑖
) = 𝑓 (𝑦) + (𝑝 + 𝑞 + 1) (𝑖 − 1) , for 1 ≤ 𝑖 ≤ 𝑛.

(1)

If we denote the join graph 𝐺 + 𝐾
1
as 𝐺 + {𝑥}, then the set

of all edge labels of the 𝑖th copy of 𝐺 + {𝑥} consists of the
consecutive integers 𝑔∗(𝐸(𝐺

𝑖
+ {𝑥
𝑖
})) = {2(𝑝 + 𝑞 + 1)(𝑖 − 1) +

1, 2(𝑝 + 𝑞 + 1)(𝑖 − 1) + 2, . . . , 2(𝑝 + 𝑞 + 1)(𝑖 − 1) + 𝑝 + 𝑞},
1 ≤ 𝑖 ≤ 𝑛. For edge labels of the cycle𝐶

𝑛
, we have𝑔∗(𝑥

𝑖
𝑥
𝑖+1
) =

𝑔(𝑥
𝑖
) + 𝑔(𝑥

𝑖+1
) = (𝑝 + 𝑞 + 1)(2𝑖 − 1), for 1 ≤ 𝑖 ≤ 𝑛 − 1, and

𝑔
∗
(𝑥
𝑛
𝑥
1
) = 𝑔(𝑥

𝑛
) + 𝑔(𝑥

1
) = (𝑝 + 𝑞 + 1)(𝑛 − 1).

It is not difficult to see that, for 1 ≤ 𝑖 ≤ (𝑛 − 1)/2, it is true
that

(i) 1 + max{𝑔∗(𝐸(𝐺
𝑖
+ {𝑥
𝑖
}))} = (𝑝 + 𝑞 + 1)(2𝑖 − 1) =

𝑔
∗
(𝑥
𝑖
𝑥
𝑖+1
);

(ii) 1 + 𝑔
∗
(𝑥
𝑖
𝑥
𝑖+1
) = min{𝑔∗(𝐸(𝐺

((𝑛+1)/2)+𝑖
+

{𝑥
((𝑛+1)/2)+𝑖

}))} = (𝑝 + 𝑞 + 1)(2𝑖 − 1) + 1 (mod
Γ);

(iii) 1 + max{𝑔∗(𝐸(𝐺
((𝑛+1)/2)+𝑖

+ {𝑥
((𝑛+1)/2)+𝑖

}))} =

2(𝑝 + 𝑞 + 1)𝑖 (mod Γ) and it is equal to
𝑔
∗
(𝑥
((𝑛+1)/2)+𝑖

𝑥
((𝑛+1)/2)+𝑖+1

) (mod Γ);

(iv) 1 + 𝑔∗(𝑥
((𝑛+1)/2)+𝑖

𝑥
((𝑛+1)/2)+𝑖+1

) (mod Γ) is equal to the
min{𝑔∗(𝐸(𝐺

𝑖+1
+ {𝑥
𝑖+1
}))} = 2(𝑝 + 𝑞 + 1)𝑖 + 1.

Moreover, 1 +max{𝑔∗(𝐸(𝐺
(𝑛+1)/2

+ {𝑥
(𝑛+1)/2

}))} = 0 (mod Γ)
and it is equal to 𝑔∗(𝑥

(𝑛+1)/2
𝑥
(𝑛+3)/2

) = 0 (mod Γ).
Thus, under the induced mapping 𝑔

∗, all the resulting
edge labels are distinct and they get the consecutive integers
from 0 up to 𝑛(𝑝 + 𝑞 + 1) − 1 (mod Γ). This concludes the
proof.Graham and Sloane [1] have proved that the fans 𝐹

𝑚
=

𝑃
𝑚
+𝐾
1
,𝑚 ≤ 7, and the wheels𝑊

𝑚
= 𝐶
𝑚
+𝐾
1
,𝑚 ̸≡ 2 (mod

3), are strongly harmonious with the 0 label on the vertex
of 𝐾
1
. In light of these results and Theorem 1, we have the

following corollaries.

Corollary 2. Let𝐶
𝑛
⊙𝑃
𝑚
be the corona graph of a cycle𝐶

𝑛
and

a path 𝑃
𝑚
. Then, 𝐶

𝑛
⊙ 𝑃
𝑚
is harmonious for all odd 𝑛 ≥ 3 and

1 ≤ 𝑚 ≤ 7.

Corollary 3. Let 𝐶
𝑛
⊙ 𝐶
𝑚
be the corona graph of two cycles.

Then, 𝐶
𝑛
⊙ 𝐶
𝑚
is harmonious for all odd 𝑛 ≥ 3 and 𝑚 ̸≡ 2

(mod 3).

Shee [13] has shown that the complete tripartite graph
𝐾
1,𝑚,𝑘

= 𝐾
𝑚,𝑘

+ 𝐾
1
, 𝑚, 𝑘 ≥ 1, is strongly harmonious, while

Gnanajothi [14] proved that 𝐾
1,1,𝑚,𝑘

= 𝐾
1,𝑚,𝑘

+ 𝐾
1
, 𝑚, 𝑘 ≥ 1,

is also strongly harmonious. In both cases, the vertex of 𝐾
1

is labeled by the 0 label. Thus, with respect to Theorem 1, we
obtain the following.

Corollary 4. For 𝑚, 𝑘 ≥ 1 and odd 𝑛 ≥ 3, the corona graph
𝐶
𝑛
⊙ 𝐾
𝑚,𝑘

is harmonious.

Corollary 5. For 𝑚, 𝑘 ≥ 1 and odd 𝑛 ≥ 3, the corona graph
𝐶
𝑛
⊙ 𝐾
1,𝑚,𝑘

is harmonious.

Let one consider the graphs obtained by corona operation
between the single edge 𝐾

2
and a tree.

Theorem 6. If 𝑇 is a strongly 𝑐-harmonious tree of odd size 𝑞
and 𝑐 = (𝑞+1)/2, then the corona graph𝐾

2
⊙𝑇 is also strongly

𝑐-harmonious.

Proof. Let 𝑇 be a tree of size 𝑞 with strongly 𝑐-harmonious
labeling 𝑓 : 𝑉(𝑇) → {0, 1, . . . , 𝑞}, where the edge labels are
from the set of consecutive integers {𝑓∗(𝑒) : 𝑒 ∈ 𝐸(𝑇)} =

{𝑐, 𝑐 + 1, . . . , 𝑐 + 𝑞 − 1}.
Consider the corona graph 𝐾

2
⊙ 𝑇 with vertices 𝑥

1
, 𝑥
2
∈

𝑉(𝐾
2
) and vertices 𝑦𝑖 ∈ 𝑉(𝑇

𝑖
), 𝑖 = 1, 2, corresponding to the

vertices 𝑦 ∈ 𝑇, where the vertex 𝑥
𝑖
is incident to every vertex

in 𝑇
𝑖
for 𝑖 = 1, 2.

Define now new vertex labeling 𝑔 : 𝑉(𝐾
2
⊙ 𝑇) →

{0, 1, . . . , 4𝑞 + 2} such that

𝑔 (𝑥
𝑖
) = {

𝑐 + 𝑞, for 𝑖 = 1,

𝑞 + 1, for 𝑖 = 2,

𝑔 (𝑦
𝑖
) = {

𝑓 (𝑦) , for 𝑖 = 1 and every 𝑦 ∈ 𝑇,

𝑓 (𝑦) + 𝑐 + 𝑞 + 1, for 𝑖 = 2 and every 𝑦 ∈ 𝑇.

(2)
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Thus, Im(𝑔) = {0, 1, 2, . . . , 𝑞, 𝑞 + 1} ∪ {𝑐 + 𝑞, 𝑐 + 𝑞 + 1, 𝑐 + 𝑞 +

2, . . . , 𝑐 + 2𝑞, 𝑐 + 2𝑞 + 1} and, for the edge labels, we have

{𝑔
∗
(𝑒) : 𝑒 ∈ 𝐸 (𝑇

1
)} = {𝑐, 𝑐 + 1, 𝑐 + 2, . . . , 𝑐 + 𝑞 − 1} ,

{𝑔
∗
(𝑥
1
𝑦
1
) = 𝑔 (𝑥

1
) + 𝑔 (𝑦

1
) : 𝑦
1
∈ 𝑉 (𝑇

1
)}

= {𝑐 + 𝑞, 𝑐 + 𝑞 + 1, . . . , 𝑐 + 2𝑞} ,

𝑔
∗
(𝑥
1
𝑥
2
) = 𝑔 (𝑥

1
) + 𝑔 (𝑥

2
) = 𝑐 + 2𝑞 + 1,

{𝑔
∗
(𝑥
2
𝑦
2
) = 𝑔 (𝑥

2
) + 𝑔 (𝑦

2
) : 𝑦
2
∈ 𝑉 (𝑇

2
)}

= {𝑐 + 2𝑞 + 2, 𝑐 + 2𝑞 + 3, . . . , 𝑐 + 3𝑞 + 2} ,

{𝑔
∗
(𝑒) : 𝑒 ∈ 𝐸 (𝑇

2
)}

= {3𝑐 + 2𝑞 + 2, 3𝑐 + 2𝑞 + 3, . . . , 3𝑐 + 3𝑞 + 1} .

(3)

We can see that edge labels form the set of consecutive
integers from 𝑐 up to 3𝑐+3𝑞+1 if and only if max{𝑔∗(𝑥

2
𝑦
2
) =

𝑔(𝑥
2
) + 𝑔(𝑦

2
) : 𝑦
2
∈ 𝑉(𝑇

2
)} + 1 = min{𝑔∗(𝑒) : 𝑒 ∈ 𝐸(𝑇

2
)};

that is, 𝑐 = (𝑞 + 1)/2.

We know that every caterpillar Cat
𝑝
admits strongly 𝑐-

harmonious labeling. As an illustration, Figure 1 provides an
example of the strongly 5-harmonious labeling of Cat

10
.

As an immediate consequence ofTheorem 6, we can state
the following corollary.

Corollary 7. Let Cat
𝑞+1

be a caterpillar of odd size 𝑞. If
Cat
𝑞+1

admits strongly (𝑞 + 1)/2-harmonious labeling, then
the corona graph 𝐾

2
⊙ Cat

𝑞+1
also admits strongly (𝑞 + 1)/2-

harmonious labeling.

Theorem 8. Let 𝐺 be a unicyclic graph of odd size 𝑞. If 𝐺 is a
strongly 𝑐-harmonious and 𝑐 = (𝑞−1)/2, then the corona graph
𝐾
2
⊙ 𝐺 is also strongly 𝑐-harmonious.

Proof. Let 𝐺 be a connected (𝑝, 𝑞)-graph containing exactly
one cycle. Clearly, 𝑝 = 𝑞. Let 𝑓 : 𝑉(𝐺) → {0, 1, . . . , 𝑞 − 1}

be strongly 𝑐-harmonious labeling with the edge labels from
the set of consecutive integers {𝑓∗(𝑒) : 𝑒 ∈ 𝐸(𝐺)} = {𝑐, 𝑐 +

1, . . . , 𝑐 + 𝑞 − 1}.
If 𝑥
1
and 𝑥

2
are the vertices of 𝐾

2
and if by the symbol

𝑦
𝑖 we mean a vertex in the 𝑖th copy of 𝐺 corresponding to

the vertex 𝑦 ∈ 𝑉(𝐺), then sets of vertices and edges of the
corona graph 𝐾

2
⊙ 𝐺 are as follows: 𝑉(𝐾

2
⊙ 𝐺) = 𝑉(𝐾

2
) ∪

𝑉(𝐺
1
) ∪ 𝑉(𝐺

2
), 𝐸(𝐾

2
⊙ 𝐺) = {𝑥

1
𝑥
2
} ∪ 𝐸(𝐺

1
) ∪ {𝑥

1
𝑦
1
: 𝑦
1
∈

𝑉(𝐺
1
)} ∪ 𝐸(𝐺

2
) ∪ {𝑥

2
𝑦
2
: 𝑦
2
∈ 𝑉(𝐺

2
)}.

Define new vertex labeling𝑔 : 𝑉(𝐾
2
⊙𝐺) → {0, 1, . . . , 4𝑞}

in the following:

𝑔 (𝑥
𝑖
) = {

𝑐 + 𝑞, for 𝑖 = 1,

𝑞, for 𝑖 = 2,

𝑔 (𝑦
𝑖
) = {

𝑓 (𝑦) , for 𝑖 = 1 and every 𝑦 ∈ 𝐺,

𝑓 (𝑦) + 𝑐 + 𝑞 + 1, for 𝑖 = 2 and every 𝑦 ∈ 𝐺.

(4)

5 6 7 8 9

0 1 2 3 4

5 9 11 136 7 8 10 12

Figure 1: Strongly 5-harmonious labeling of the caterpillar Cat
10
.

5

67

8
0

12

3

4

45

9

11

67

8

10

12

Figure 2: Strongly 4-harmonious labeling of a unicyclic graph.

The image of the vertex labeling 𝑔 is a union of two sets of
consecutive integers Im(𝑔) = {0, 1, 2, . . . , 𝑞} ∪ {𝑐 + 𝑞, 𝑐 + 𝑞 +

1, 𝑐 + 𝑞 + 2, . . . , 𝑐 + 2𝑞}. Observe that the edge labels are

{𝑔
∗
(𝑒) : 𝑒 ∈ 𝐸 (𝐺

1
)} = {𝑐, 𝑐 + 1, 𝑐 + 2, . . . , 𝑐 + 𝑞 − 1} ,

{𝑔
∗
(𝑥
1
𝑦
1
) = 𝑔 (𝑥

1
) + 𝑔 (𝑦

1
) : 𝑦
1
∈ 𝑉 (𝐺

1
)}

= {𝑐 + 𝑞, 𝑐 + 𝑞 + 1, . . . , 𝑐 + 2𝑞 − 1} ,

𝑔
∗
(𝑥
1
𝑥
2
) = 𝑔 (𝑥

1
) + 𝑔 (𝑥

2
) = 𝑐 + 2𝑞,

{𝑔
∗
(𝑥
2
𝑦
2
) = 𝑔 (𝑥

2
) + 𝑔 (𝑦

2
) : 𝑦
2
∈ 𝑉 (𝑇

2
)}

= {𝑐 + 2𝑞 + 1, 𝑐 + 2𝑞 + 2, . . . , 𝑐 + 3𝑞} ,

{𝑔
∗
(𝑒) : 𝑒 ∈ 𝐸 (𝑇

2
)}

= {3𝑐 + 2𝑞 + 2, 3𝑐 + 2𝑞 + 3, . . . , 3𝑐 + 3𝑞 + 1} .

(5)

The edge labels form the set of consecutive integers from 𝑐 up
to 3𝑐 + 3𝑞 + 1 if and only if 𝑐 + 3𝑞 + 1 = 3𝑐 + 2𝑞 + 2. It is
true if 𝑐 = (𝑞− 1)/2. Thus, the labeling 𝑔 is strongly (𝑞 − 1)/2-
harmonious labeling of the corona graph𝐾

2
⊙ 𝐺.

An example of the strongly 4-harmonious unicyclic graph
is presented in Figure 2.

We know that every odd cycle 𝐶
2𝑛+1

admits strongly 𝑛-
harmonious labeling. As consequence ofTheorem 8, we have
the following.

Corollary 9. The corona graph 𝐾
2
⊙ 𝐶
2𝑛+1

, 𝑛 ≥ 1, is strongly
𝑛-harmonious.
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