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This paper is concerned with the parameter estimator in linear regression model. To overcome the multicollinearity problem, two
new classes of estimators called the almost unbiased ridge-type principal component estimator (AURPCE) and the almost unbiased
Liu-type principal component estimator (AULPCE) are proposed, respectively. The mean squared error matrix of the proposed
estimators is derived and compared, and some properties of the proposed estimators are also discussed. Finally, a Monte Carlo
simulation study is given to illustrate the performance of the proposed estimators.

1. Introduction

Consider the following multiple linear regression model:

𝑦 = 𝑋𝛽 + 𝜀, (1)

where 𝑦 is an 𝑛 × 1 vector of responses, 𝑋 is an 𝑛 × 𝑝 known
design matrix of rank 𝑝, 𝛽 is a 𝑝 × 1 vector of unknown
parameters, 𝜀 is an 𝑛 × 1 vector of disturbances assumed to
be distributed with mean vector 0 and variance covariance
matrix 𝜎2𝐼

𝑛
, and 𝐼

𝑛
is an identity matrix of order 𝑛.

According to the Gauss-Markov theorem, the ordinary
least squares estimate (OLSE) of (1) is obtained as follows:

𝛽 = (𝑋
󸀠
𝑋)
−1

𝑋
󸀠
𝑦. (2)

It has been treated as the best estimator for a long time.
However,many results have proved that theOLSE is no longer
a good estimator when the multicollinearity is present. To
overcome this problem, many new biased estimators have
been proposed, such as principal components regression
estimator (PCRE) [1], ridge estimator [2], Liu estimator [3],
almost unbiased ridge estimator [4], and the almost unbiased
Liu estimator [5].

To hope that the combination of two different estimators
might inherit the advantages of both estimators, Kaçıranlar
et al. [6] improved Liu’s approach and introduced the

restricted Liu estimator. Akdeniz andErol [7] compared some
biased estimators in linear regression in the mean squared
error matrix (MSEM) sense. By combining the mixed esti-
mator and Liu estimator, Hubert and Wijekoon [8] obtained
the two-parameter estimator which is a general estimator
including the OLSE, ridge estimator, and Liu estimator. Baye
and Parker [9] proposed the 𝑟 − 𝑘 class estimator which
includes as special cases the PCRE, the RE, and the OLSE.
Then, Kaçıranlar and Sakallıoğlu [10] proposed the 𝑟 − 𝑑
estimator which is a generalization of the OLSE, PCRE, and
Liu estimator. Based on the 𝑟−𝑘 estimator and 𝑟−𝑑 estimator,
Xu and Yang [11] considered the restricted 𝑟−𝑘 estimator and
restricted 𝑟 − 𝑑 estimator and Wu and Yang [12] introduced
the stochastic restricted 𝑟 − 𝑘 estimator and the stochastic
restricted 𝑟 − 𝑑 estimator, respectively.

The primary aim in this paper is to introduce two new
classes of estimators where one includes the OLSE, PCRE,
and AURE as special cases and the other one includes the
OLSE, PCRE, and AULE as special cases and provide some
alternative methods to overcome multicollinearity in linear
regression.

The paper is organized as follows. In Section 2, the new
estimators are introduced. In Section 3, some properties of
the new estimator are discussed.Then we give a Monte Carlo
simulation in Section 4. Finally, some conclusions are given
in Section 5.
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2. The New Estimators

In the linear model given by (1), the almost unbiased ridge
estimator (AURE) proposed by Singh et al. [4] and the almost
unbiased Liu estimator (AULE) proposed by Akdeniz and
Kaçıranlar [5] are defined as

𝛽AU (𝑘) = (𝐼 − 𝑘
2
(𝑆 + 𝑘𝐼)

−2
) 𝛽, (3)

𝛽AULE (𝑑) = (𝐼 − (1 − 𝑑)
2
(𝑆 + 𝐼)

−2
) 𝛽, (4)

respectively, where 𝑘 > 0, 0 < 𝑑 < 1, 𝑆 = 𝑋󸀠𝑋.
Now consider the spectral decomposition of the matrix

given as

𝑋
󸀠
𝑋 = (𝑇𝑟 𝑇𝑝−𝑟) (

Λ
𝑟

0

0 Λ
𝑝−𝑟

)(

𝑇
󸀠

𝑟

𝑇
󸀠

𝑝−𝑟

) , (5)

where Λ
𝑟
= diag(𝜆

1
, . . . , 𝜆

𝑟
), Λ
𝑝−𝑟

= diag(𝜆
𝑟+1
, . . . , 𝜆

𝑝−𝑟
)

and 𝜆
1
≥ 𝜆
2
≥ ⋅ ⋅ ⋅ ≥ 𝜆

𝑝
> 0 are the ordered eigenvalues

of 𝑆. The matrix 𝑇 = (𝑇
𝑟

...𝑇
𝑝−𝑟
)
𝑝×𝑝

is orthogonal with
𝑇
𝑟
= (𝑡
1
, . . . , 𝑡

𝑟
) consisting of its first 𝑟 columns and 𝑇

𝑝−𝑟
=

(𝑡
𝑟+1
, . . . , 𝑡

𝑝
) consisting of the remaining 𝑝−𝑟 columns of the

matrix 𝑇. Then 𝑇󸀠
𝑟
𝑆𝑇
𝑟
= Λ
𝑟
; the PCRE of 𝛽 can be written as

𝛽
𝑟
= 𝑇
𝑟
(𝑇
󸀠

𝑟
𝑆𝑇
𝑟
)
−1

𝑇
𝑟
𝑋
󸀠
𝑦 = 𝑇

𝑟
Λ
−1

𝑟
𝑇
𝑟
𝑋
󸀠
𝑦. (6)

The 𝑟 − 𝑘 class estimator proposed by Baye and Parker
[9] and the 𝑟 − 𝑑 class estimator proposed by Kaçıranlar and
Sakallıoğlu [10] are defined as

𝛽
𝑟
(𝑘) = 𝑇

𝑟
(𝑇
󸀠

𝑟
𝑆𝑇
𝑟
+ 𝑘𝐼
𝑟
)
−1

𝑇
󸀠

𝑟
𝑋
󸀠
𝑦

= 𝑇
𝑟
(Λ
𝑟
+ 𝑘𝐼
𝑟
)
−1

𝑇
󸀠

𝑟
𝑋
󸀠
𝑦,

𝛽
𝑟
(𝑑) = 𝑇

𝑟
(𝑇
󸀠

𝑟
𝑆𝑇
𝑟
+ 𝐼
𝑟
)
−1

(𝑇
󸀠

𝑟
𝑆𝑇
𝑟
+ 𝑑𝐼
𝑟
) 𝑇
󸀠

𝑟
𝑋
󸀠
𝑦

= 𝑇
𝑟
(Λ
𝑟
+ 𝐼
𝑟
)
−1

(𝐼
𝑟
+ 𝑑Λ
−1

𝑟
) 𝑇
󸀠

𝑟
𝑋
󸀠
𝑦.

(7)

Followed by Xu and Yang [11], the 𝑟−𝑘 class estimator and
𝑟 − 𝑑 class estimator can be rewritten as follows:

𝛽
𝑟
(𝑘) = 𝑇

𝑟
𝑇
󸀠

𝑟
𝑇(Λ + 𝑘𝐼)

−1
𝑇
󸀠
𝑋
󸀠
𝑦 = 𝑇

𝑟
𝑇
󸀠

𝑟
𝛽 (𝑘)

𝛽
𝑟
(𝑑) = 𝑇

𝑟
𝑇
󸀠

𝑟
𝑇(Λ + 𝐼)

−1
(𝐼 + 𝑑Λ

−1
) 𝑇
󸀠
𝑋
󸀠
𝑦 = 𝑇

𝑟
𝑇
󸀠

𝑟
𝛽 (𝑑) ,

(8)

where 𝛽(𝑘) = 𝑇(Λ + 𝑘𝐼)
−1
𝑇
󸀠
𝑋
󸀠
𝑦 = (𝑆 + 𝑘𝐼)

−1
𝑋
󸀠
𝑦 is the

ridge estimator by Hoerl and Kennard [2] and 𝛽(𝑑) =

𝑇(Λ + 𝐼)
−1
(𝐼 + 𝑑Λ

−1
)𝑇
󸀠
𝑋
󸀠
𝑦 = (𝑆 + 𝐼)

−1
(𝐼 + 𝑑𝑆

−1
)𝑋
󸀠
𝑦 is the

Liu estimator proposed by Liu [3].
Now, we are to propose two new estimator classes by

combining the PCRE with the AURE and AULE, that is,
the almost unbiased ridge principal components estimator

(AURPCE) and the almost unbiased Liu estimator principal
component estimator (AULPCE), as follows:

𝛽AU (𝑟, 𝑘) = 𝑇𝑟𝑇
󸀠

𝑟
(𝐼 − 𝑘

2
(𝑆 + 𝑘𝐼)

−2
) 𝛽 = 𝑇

𝑟
𝑇
󸀠

𝑟
𝐺
𝑘
𝛽, (9)

𝛽AU (𝑟, 𝑑) = 𝑇𝑟𝑇
󸀠

𝑟
(𝐼 − (1 − 𝑑)

2
(𝑆 + 𝐼)

−2
) 𝛽 = 𝑇

𝑟
𝑇
󸀠

𝑟
𝐻
𝑑
𝛽,

(10)

respectively, where 𝐺
𝑘
= 𝐼 − 𝑘

2
(𝑆 + 𝑘𝐼)

−2,𝐻
𝑑
= 𝐼 − (1 − 𝑑)

2

(𝑆 + 𝐼)
−2.

From the definition of the AURPCE, we can easily obtain
the following.

If 𝑟 = 𝑝, then 𝛽AU(𝑟, 𝑘) = 𝛽AU(𝑘), AURE.
If 𝑘 = 0, 𝑟 = 𝑝, then 𝛽SRAU(𝑟, 𝑘) = 𝛽, OLSE.
If 𝑘 = 0, then 𝛽AU(𝑟, 𝑘) = 𝛽(𝑟) = 𝑇𝑟𝑇

󸀠

𝑟
𝛽, PCRE.

From the definition of the SRAULPCE, we can similarly
obtain the following.

If 𝑟 = 𝑝, then 𝛽AU(𝑟, 𝑑) = 𝛽AU(𝑑), AULE.
If 𝑑 = 0, 𝑟 = 𝑝, then 𝛽AU(𝑟, 𝑑) = 𝛽, OLSE.
If 𝑑 = 0, then 𝛽AU(𝑟, 𝑑) = 𝑇𝑟𝑇

󸀠

𝑟
𝛽, PCRE.

So the 𝛽AU(𝑟, 𝑘) could be regarded as a generalization of
PCRE, OLSE, and AURE, while 𝛽AU(𝑟, 𝑑) could be regarded
as a generalization of PCRE, OLSE, and AULE.

Furthermore, we can compute that the bias, dispersion
matrix, and mean squared error matrix of the new estimators
𝛽AU(𝑟, 𝑘) are

Bias (𝛽AU (𝑟, 𝑘)) = 𝐸 (𝛽AU (𝑟, 𝑘)) − 𝛽 = (𝑇𝑟𝑇
󸀠

𝑟
𝐺
𝑘
− 𝐼) 𝛽

𝐷 (𝛽AU (𝑟, 𝑘)) = 𝑇𝑟𝑇
󸀠

𝑟
𝐺
𝑘
⋅ Cov (𝛽) ⋅ 𝐺󸀠

𝑘
𝑇
𝑟
𝑇
󸀠

𝑟

= 𝜎
2
𝑇
𝑟
𝑇
󸀠

𝑟
𝐺
𝑘
𝑆
−1
𝐺
󸀠

𝑘
𝑇
𝑟
𝑇
󸀠

𝑟
,

(11)

MSEM (𝛽AU (𝑟, 𝑘)) = 𝜎
2
𝑇
𝑟
𝑇
󸀠

𝑟
𝐺
𝑘
𝑆
−1
𝐺
󸀠

𝑘
𝑇
𝑟
𝑇
󸀠

𝑟

+ (𝑇
𝑟
𝑇
󸀠

𝑟
𝐺
𝑘
− 𝐼) 𝛽𝛽

󸀠
(𝑇
𝑟
𝑇
󸀠

𝑟
𝐺
𝑘
− 𝐼)
󸀠

,

(12)

respectively.
In a similar way, we can get the MSEM of the 𝛽AU(𝑟, 𝑑) as

follows:

MSEM (𝛽AU (𝑟, 𝑑)) = 𝜎
2
𝑇
𝑟
𝑇
󸀠

𝑟
𝐻
𝑑
𝑆
−1
𝐻
󸀠

𝑑
𝑇
𝑟
𝑇
󸀠

𝑟

+ (𝑇
𝑟
𝑇
󸀠

𝑟
𝐻
𝑑
− 𝐼) 𝛽𝛽

󸀠
(𝑇
𝑟
𝑇
󸀠

𝑟
𝐻
𝑑
− 𝐼)
󸀠

.

(13)

In particular, if we let 𝑟 = 𝑝 in (12) and (13), then we can get
the MSEM of the AURE and AULE as follows:

MSEM (𝛽AU (𝑘)) = 𝜎
2
𝐺
𝑘
𝑆
−1
𝐺
󸀠

𝑘
+ (𝐺
𝑘
− 𝐼) 𝛽𝛽

󸀠
(𝐺
𝑘
− 𝐼)

MSEM (𝛽SRAU (𝑑)) = 𝜎
2
𝐻
𝑑
𝑆
−1
𝐻
󸀠

𝑑
+ (𝐻
𝑑
− 𝐼) 𝛽𝛽

󸀠
(𝐻
𝑑
− 𝐼) .

(14)
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3. Superiority of the Proposed Estimators

For the sake of convenience, we first list some notations,
definitions, and lemmas needed in the following discussion.
For a matrix𝑀,𝑀󸀠,𝑀+, rank(𝑀), 𝑅(𝑀), and 𝑁(𝑀) stand
for the transpose, Moore-Penrose inverse, rank, column
space, and null space, respectively. 𝑀 ≥ 0 means that𝑀 is
nonnegative definite and symmetric.

Lemma 1. Let 𝐶
𝑛×𝑝

be the set of 𝑛 × 𝑝 complex matrices, let
𝐻
𝑛×𝑛

be the subset of 𝐶
𝑛×𝑝

consisting of Hermitian matrices,
and 𝐿 ∈ 𝐶

𝑛×𝑝
, 𝐿
∗
,M(𝐿), and J(𝐷) stand for the conjugate

transpose, the range, and the set of all generalized inverses,
respectively. Let 𝐷 ∈ 𝐻

𝑛×𝑛
, 𝑎
1
and 𝑎

2
∈ 𝐶
𝑛×1

be linearly
independent, 𝑓

𝑖𝑗
= 𝑎
∗

𝑖
𝐷
−
𝑎
𝑗
, 𝑖, 𝑗 = 1, 2, and if 𝑎

2
∉ M(𝐷), let

𝑠 = [𝑎
∗

1
(𝐼 − 𝐷𝐷

−
)
∗

(𝐼−𝐷𝐷
−
)𝑎
2
]/[𝑎
∗

1
(𝐼 − 𝐷𝐷

−
)
∗

(𝐼−𝐷𝐷
−
)𝑎
1
].

Then 𝐷 + 𝑎
1
𝑎
∗

1
− 𝑎
2
𝑎
∗

2
≥ 0 if and only if one of the following

sets of conditions holds:

(a) 𝐷 ≥ 0, 𝑎
𝑖
∈M(𝐷), 𝑖 = 1, 2, (𝑓

11
+ 1)(𝑓

22
− 1) ≤ |𝑓

12
|
2;

(b) 𝐷 ≥ 0, 𝑎
1
∉ M(𝐷), 𝑎

2
∈ M(𝐷

... 𝑎
1
), (𝑎
2
− 𝑠𝑎
1
)
∗
𝐷
−

(𝑎
2
− 𝑠𝑎
1
) ≤ 1 − |𝑠|

2;
(c) 𝐷 = 𝑈Δ𝑈∗−𝜆VV∗, 𝑎

𝑖
∈M(𝐷), 𝑖 = 1, 2, V∗𝑎

1
̸= 0, 𝑓
11
+

1 ≤ 0, 𝑓
22
− 1 ≤ 0, (𝑓

11
+ 1)(𝑓

22
− 1) ≤ |𝑓

12
|
2,

where (𝑈
...V) is a subunitary matrix (𝑈 possibly absent), Δ a

positive-definite diagonalmatrix (occurringwhen𝑈 is present),
and 𝜆 a positive scalar. Further, all expressions in (a), (b), and
(c) are independent of the choice of 𝐷− ∈ J(𝐷).

Proof. Lemma 1 is due to Baksalary and Trenkler [13].
Let us consider the comparison between the AURPCE

and AURE and the AULPCE and AULE, respectively. From
(12)–(14), we have

Δ
1
= MSEM (𝛽AU (𝑘)) −MSEM (𝛽AU (𝑟, 𝑘))

= 𝐷
1
+ 𝑏
1
𝑏
󸀠

1
− 𝑏
2
𝑏
󸀠

2

Δ
2
= MSEM (𝛽AU (𝑑)) −MSEM (𝛽AU (𝑟, 𝑑))

= 𝐷
2
+ 𝑏
3
𝑏
󸀠

3
− 𝑏
4
𝑏
󸀠

4
,

(15)

where 𝐷
1
= 𝜎
2
(𝐺
𝑘
𝑆
−1
𝐺
󸀠

𝑘
− 𝑇
𝑟
𝑇
󸀠

𝑟
𝐺
𝑘
𝑆
−1
𝐺
󸀠

𝑘
𝑇
𝑟
𝑇
󸀠

𝑟
), 𝐷
2
= 𝜎
2

(𝐻
𝑑
𝑆
−1
𝐻
󸀠

𝑑
− 𝑇
𝑟
𝑇
󸀠

𝑟
𝐻
𝑑
𝑆
−1
𝐻
󸀠

𝑑
𝑇
𝑟
𝑇
󸀠

𝑟
) and 𝑏

1
= (𝐺
𝑘
− 𝐼)𝛽, 𝑏

2
=

(𝑇
𝑟
𝑇
󸀠

𝑟
𝐺
𝑘
− 𝐼)𝛽, 𝑏

3
= (𝐻
𝑑
− 𝐼)𝛽, 𝑏

2
= (𝑇
𝑟
𝑇
󸀠

𝑟
𝐻
𝑑
− 𝐼)𝛽.

Now, we will use Lemma 1 to discuss the differences Δ
1

and Δ
2
following Sarkar [14] and Xu and Yang [11]. Since

𝑆
−1
= (𝑇
𝑟
𝑇
󸀠

𝑟
+ 𝑇
𝑝−𝑟
𝑇
󸀠

𝑝−𝑟
) 𝑆
−1
(𝑇
𝑟
𝑇
󸀠

𝑟
+ 𝑇
𝑝−𝑟
𝑇
󸀠

𝑝−𝑟
)

= 𝑇
𝑟
𝑇
󸀠

𝑟
𝑆
−1
𝑇
𝑟
𝑇
󸀠

𝑟
+ 𝑇
𝑝−𝑟
𝑇
󸀠

𝑝−𝑟
𝑆
−1
𝑇
𝑝−𝑟
𝑇
󸀠

𝑝−𝑟

+ 𝑇
𝑟
𝑇
󸀠

𝑟
𝑆
−1
𝑇
𝑝−𝑟
𝑇
󸀠

𝑝−𝑟
+ 𝑇
𝑝−𝑟
𝑇
󸀠

𝑝−𝑟
𝑆
−1
𝑇
𝑟
𝑇
󸀠

𝑟
,

(16)

we assume that 𝑇󸀠
𝑟
𝑆
−1
𝑇
𝑝−𝑟

= 0 and 𝑇󸀠
𝑝−𝑟
𝑆
−1
𝑇
𝑝−𝑟

is invertible;
then

𝑆
−1
= 𝑇
𝑟
𝑇
󸀠

𝑟
𝑆
−1
𝑇
𝑟
𝑇
󸀠

𝑟
+ 𝑇
𝑝−𝑟
𝑇
󸀠

𝑝−𝑟
𝑆
−1
𝑇
𝑝−𝑟
𝑇
󸀠

𝑝−𝑟
. (17)

Meanwhile, it is noted that the assumptions are reasonable
which is equivalent to the partitioned matrix 𝑇󸀠𝑆−1𝑇 =

(
𝑇
󸀠

𝑟

𝑇
󸀠

𝑝−𝑟

) 𝑆
−1
(𝑇𝑟 𝑇𝑝−𝑟) = (

𝑇
󸀠

𝑟
𝑆
−1
𝑇
𝑟
𝑇
󸀠

𝑟
𝑆
−1
𝑇
𝑝−𝑟

𝑇
󸀠

𝑝−𝑟
𝑆
−1
𝑇
𝑟
𝑇
󸀠

𝑝−𝑟
𝑆
−1
𝑇
𝑝−𝑟

), that is, a block
diagonal matrix and the second main diagonal being invert-
ible.

Theorem 2. Suppose that 𝑇󸀠
𝑟
𝑆
−1
𝑇
𝑝−𝑟

= 0 and 𝑇󸀠
𝑝−𝑟
𝑆
−1
𝑇
𝑝−𝑟

is
invertible; then the AURPCE is superior to the AURE if and
only if 𝛽 ∈ 𝑁(𝐹), where 𝐹 = 𝜎−1(𝑇󸀠

𝑝−𝑟
𝑆
−1
𝑇
𝑝−𝑟
)
−1/2

𝑇
󸀠

𝑝−𝑟
.

Proof. Since

𝑏
1
= 𝑇
𝑟
[(𝐼 − 𝑘

2
(Λ
𝑟
+ 𝑘𝐼)
−2

) − 𝐼] 𝑇
󸀠

𝑟
𝛽

+ 𝑇
𝑝−𝑟
[(𝐼 − 𝑘

2
(Λ
𝑝−𝑟
+ 𝑘𝐼)
−2

) − 𝐼] 𝑇
󸀠

𝑝−𝑟
𝛽

𝑏
2
= 𝑇
𝑟
[(𝐼 − 𝑘

2
(Λ
𝑟
+ 𝑘𝐼)
−2

) − 𝐼] 𝑇
󸀠

𝑟
𝛽 − 𝑇
𝑝−𝑟
𝑇
󸀠

𝑝−𝑟
𝛽

𝐺
𝑘
𝑆
−1
𝐺
󸀠

𝑘
= 𝑇
𝑟
(𝐼 − 𝑘

2
(Λ
𝑟
+ 𝑘𝐼)
−2

) 𝑇
󸀠

𝑟
𝑆
−1

× 𝑇
𝑟
(𝐼 − 𝑘

2
(Λ
𝑟
+ 𝑘𝐼)
−2

) 𝑇
󸀠

𝑟

+ 𝑇
𝑝−𝑟
(𝐼 − 𝑘

2
(Λ
𝑝−𝑟
+ 𝑘𝐼)
−2

)𝑇
󸀠

𝑝−𝑟
𝑆
−1

× 𝑇
𝑝−𝑟
(𝐼 − 𝑘

2
(Λ
𝑝−𝑟
+ 𝑘𝐼)
−2

)𝑇
󸀠

𝑝−𝑟
,

𝑇
𝑟
𝑇
󸀠

𝑟
𝐺
𝑘
𝑆
−1
𝐺
󸀠

𝑘
𝑇
𝑟
𝑇
󸀠

𝑟

= 𝑇
𝑟
𝑇
󸀠

𝑟
𝑇
𝑟
(𝐼 − 𝑘

2
(Λ
𝑟
+ 𝑘𝐼)
−2

)

× 𝑇
󸀠

𝑟
𝑆
−1
𝑇
𝑟
(𝐼 − 𝑘

2
(Λ
𝑟
+ 𝑘𝐼)
−2

) 𝑇
󸀠

𝑟
𝑇
𝑟
𝑇
󸀠

𝑟

= 𝑇
𝑟
(𝐼 − 𝑘

2
(Λ
𝑟
+ 𝑘𝐼)
−2

) 𝑇
󸀠

𝑟
𝑆
−1
𝑇
𝑟

× (𝐼 − 𝑘
2
(Λ
𝑟
+ 𝑘𝐼)
−2

) 𝑇
󸀠

𝑟
,

(18)

then we have

𝐷
1
= 𝜎
2
𝑇
𝑝−𝑟
(𝐼 − 𝑘

2
(Λ
𝑝−𝑟
+ 𝑘𝐼)
−2

)𝑇
󸀠

𝑝−𝑟
𝑆
−1
𝑇
𝑝−𝑟

× (𝐼 − 𝑘
2
(Λ
𝑝−𝑟
+ 𝑘𝐼)
−2

)𝑇
󸀠

𝑝−𝑟
.

(19)

And the Moore-Penrose inverse𝐷+
1
of𝐷
1
is

𝐷
+

1
= 𝜎
−2
𝑇
𝑝−𝑟
(𝐼 − 𝑘

2
(Λ
𝑝−𝑟
+ 𝑘𝐼)
−2

)

−1

(𝑇
󸀠

𝑝−𝑟
𝑆
−1
𝑇
𝑝−𝑟
)
−1

× (𝐼 − 𝑘
2
(Λ
𝑝−𝑟
+ 𝑘𝐼)
−2

)

−1

𝑇
󸀠

𝑝−𝑟
.

(20)

Note that 𝐷
1
𝐷
+

1
= 𝑇
𝑝−𝑟
𝑇
󸀠

𝑝−𝑟
= 𝐼 − 𝑇

𝑟
𝑇
󸀠

𝑟
, 𝐼 − 𝑘2(Λ

𝑝−𝑟
+ 𝑘𝐼)
−2,

is a positive definition matrix since Λ
𝑝−𝑟

is supposed to be
invertible and𝐷

1
𝐷
+

1
𝑎
1
̸= 𝑎
1
, so 𝑎
1
∉M(𝐷). Moreover,

𝑏
2
− 𝑏
1
= −𝑇
𝑝−𝑟
(𝐼 − 𝑘

2
(Λ
𝑝−𝑟
+ 𝑘𝐼)
−2

)𝑇
󸀠

𝑝−𝑟
𝛽 = 𝐷

1
𝜂
1
,

(21)
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where 𝜂
1
= −𝜎
−2
𝑇
𝑝−𝑟
(𝐼 − 𝑘

2
(Λ
𝑝−𝑟
+ 𝑘𝐼)
−2
)
−1

(𝑇
󸀠

𝑝−𝑟
𝑆
−1
𝑇
𝑝−𝑟
)
−1

𝑇
󸀠

𝑝−𝑟
𝛽. This implies that 𝑏

2
∈ M(𝐷

1

...𝑏
1
). So the conditions of

part (b) in Lemma 1 can be employed. Since (𝐼 − 𝐷𝐷−)󸀠(𝐼 −
𝐷𝐷
−
) = 𝑇

𝑟
𝑇
󸀠

𝑟
𝑇
𝑟
𝑇
󸀠

𝑟
= 𝑇
𝑟
𝑇
󸀠

𝑟
and 𝑇󸀠

𝑟
𝑏
2
= 𝑇
󸀠

𝑟
𝑏
1
, it is concluded

that 𝑠 = 1 in our case. Thus, it follows from Lemma 1 that
the 𝛽AU(𝑟, 𝑘) is superior to 𝛽AU(𝑘) in the MSEM sense if and
only if (𝑏

2
− 𝑏
1
)
󸀠
𝐷
−

1
(𝑏
2
− 𝑏
1
) = 𝜂
󸀠

1
𝐷
󸀠

1
𝐷
−

1
𝐷
1
𝜂
1
= 𝜂
󸀠

1
𝐷
1
𝜂
1
≤ 0.

Observing that

𝜂
󸀠

1
𝐷
1
𝜂
1
= 𝜎
−2
𝛽
󸀠
𝑇
𝑝−𝑟
(𝑇
󸀠

𝑝−𝑟
𝑆
−1
𝑇
𝑝−𝑟
)
−1

𝑇
󸀠

𝑝−𝑟
𝛽 = 𝛽

󸀠
𝐹
󸀠
𝐹𝛽 ≥ 0,

(22)

where 𝐹 = 𝜎−1(𝑇󸀠
𝑝−𝑟
𝑆
−1
𝑇
𝑝−𝑟
)
−1/2

𝑇
󸀠

𝑝−𝑟
, thus the necessary and

sufficient condition turns out to be 𝛽 ∈ 𝑁(𝐹).

Theorem 3. Suppose that 𝑇󸀠
𝑟
𝑆
−1
𝑇
𝑝−𝑟

= 0 and 𝑇󸀠
𝑝−𝑟
𝑆
−1
𝑇
𝑝−𝑟

is
invertible; then the new estimator AULPCE is superior to
the AULE if and only if 𝛽 ∈ 𝑁(𝐹), where 𝐹 = 𝜎

−1

(𝑇
󸀠

𝑝−𝑟
𝑆
−1
𝑇
𝑝−𝑟
)
−1/2

𝑇
󸀠

𝑝−𝑟
.

Proof. In order to apply Lemma 1, we can similarly compute
that

𝐻
𝑑
= 𝑇
𝑟
[(𝐼 − (1 − 𝑑)

2
(Λ
𝑟
+ 𝐼)
−2

)] 𝑇
󸀠

𝑟

+ 𝑇
𝑝−𝑟
[(𝐼 − (1 − 𝑑)

2
(Λ
𝑝−𝑟
+ 𝐼)
−2

)]𝑇
󸀠

𝑝−𝑟

𝑏
3
= 𝑇
𝑟
[(𝐼 − (1 − 𝑑)

2
(Λ
𝑟
+ 𝐼)
−2

) − 𝐼] 𝑇
󸀠

𝑟
𝛽

+ 𝑇
𝑝−𝑟
[(𝐼 − (1 − 𝑑)

2
(Λ
𝑝−𝑟
+ 𝐼)
−2

) − 𝐼] 𝑇
󸀠

𝑝−𝑟
𝛽

𝑏
4
= 𝑇
𝑟
[(𝐼 − (1 − 𝑑)

2
(Λ
𝑟
+ 𝐼)
−2

) − 𝐼] 𝑇
󸀠

𝑟
𝛽 − 𝑇
𝑝−𝑟
𝑇
󸀠

𝑝−𝑟
𝛽

𝐻
𝑑
𝑆
−1
𝐻
󸀠

𝑑
= 𝑇
𝑟
(𝐼 − (1 − 𝑑)

2
(Λ
𝑟
+ 𝐼)
−2

) 𝑇
󸀠

𝑟
𝑆
−1
𝑇
𝑟

× (𝐼 − (1 − 𝑑)
2
(Λ
𝑟
+ 𝐼)
−2

) 𝑇
󸀠

𝑟

+ 𝑇
𝑝−𝑟
(𝐼 − (1 − 𝑑)

2
(Λ
𝑝−𝑟
+ 𝐼)
−2

)𝑇
󸀠

𝑝−𝑟
𝑆
−1

× 𝑇
𝑝−𝑟
(𝐼 − (1 − 𝑑)

2
(Λ
𝑝−𝑟
+ 𝐼)
−2

)𝑇
󸀠

𝑝−𝑟
,

𝑇
𝑟
𝑇
󸀠

𝑟
𝐻
𝑑
𝑆
−1
𝐻
󸀠

𝑑
𝑇
𝑟
𝑇
󸀠

𝑟

= 𝑇
𝑟
𝑇
󸀠

𝑟
𝑇
𝑟
(𝐼 − (1 − 𝑑)

2
(Λ
𝑟
+ 𝐼)
−2

) 𝑇
󸀠

𝑟
𝑆
−1
𝑇
𝑟

× (𝐼 − (1 − 𝑑)
2
(Λ
𝑟
+ 𝐼)
−2

) 𝑇
󸀠

𝑟
𝑇
𝑟
𝑇
󸀠

𝑟

= 𝑇
𝑟
(𝐼 − (1 − 𝑑)

2
(Λ
𝑟
+ 𝐼)
−2

) 𝑇
󸀠

𝑟
𝑆
−1
𝑇
𝑟

× (𝐼 − (1 − 𝑑)
2
(Λ
𝑟
+ 𝐼)
−2

) 𝑇
󸀠

𝑟
.

(23)

Therefore, the Moore-Penrose inverse𝐷+
2
of𝐷
2
is given by

𝐷
+

2
= 𝜎
−2
𝑇
𝑝−𝑟
(𝐼 − (1 − 𝑑)

2
(Λ
𝑝−𝑟
+ 𝐼)
−2

)

−1

(𝑇
󸀠

𝑝−𝑟
𝑆
−1
𝑇
𝑝−𝑟
)
−1

× (𝐼 − 𝑘
2
(Λ
𝑝−𝑟
+ 𝑘𝐼)
−2

)

−1

𝑇
󸀠

𝑝−𝑟
.

(24)

Since𝐷
2
𝐷
+

2
= 𝑇
𝑝−𝑟
𝑇
󸀠

𝑝−𝑟
, then 𝑏

3
∉M(𝐷). Moreover,

𝑏
4
− 𝑏
3
= −𝑇
𝑝−𝑟
(𝐼 − (1 − 𝑑)

2
(Λ
𝑝−𝑟
+ 𝐼)
−2

)𝑇
󸀠

𝑝−𝑟
𝛽 = 𝐷

2
𝜂
2
,

(25)

where 𝜂
1

= −𝜎
−2
𝑇
𝑝−𝑟
(𝐼 − (1 − 𝑑)

2
(Λ
𝑝−𝑟
+ 𝐼)
−2
)
−1

(𝑇
󸀠

𝑝−𝑟
𝑆
−1
𝑇
𝑝−𝑟
)
−1

𝑇
󸀠

𝑝−𝑟
𝛽. This implies that 𝑏

4
∈ M(𝐷

2

... 𝑏
3
). So

the conditions of part (b) in Lemma 1 can be employed. Since
(𝐼 − 𝐷𝐷

−
)
󸀠

(𝐼 − 𝐷𝐷
−
) = 𝑇

𝑟
𝑇
󸀠

𝑟
𝑇
𝑟
𝑇
󸀠

𝑟
= 𝑇
𝑟
𝑇
󸀠

𝑟
and 𝑇󸀠

𝑟
𝑏
4
= 𝑇
󸀠

𝑟
𝑏
3
,

it is concluded that 𝑠 = 1 in our case. Thus, it follows
from Lemma 1 that the 𝛽AU(𝑟, 𝑑) is superior to 𝛽AU(𝑑)
in the MSEM sense if and only if (𝑏

4
− 𝑏
3
)
󸀠
𝐷
−

2
(𝑏
4
− 𝑏
3
) =

𝜂
󸀠

2
𝐷
󸀠

2
𝐷
−

2
𝐷
2
𝜂
2
= 𝜂
󸀠

2
𝐷
󸀠

2
𝜂
2
≤ 0. Observing that

𝜂
󸀠

2
𝐷
󸀠

2
𝜂
2
= 𝜎
−2
𝛽
󸀠
𝑇
𝑝−𝑟
(𝑇
󸀠

𝑝−𝑟
𝑆
−1
𝑇
𝑝−𝑟
)
−1

𝑇
󸀠

𝑝−𝑟
𝛽 = 𝛽

󸀠
𝐹
󸀠
𝐹𝛽 ≥ 0,

(26)

where 𝐹 = 𝜎−1(𝑇󸀠
𝑝−𝑟
𝑆
−1
𝑇
𝑝−𝑟
)
−1/2

𝑇
󸀠

𝑝−𝑟
, thus the necessary and

sufficient condition turns out to be 𝛽 ∈ 𝑁(𝐹).

4. Monte Carlo Simulation

In order to illustrate the behaviour of the AURPCE and
AULPCE, we perform a Monte Carlo simulation study. Fol-
lowing the way of Li and Yang [15], the explanatory variables
and the observations on the dependent variable are generated
by

𝑥
𝑖𝑗
= (1 − 𝛾

2
)
1/2

𝜔
𝑖𝑗
+ 𝛾𝜔
𝑖5
, 𝑦

𝑖
= (1 − 𝛾

2
)
1/2

𝜔
𝑖𝑗
+ 𝛾𝜔
𝑖5
,

𝑖 = 1, 2, . . . , 100, 𝑗 = 1, 2, 3, 4,

(27)

where 𝜔
𝑖𝑗
are independent standard normal pseudorandom

numbers and 𝛾 is specified so that the correlation between any
two explanatory variables is given by 𝛾2. In this experiment,
we choose 𝑟 = 2 and 𝜎2 = 1. Let us consider the AURPCE,
AULPCE, AURE, AULE, PCRE, andOLSE and compute their
respective estimated MSE values with the different levels of
multicollinearity, namely, 𝛾 = 0.7, 0.85, 0.9, 0.999 to show the
weakly, strong, and severely collinear relationships between
the explanatory variables (see Tables 1 and 2). Furthermore,
for the convenience of comparison, we plot the estimated
MSE values of the estimators when 𝛾 = 0.999 in Figure 1.

From the simulation results shown in Tables 1 and 2 and
the estimated MSE values of these estimators, we can see
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Table 1: MSE values of the OLSE, PCRE, AURE, and AURPCE.

𝑘 0.00 0.10 0.30 0.40 0.50 0.80 0.90 1.00
𝛾 = 0.7

OLSE 0.0619 0.0619 0.0619 0.0619 0.0619 0.0619 0.0619 0.0619
PCRE 0.0285 0.0285 0.0285 0.0285 0.0285 0.0285 0.0285 0.0285
AURE 0.0619 0.0619 0.0619 0.0619 0.0619 0.0619 0.0619 0.0618
AURPCE 0.0285 0.0285 0.0285 0.0285 0.0285 0.0285 0.0285 0.0285

𝛾 = 0.85

OLSE 0.1085 0.1085 0.1085 0.1085 0.1085 0.1085 0.1085 0.1085
PCRE 0.0384 0.0384 0.0384 0.0384 0.0384 0.0384 0.0384 0.0384
AURE 0.1085 0.1085 0.1085 0.1085 0.1085 0.1084 0.1084 0.1083
AURPCE 0.0384 0.0384 0.0384 0.0383 0.0383 0.0383 0.0383 0.0383

𝛾 = 0.99

OLSE 1.4636 1.4636 1.4636 1.4636 1.4636 1.4636 1.4636 1.4636
PCRE 0.3522 0.3522 0.3522 0.3522 0.3522 0.3522 0.3522 0.3522
AURE 1.4636 1.4565 1.4116 1.3797 1.3441 1.2281 1.1889 1.1502
AURPCE 0.3522 0.3515 0.3464 0.3426 0.3381 0.3220 0.3161 0.3101

𝛾 = 0.999

OLSE 14.5437 14.5437 14.5437 14.5437 14.5437 14.5437 14.5437 14.5437
PCRE 3.3903 3.3903 3.3903 3.3903 3.3903 3.3903 3.3903 3.3903
AURE 14.5437 1.4399 6.0117 4.5727 3.5858 1.9800 1.6797 1.4430
AURPCE 3.3903 2.9735 1.8963 1.5285 1.2518 0.7514 0.6496 0.5673

Table 2: MSE values of the OLSE, PCRE, AULE, and AULPCE.

𝑑 0.00 0.10 0.20 0.40 0.50 0.70 0.90 1.00
𝛾 = 0.7

OLSE 0.0709 0.0709 0.0709 0.0709 0.0709 0.0709 0.0709 0.0709
PCRE 0.0303 0.0303 0.0303 0.0303 0.0303 0.0303 0.0303 0.0303
AULE 0.0709 0.0709 0.0709 0.0709 0.0709 0.0709 0.0709 0.0709
AULPCE 0.0303 0.0303 0.0303 0.0303 0.0303 0.0303 0.0303 0.0303

𝛾 = 0.85

OLSE 0.1085 0.1085 0.1085 0.1085 0.1085 0.1085 0.1085 0.1085
PCRE 0.0384 0.0384 0.0384 0.0384 0.0384 0.0384 0.0384 0.0384
AULE 0.1083 0.1083 0.1084 0.1084 0.1085 0.1085 0.1085 0.1085
AULPCE 0.0383 0.0383 0.0383 0.0383 0.0383 0.0384 0.0384 0.0384

𝛾 = 0.99

OLSE 1.4636 1.4636 1.4636 1.4636 1.4636 1.4636 1.4636 1.4636
PCRE 0.3522 0.3522 0.3522 0.3522 0.3522 0.3522 0.3522 0.3522
AULE 1.1502 1.2066 1.2583 1.3461 1.3814 1.4337 1.4603 1.4636
AULPCE 0.3101 0.3179 0.3249 0.3367 0.3414 0.3483 0.3518 0.3522

𝛾 = 0.999

OLSE 14.5437 14.5437 14.5437 14.5437 14.5437 14.5437 14.5437 14.5437
PCRE 3.3903 3.3903 3.3903 3.3903 3.3903 3.3903 3.3903 3.3903
AULE 1.4430 2.8578 4.5509 8.2191 9.9597 12.7929 14.3436 14.5437
AULPCE 0.5673 0.9193 1.3076 2.0980 2.4599 3.0381 3.3502 3.3903

that for most cases, the AURPCE and AULPCE have smaller
estimatedMSE values than those of the AURE, AULE, PCRE,
and OLSE, respectively, which agree with our theoretical
findings. FromFigure 1, the AURPCE andAULPCE also have
more stable and smaller estimated MSE values. We can see
that our estimator is meaningful in practice.

5. Conclusion

In this paper, we introduce two classes of new biased esti-
mators to provide an alternative method of dealing with
multicollinearity in the linear model. We also show that our
new estimators are superior to the competitors in the MSEM
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Figure 1: Estimated MSE values of the AULE, AULPCE, AURE,
AURPCE, OLSE, and PCRE.

criterion under some conditions. Finally, a Monte Carlo
simulation study is given to illustrate the better performance
of the proposed estimators.
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[10] S. Kaçıranlar and S. Sakallıoğlu, “Combining the Liu estimator
and the principal component regression estimator,” Communi-
cations in Statistics—Theory and Methods, vol. 30, no. 12, pp.
2699–2705, 2001.

[11] J. Xu and H. Yang, “On the restricted 𝑟-𝑘 class estimator and
the restricted 𝑟-𝑑 class estimator in linear regression,” Journal of
Statistical Computation and Simulation, vol. 81, no. 6, pp. 679–
691, 2011.

[12] J. B.Wu andH. Yang, “On the stochastic restricted almost unbi-
ased estimators in linear regression model,” Communications
in Statistics-Simulation and Computation, vol. 43, pp. 428–440,
2014.

[13] J. K. Baksalary and G. Trenkler, “Nonnegative and positive
definiteness of matrices modified by two matrices of rank one,”
Linear Algebra and Its Applications, vol. 151, pp. 169–184, 1991.

[14] N. Sarkar, “Mean square error matrix comparison of some
estimators in linear regressions withmulticollinearity,” Statistics
& Probability Letters, vol. 30, no. 2, pp. 133–138, 1996.

[15] Y. Li and H. Yang, “A new stochastic mixed ridge estimator in
linear regressionmodel,” Statistical Papers, vol. 51, no. 2, pp. 315–
323, 2010.


