
Research Article
Martelli Chaotic Properties of a Generalized Form of
Zadeh’s Extension Principle

Yaoyao Lan1,2 and Chunlai Mu3

1 College of Computer Science, Chongqing University, Chongqing 401331, China
2 Key Laboratory of Data Analyzing and Image Processing, Department of Mathematics and Finance,
Chongqing University of Arts and Sciences, Yongchuan 402160, China

3 College of Mathematics and Statistics, Chongqing University, Chongqing 401331, China

Correspondence should be addressed to Yaoyao Lan; yylan81@hotmail.com

Received 9 October 2013; Revised 6 February 2014; Accepted 25 February 2014; Published 31 March 2014

Academic Editor: Marcelo A. Savi

Copyright © 2014 Y. Lan and C. Mu. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Let𝑋 denote a compact metric space and let 𝑓 : 𝑋 → 𝑋 be a continuous map. It is known that a discrete dynamical system (𝑋,𝑓)
naturally induces its fuzzified counterpart, that is, a discrete dynamical system on the space of fuzzy compact subsets of 𝑋. In 2011,
a new generalized form of Zadeh’s extension principle, so-called 𝑔-fuzzification, had been introduced by Kupka 2011. In this paper,
we study the relations between Martelli’s chaotic properties of the original and 𝑔-fuzzified system. More specifically, we study the
transitivity, sensitivity, and stability of the orbits in system (𝑋,𝑓) and its connections with the same ones in its 𝑔-fuzzified system.

1. Introduction

The main goal of the theory of discrete dynamical system
is to understand the asymptotic properties and topological
structures of the orbits. In certain sense, the study of the orbits
in discrete dynamical system is to investigate the movement
of the points in the base space. In many cases, however, it is
not sufficient to knowhow the pointsmove, but it is necessary
to understand the motion of the subsets of base space (e.g., in
migration phenomenon), and this leads us to the problem of
analyzing the dynamics of the set-valued discrete dynamical
systems. In this direction, many elegant results have been
obtained (please see [1–7] and the references cited therein).

As the complexity of research subjects increased, an accu-
rate description for systems becomesmore andmore difficult,
and the situation would become more complicated when
the systems are affected by the uncertainty. In this case, the
fuzzy system should be considered. It is well known that
any given discrete dynamical system uniquely induces its
fuzzified counterpart, that is, a discrete system on the space
of fuzzy sets. It is natural to ask the following question: what
is the relation between dynamical properties of the original
and fuzzified systems?

Motivated by this question, the study of discrete fuzzy
dynamical systems has recently become active [8–12]. As
a partial response to the question above, in the case of
Devaney chaos [13], the transitivity, periodic density, and
sensitivity between two systems have been analyzed in 2008
[14]. In addition, by analyzing connections between the
fuzzified dynamical systems related to the original one, the
authors have pointed out that this kind of investigation
should be useful in many real problems, such as in ecological
modelling and demographic sciences. Some recent works
along these lines appear. In 2011, Kupka proves that there
exists a transitive fuzzification on the space of normal fuzzy
sets, which contains the solution of the problem that was
partially solved in [14]. Specifically, the author considers a
symbolic dynamical system as the original system and then
shows that Zadeh’s extension of the shift map is transitive. As
regards the periodic density, a concept of piecewise constant
fuzzy set is introduced, and then period density equivalence
of 𝑓 and 𝑓 is proposed. Consequently, the question has been
completely solved [15]. And then we discuss this issue by
using the weakly mixing property [16].

Among the methods of fuzzification, Zadeh’s extension
[17] is often used, but it can lose information that is carried
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by the original system. Therefore, more general extension
principles have been developed [18, 19]. Recently, a concept
of𝑔-fuzzification, which allows us tomodify themembership
grades of points in each iteration, has been introduced [19].
The use of 𝑔-fuzzification is quite natural but differs slightly
from Zadeh’s extension principle, and it can be useful in
several situations. Take a fuzzy set “old people” for example;
old people in ancient time are not considered as old at present
since the average age of people is increasing. We also can find
several examples to illustrate such kinds of fuzzy sets with
variable membership grades. Zadeh’s extension, however,
does not reflect this fact. On the other hand, the situation
becomes more complicated in fuzzy control. In [20], the
authors show that a chaotic function on R𝑛, for its fuzzifica-
tion in the sense of Zadeh, is degenerate, because the iterates
are asymptotically crisp and, ultimately, we obtain chaos of
a mapping of ordinary sets rather than of fuzzy output. In
this case, the usual fuzzification is inadequate to describe
complexities which may arise in fuzzy control. Consequently,
a concept of Γ-fuzzification has been developed in [18], which
does not degenerate under chaotic iteration. Now, as a new
generalized extension principle, 𝑔-fuzzification includes the
usual fuzzification (Zadeh’s extension) and Γ-fuzzification as
two special cases of it, and the developed methods enable us
to study the dynamics of discrete fuzzy systems in a more
efficient way.

Chaotic dynamics has been hailed as the third great
scientific revolution of the 20th century, along with relativity
and quantummechanics. But there is not a generally accepted
definition of chaos yet. The different definitions of chaos
being around have been designed to meet different purposes
and they are based on very different backgrounds and levels
of mathematical sophistication. To compare various kinds of
definitions of chaos naturally attracts the interest of many
researchers. In 2002, Huang and Ye showed that chaos in
the sense of Devaney is stronger than that of Li-Yorke [21].
The conclusion stimulates the study of the relations between
different definitions of chaos [22–24].

Among various definitions of chaos, Martelli’s chaos is
one of the definitions of chaos which are suitable for easy
and reliable numerical verification [25]. The authors make
comparison of different definitions of chaos and point out
that Martelli’s chaos embodies the essential features which all
other definitions are trying to capture [26]. It is worth noting
that although formulated in a different way, Martelli’s chaos
is practically equivalent to chaos in the sense of Wiggins
[27]. There remains, however, a difference between the two
definitions. Wiggins does not require sensitivity with respect
to the base space, while Martelli requires instability with
respect to the base space.

In this paper, we focus on relations between Martelli’s
chaotic properties of the original and 𝑔-fuzzified dynamical
systems. Below, Section 2 gives basic notions and definitions.
Section 3 discusses the relation between Martelli’s chaotic
properties of the original and 𝑔-fuzzified systems. A brief
conclusion concludes the paper.

2. Preliminaries

In this section, we complete notations and recall some known
definitions. Let 𝑓 : 𝑋 → 𝑋 be a continuous map acting on
a compact metric space (𝑋, 𝑑). An orbit of a point 𝑥

0
∈ 𝑋 is

the set {𝑓
𝑛

(𝑥
0
) : 𝑛 ≥ 0}, denoted by orb(𝑥

0
, 𝑓) or simply

orb(𝑥
0
) when the function 𝑓 is clearly specified. A point 𝑦 is

a limit point of orb(𝑥
0
) if a subsequence of orb(𝑥

0
) converges

to 𝑦. The set of limit points of orb(𝑥
0
) is denoted by 𝐿(𝑥

0
).

We say that𝑓 is transitive if for any pair of nonempty open
sets 𝑈 and 𝑉 there exists 𝑛 ≥ 1 such that 𝑓𝑛(𝑈) ∩ 𝑉 ̸= 0; 𝑓 is
point transitive if there exists a point𝑥

0
∈ 𝑋 such that the orbit

of 𝑥
0
is dense in 𝑋; that is, orb(𝑥

0
) = 𝑋, and 𝑥

0
is called a

transitive point of 𝑋.
We say that orb(𝑥) is unstable if there exists 𝛿

𝑥
such that,

for any neighborhood𝑈 of𝑥, there exist𝑦 ∈ 𝑈 and 𝑛 ≥ 0 such
that 𝑑(𝑓𝑛(𝑥), 𝑓𝑛(𝑦)) > 𝛿

𝑥
. An orbit which is not unstable is

said to be stable.
We say that𝑓has sensitive dependence on initial conditions

if there is a constant 𝛿 > 0 such that for every point 𝑥 and
every neighborhood 𝑈 about 𝑥 there are a 𝑦 ∈ 𝑈 and a 𝑘 ≥ 1

such that 𝑑(𝑓𝑘(𝑥), 𝑓𝑘(𝑦)) ≥ 𝛿. Hence, every orbit orb(𝑥)with
𝑥 ∈ 𝑋 is unstable with the same constant 𝛿. Consequently,
sensitive dependence on initial conditions is stronger than
instability.

Definition 1 (see [25]). Let (𝑋, 𝑑) be a compact metric space
and let𝑓 : 𝑋 → 𝑋 be continuous.Then,𝑓 is Martelli chaotic
provided that there exists 𝑥

0
∈ 𝑋 such that

(i) 𝐿(𝑥
0
) = 𝑋;

(ii) orb(𝑥
0
) is unstable.

In this research, we call aMartelli chaoticmapM-chaotic
for short.

Below, we present some definitions from fuzzy theory. Let
K(𝑋) be the class of all nonempty and compact subsets of𝑋.
If 𝐴 ∈ K(𝑋), we define the 𝜀-neighbourhood of 𝐴 as the set

𝑁(𝐴, 𝜀) = {𝑥 ∈ 𝑋 | 𝑑 (𝑥, 𝐴) < 𝜀} , (1)

where 𝑑(𝑥, 𝐴) = inf
𝑎∈𝐴

‖𝑥 − 𝑎‖.
The Hausdorff separation 𝜌(𝐴, 𝐵) of 𝐴, 𝐵 ∈ K(𝑋) is

defined by

𝜌 (𝐴, 𝐵) = inf {𝜀 > 0 | 𝐴 ⊆ 𝑁 (𝐵, 𝜀)} . (2)

The Hausdorff metric onK(𝑋) is defined by letting

𝐻(𝐴, 𝐵) = max {𝜌 (𝐴, 𝐵) , 𝜌 (𝐵, 𝐴)} . (3)

Define F(𝑋) as the class of all upper semicontinuous
fuzzy sets 𝑢 : 𝑋 → [0, 1] such that [𝑢]

𝛼
∈ K(𝑋), where 𝛼-

cuts and the support of 𝑢 are defined by

[𝑢]
𝛼
= {𝑥 ∈ 𝑋 | 𝑢 (𝑥) ≥ 𝛼} , 𝛼 ∈ [0, 1] ,

supp (𝑢) = {𝑥 ∈ 𝑋 | 𝑢 (𝑥) > 0},

(4)

respectively.
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Moreover, let F
0
(𝑋) denote the space of all nonempty

fuzzy sets on𝑋 and let 0
𝑋
denote the empty fuzzy set (0

𝑋
(𝑥) =

0 for all 𝑥 ∈ 𝑋).
A level-wise metric 𝑑

∞
onF(𝑋) is defined by

𝑑
∞

(𝑢, V) = sup
𝛼∈[0,1]

𝐻([𝑢]
𝛼
, [V]
𝛼
) (5)

for all 𝑢, V ∈ F(𝑋). It is well known that if (𝑋, 𝑑) is complete,
then (F(𝑋), 𝑑

∞
) is also complete but is not compact and is

not separable (see [19, 28, 29]).

Lemma 2 (see [9, 14]). Let 𝐴 be an open subset of 𝑋. Define
𝑒(𝐴) = {𝑢 ∈ F(𝑋) : [𝑢]

0
⊆ 𝐴}, and then 𝑒(𝐴) is an open sub-

set ofF(𝑋).

Let 𝑓 : 𝑋 → 𝑋 be continuous. A usual fuzzification
(often called Zadeh’s extension) 𝑓 : F(𝑋) → F(𝑋) is defined
by

𝑓 (𝑢) (𝑥) = sup
𝑦∈𝑓
−1

(𝑥)

𝑢 (𝑦) (6)

for any 𝑢 ∈ F(𝑋) and 𝑥 ∈ 𝑋.
Now let us introduce𝑔-fuzzification. Denote𝐷

𝑚
(𝐼) as the

set of all nondecreasing right continuous functions𝑔 : 𝐼 → 𝐼

for which 𝑔(𝑥) = 𝑥 if 𝑥 = 0 and 𝑥 = 1. Let 𝐶
𝑚
(𝐼) be the set

of all continuous maps from 𝐷
𝑚
(𝐼). For any 𝑔 ∈ 𝐷

𝑚
(𝐼), a

𝑔-fuzzification 𝑓
𝑔
: F(𝑋) → F(𝑋) is defined by

𝑓
𝑔
(𝑢) (𝑥) = sup

𝑦∈𝑓
−1

(𝑥)

{𝑔 (𝑢 (𝑦))}

for any 𝑢 ∈ F (𝑋) , 𝑥 ∈ 𝑋.

(7)

An 𝛼-cut [𝑢]
𝑔

𝛼
of a fuzzy set 𝑢 ∈ F(𝑋) with respect to 𝑔 ∈

𝐷
𝑚
(𝐼) is

[𝑢]
𝑔

𝛼
= {𝑥 ∈ supp (𝑢) | 𝑔 (𝑢 (𝑥)) ≥ 𝛼} for 𝛼 ∈ (0, 1] .

(8)

Lemma 3 (see [19]). Let 𝑓 : 𝑋 → 𝑋 be continuous and let 𝑓
𝑔

be 𝑔-fuzzification. Then,

𝑓 ([𝑢]
𝑔

𝛼
) = [𝑓

𝑔
(𝑢)]
𝛼

(9)

holds for any 𝑢 ∈ F
0
(𝑋), 𝑔 ∈ 𝐷

𝑚
(𝐼), and 𝛼 ∈ (0, 1].

Lemma4 (see [19]). Let𝑔 ∈ 𝐷
𝑚
(𝐼),𝑢 ∈ F

0
(𝑋), and𝛼 ∈ (0, 1].

If [𝑢]𝑔
𝛼

̸=∞. then there is 𝑐 ∈ (0, 1] such that [𝑢]𝑔
𝛼
= [𝑢]
𝑐
.

3. 𝑀-Chaotic Relations between 𝑓
𝑔

and 𝑓

In this section, we study the relations between Martelli’s
chaotic properties of the original system (𝑋, 𝑓) and 𝑔-fuzz-
ified system (F(𝑋), 𝑓

𝑔
), where F(𝑋) is equipped with the

level-wise topology, that is, the metric topology induced by
𝑑
∞
.
On the one hand, some conditions are discussed, under

which 𝑓
𝑔

𝑀-chaotic implies 𝑓 𝑀-chaotic. On the other
hand, several examples are presented to illustrate that, in gen-
eral, 𝑓 𝑀-chaotic does not imply 𝑓

𝑔
𝑀-chaotic.

Proposition 5. Define [𝑢]
𝑔

0
= {𝑥 ∈ [𝑢]

0
| 𝑔(𝑢(𝑥)) > 0}. Then

[𝑢]
𝑔

0
= [𝑢]
0

(10)

holds for every 𝑢 ∈ F
0
(𝑋) and 𝑔 ∈ 𝐷

𝑚
(𝐼).

Proof. The inclusion [𝑢]
𝑔

0
⊆ [𝑢]

0
follows directly from the

definition of [𝑢]
𝑔

0
. If 𝑥 ∈ [𝑢]

0
, then, because 𝑔 is nonde-

creasing, we have 𝑔(𝑢(𝑥)) > 0, which implies 𝑥 ∈ [𝑢]
𝑔

0
, and,

consequently, [𝑢]𝑔
0
⊇ [𝑢]
0
holds.

Proposition 6. Let 𝑈 be subset of 𝑋 and let 𝑓 : 𝑋 → 𝑋 be
continuous. Then, 𝑓

𝑔
(𝑒(𝑈)) ⊆ 𝑒(𝑓(𝑈)).

Proof. If 𝑢 ∈ 𝑓
𝑔
(𝑒(𝑈)), then there exists 𝑢

∗

∈ 𝑒(𝑈) such that
𝑢 = 𝑓

𝑔
(𝑢
∗

). Hence, due to Lemma 3 and Proposition 5, we
have that [𝑢]

0
= [𝑓
𝑔
(𝑢
∗

)]
0

= 𝑓([𝑢
∗

]
𝑔

0
) = 𝑓([𝑢

∗

]
0
), since

[𝑢
∗

]
0

⊆ 𝑈 and [𝑢]
0

= 𝑓([𝑢
∗

]
0
) ⊆ 𝑓(𝑈); thus 𝑢 ∈ 𝑒(𝑓(𝑈)),

and the inclusion follows.

Proposition 7. Let 𝑢 ∈ F
0
(𝑋), 𝑔 ∈ 𝐷

𝑚
(𝐼), and 𝛼

𝑖
∈ (0, 1],

𝑖 = 1, . . . , 𝑛, . . .. Then, there exists an 𝛼
𝑛

∈ (0, 1] such that
[𝑓
𝑛

𝑔
(𝑢)]
𝛼
𝑛

= [𝑓𝑛
𝑔
(𝑢)]
𝛼
2𝑛−1

= 𝑓
𝑛

([𝑢]
𝛼
2𝑛

).

Proof. We do the proof by mathematical induction.
When 𝑛 = 1, by Lemmas 3 and 4, the formula gives us

[𝑓
𝑔
(𝑢)]
𝛼
1

= 𝑓([𝑢]
𝑔

𝛼
1

) = 𝑓([𝑢]
𝛼
2

); therefore, the statement
holds for 𝑛 = 1.

Assume that the statement is true for 𝑛 = 𝑘; that is,

[𝑓
𝑘

𝑔
(𝑢)]
𝛼
𝑘

= [
̂
𝑓𝑘
𝑔
(𝑢)]
𝛼
2𝑘−1

= 𝑓
𝑘

([𝑢]
𝛼
2𝑘

) . (11)

Note that [𝑓𝑘
𝑔
(𝑢)]
𝛼
𝑘+2

= 𝑓
𝑘

([𝑢]
𝛼
2𝑘+2

).
When 𝑛 = 𝑘 + 1,

[𝑓
𝑘+1

𝑔
(𝑢)]
𝛼
𝑘+1

= [𝑓
𝑔
𝑓
𝑘

𝑔
(𝑢)]
𝛼
𝑘+1

= 𝑓([𝑓
𝑘

𝑔
(𝑢)]
𝑔

𝛼
𝑘+1

) = 𝑓 ([𝑓
𝑘

𝑔
(𝑢)]
𝛼
𝑘+2

)

= 𝑓 (𝑓
𝑘

([𝑢]
𝛼
2𝑘+2

)) = 𝑓
𝑘+1

([𝑢]
𝛼
2(𝑘+1)

) .

(12)

On the other hand, 𝑓
𝑘+1

([𝑢]
𝛼
2(𝑘+1)

) = 𝑓
𝑘+1

([𝑢]
𝑔

𝛼
2(𝑘+1)−1

) =

[
̂
𝑓𝑘+1
𝑔

(𝑢)]
𝛼
2𝑘+1

.
This completes the proof.

Remark 8. The proof of Proposition 7 can also be done as
follows.

Due to Lemmas 3 and 4, we have that

[𝑓
𝑛

𝑔
(𝑢)]
𝛼
𝑛

= [𝑓
𝑔
𝑓
𝑛−1

𝑔
(𝑢)]
𝛼
𝑛

= 𝑓([𝑓
𝑛−1

𝑔
(𝑢)]
𝑔

𝛼
𝑛

) = 𝑓 ([𝑓
𝑛−1

𝑔
(𝑢)]
𝛼
𝑛+1

)

= 𝑓 ([𝑓
𝑔
𝑓
𝑛−2

𝑔
(𝑢)]
𝛼
𝑛+1

) = 𝑓
2

([𝑓
𝑛−2

𝑔
(𝑢)]
𝑔

𝛼
𝑛+1

)
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= 𝑓
2

([𝑓
𝑛−2

𝑔
(𝑢)]
𝛼
𝑛+2

)

...
= 𝑓
𝑛

([𝑢]
𝑔

𝛼
2𝑛−1

) = 𝑓
𝑛

([𝑢]
𝛼
2𝑛

) .

(13)

On the other hand, by Lemma 3 again, we obtain
𝑓
𝑛

([𝑢]
𝑔

𝛼
2𝑛−1

) = [𝑓𝑛
𝑔
(𝑢)]
𝛼
2𝑛−1

, and, consequently, [𝑓𝑛
𝑔
(𝑢)]
𝛼
𝑛

=

[𝑓𝑛
𝑔
(𝑢)]
𝛼
2𝑛−1

= 𝑓
𝑛

([𝑢]
𝛼
2𝑛

) holds.

Theorem 9. Let 𝑢
0
be a transitive point of (F(𝑋), 𝑓

𝑔
). Then,

every 𝑥 ∈ [𝑢
0
]
𝑔

𝛼
is a transitive point of (𝑋, 𝑓) for 𝛼 ∈ (0, 1].

Proof. Since 𝑢
0
is a transitive point of (F(𝑋), 𝑓

𝑔
), there exists

𝑘 ∈ N such that 𝑑
∞

(𝑓
𝑘

𝑔
(𝑢
0
), V) < 𝜀 for any ] ∈ F(𝑋) and 𝜀 > 0.

By using Proposition 7 and Lemma 3, we obtain

𝑑
∞

(𝑓
𝑘

𝑔
(𝑢
0
) , V) = sup

𝛽∈[0,1]

𝐻([𝑓
𝑘

𝑔
(𝑢
0
)]
𝛽

, []]
𝛽
)

= sup
𝛼,𝛽∈(0,1]

𝐻([
̂
𝑓𝑘
𝑔
(𝑢
0
)]
𝛼

, []]
𝛽
)

= sup
𝛼,𝛽∈(0,1]

𝐻(𝑓
𝑘

[𝑢
0
]
𝑔

𝛼
, []]
𝛽
) < 𝜀,

(14)

for some 𝛼, 𝛽 ∈ [0, 1]. Hence, for each 𝑦 ∈ []]
𝛽
, there exists

𝑥 ∈ [𝑢
0
]
𝑔

𝛼
such that 𝑑(𝑥, 𝑦) < 𝜀, which means that every 𝑥 ∈

[𝑢
0
]
𝑔

𝛼
is a transitive point of (𝑋, 𝑓).

Theorem 10. If 𝐿(𝑢
0
) = F(𝑋), then there exists 𝑥

0
∈ [𝑢
0
]
𝑔

𝛼

such that 𝐿(𝑥
0
) = 𝑋.

Proof. It follows directly fromTheorem 9.

The following example shows that, in general, the con-
verse of Theorem 10 is not true.

Example 11 (irrational rotation of circle). Let 𝜆 be an irra-
tional number and 𝑅

𝜆
: 𝑆
1

→ 𝑆
1 is defined by 𝑅

𝜆
(𝑒
𝑖𝜃

) =

𝑒
𝑖(𝜃+2𝜋𝜆). It is well known that, for each 𝑧 ∈ 𝑆

1, the orbit of 𝑧
is dense in 𝑆

1 and, consequently, 𝐿(𝑧) = 𝑆
1. Nevertheless, it

is not necessary for some ] ∈ F(𝑆1) to exist such that 𝐿(]) =

F(𝑆1). In fact, assume that 𝑢 ∈ F(𝑆1) and diam([𝑢]
𝑔

0
) = 1.

Given that 0 < 𝜀 < 1/2, let 𝑈 = 𝐵(1̂, 𝜀/2) and 𝑉 = 𝐵(𝑢, 𝜀/2),
and by Proposition 5, we obtain

𝜔 ∈ 𝑈 = 𝐵(1̂,
𝜀

2
) 󳨐⇒ diam ([𝜔]

𝑔

0
) = diam ([𝜔]

0
) ≤

𝜀

2
,

] ∈ 𝑉 = 𝐵(𝑢,
𝜀

2
) 󳨐⇒ diam ([]]𝑔

0
) = diam ([]]

0
) ≥ 1 − 𝜀,

(15)

since

diam ([𝑅̂
𝑛

𝜆
𝑔

(V)]
0

) = diam (𝑅
𝑛

𝜆
[V]
0
) ≥ 1 − 𝜀 (16)

for 𝑛 ∈ N. Hence, 𝑈 ∩ 𝑅̂
𝑛

𝜆
𝑔

(𝑉) = 0, which means that there
exists no ] ∈ 𝑉 such that 𝑅̂𝑛

𝜆
𝑔

(]) = 𝜔 for some 𝜔 ∈ F(𝑋), and,
consequently, 𝐿(]) ̸= F(𝑋).

Theorem 12. Let 𝑓 : 𝑋 → 𝑋 be continuous, let 𝑓
𝑔
be the 𝑔-

extension of 𝑓, and let 𝑢
0
∈ F(𝑋). If the orbit of 𝑢

0
is unstable

in F(𝑋), then there exists 𝑥
0
∈ [𝑢
0
]
𝑔

𝛽
such that the orbit of 𝑥

0
is

unstable in 𝑋, where 𝛽 ∈ [0, 1].

Proof. Let the assumptions be satisfied. Then, there exists 𝛿
𝑢
0

such that for every 𝜖 > 0 we can find ] ∈ F(𝑋) and 𝑘 ∈ N

satisfying ] ∈ 𝐵(𝑢
0
, 𝜀) and

𝑑
∞

(𝑓
𝑘

𝑔
(𝑢
0
) , 𝑓
𝑘

𝑔
(]))

= sup
𝛼∈[0,1]

𝐻([𝑓
𝑘

𝑔
(𝑢
0
)]
𝛼

, [𝑓
𝑘

𝑔
(])]
𝛼

)

= sup
𝛽,𝛾∈[0,1]

𝐻([
̂
𝑓𝑘
𝑔
(𝑢
0
)]
𝛽

, [
̂
𝑓𝑘
𝑔
(])]
𝛾

)

= sup
𝛽,𝛾∈[0,1]

𝐻(𝑓
𝑘

[𝑢
0
]
𝑔

𝛽
, 𝑓
𝑘

[]]𝑔
𝛾
) > 𝛿
𝑢
0

.

(17)

Thus, there exist 𝑥
0

∈ [𝑢
0
]
𝑔

𝛽
and 𝑦

0
∈ []]𝑔
𝛾
such that 𝑑(𝑥

0
,

𝑦
0
) > 𝛿

𝑢
0

. Since ] ∈ 𝐵(𝑢
0
, 𝜀), we have 𝑑(𝑥

0
, 𝑦
0
) < 𝜀. This

proves that there exists 𝑥
0
∈ [𝑢
0
]
𝑔

𝛽
such that the orbit of 𝑥

0
is

unstable in 𝑋 with instable constant 𝛿
𝑢
0

.

Example 13. Consider the foregoing example (Example 11);
because 𝑅

𝜆
is isometric, it does not exhibit sensitive depen-

dence on initial conditions and hence the orbit of each 𝑧 ∈ 𝑆
1

is stable, which implies that, by Theorem 12, there exists no
orbit of 𝑢 ∈ F(𝑆1) that is unstable.

By combining Theorems 9, 10, and 12, we obtain the fol-
lowing theorem.

Theorem 14. If 𝑓
𝑔
is 𝑀-chaotic, then 𝑓 is 𝑀-chaotic.

We will need some notions from Denjoy map [13]. Recall
that the circle 𝑆1 can be considered as the quotient spaceR/Z,
where R and Z are the sets of real numbers and integers,
respectively.The irrational rotation of the circle𝑅

𝜆
: 𝑆
1

→ 𝑆
1

is then given by

𝑅
𝜆
(𝑥) = 𝑥 + 𝜆 (mod1) , (18)

where 𝜆 is irrational. Recall that a Denjoy map can be con-
structed as follows. Take any point 𝑥

0
∈ 𝑆
1. We cut out each

point 𝑅
𝑛

𝜆
(𝑥
0
) on the orbit of 𝑥

0
and replace it with a small

interval 𝐼
𝑛
. For 𝑛 ∈ N,

(a) L(𝐼
0
) = 1/4,L(𝐼

𝑛+1
) < L(𝐼

𝑛
),L(𝐼

𝑛
) = L(𝐼

−𝑛
), and

∑
𝑛∈Z L(𝐼

𝑛
) = 1, where L(𝐼

𝑛
) denotes the length of

the interval 𝐼
𝑛
;

(b) lim
𝑛→∞

(L(𝐼
𝑛+1

)/L(𝐼
𝑛
)) = 1.

Consequently, a new circle 𝑆
∗ has been constructed. The

Denjoy homeomorphism 𝐷
𝜆

: 𝑆
∗

→ 𝑆
∗ is an orientation

preserving homeomorphism of 𝑆∗. There exists a Cantor set
𝐶
𝜆

⊂ 𝑆
∗ on which 𝐷

𝜆
acts minimally. It is known that there

exists a continuous surjection ℎ
𝜆

: 𝑆
∗

→ 𝑆
1 that semicon-

jugates𝐷
𝜆
with 𝑅

𝜆
. In [30], the authors show that the system

(K(𝐶
𝜆
), 𝐷
𝜆
) is not sensitive.
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Proposition 15. Let 𝑥 ∈ 𝐶
𝜆
; then the orbit of 𝑥 is unstable in

(𝐶
𝜆
, 𝐷
𝜆
) with the constant 1/4.

Proof. Suppose that 𝑦 ∈ 𝐵(𝑥, 𝜀) and ℎ
𝜆
(𝑥) ̸= ℎ

𝜆
(𝑦) for any

𝜀 > 0. Since the orbit of 𝑥
0
is dense in 𝑆

1, there exist some
𝑘 ∈ N such that 𝑅

𝑘

−𝜆
(𝑥
0
) ∈ [ℎ

𝜆
(𝑥), ℎ
𝜆
(𝑦)], where [ℎ

𝜆
(𝑥),

ℎ
𝜆
(𝑦)] is the closed arc in 𝑆

1. Thus, we have 𝑥
0
∈ 𝑅
𝑘

𝜆
([ℎ
𝜆
(𝑥),

ℎ
𝜆
(𝑦)]). Consequently, due to the construction of Denjoy

map, we obtain 𝐼
0

⊂ [𝐷
𝑘

𝜆
(𝑥), 𝐷

𝑘

𝜆
(𝑦)], which means that

𝑑(𝐷
𝑘

𝜆
(𝑥), 𝐷

𝑘

𝜆
(𝑦)) > 1/4.

The following proposition shows that the instability of the
orbit in (𝐶

𝜆

, 𝐷
𝜆
) cannot be inherited by its 𝑔-fuzzification.

More specifically, there exist points arbitrarily close to 𝑢 ∈

F(𝐶
𝜆
)which eventually also close to 𝑢 under iteration of𝐷

𝜆𝑔
,

although there exist some 𝑥 ∈ [𝑢]
0
such that the orbits of

these points are unstable in (𝐶
𝜆

, 𝐷
𝜆
). It should be mentioned

that our approach was inspired by the idea in [8] where a
continuous map 𝑖

𝜆
was defined.

Define 𝑖
𝜆

: K(𝐶
𝜆
) → F(𝐶

𝜆
) by 𝑖
𝜆
(𝐾) = 𝜆𝜒

𝐾
for any

𝐾 ∈ K(𝐶
𝜆
) and any 𝜆 ∈ (0, 1], where 𝜒

𝐾
is the characteristic

function of𝐾 (that is to say,𝜒
𝐾
(𝑥) = 1 if 𝑥 ∈ 𝐾 and𝜒

𝐾
(𝑥) = 0

if 𝑥 ∉ 𝐾). Hence, 𝑖
𝜆
∘𝐷
𝜆
= 𝐷
𝜆𝑔

∘𝑖
𝜆
. Note that 𝑖

𝜆
is continuous.

Proposition 16. Let 𝑢 ∈ F(𝐶
𝜆
); then there exist some ] ∈

F(𝐶
𝜆
) and 𝑛 > 0 such that 𝑑

∞
(𝐷
𝜆

𝑛

𝑔
(𝑢), 𝐷

𝜆

𝑛

𝑔
(V)) < 𝜀.

Proof. Since (K(𝐶
𝜆
), 𝐷
𝜆
) is not sensitive, for 𝜀 > 0 and 𝛿 > 0,

there exist 𝑀 ∈ K(𝐶
𝜆
) and 𝐵(𝑀, 𝛿) such that, for all 𝑁 ∈

𝐵(𝑀, 𝛿),

𝐻(𝐷
𝑛

𝜆
(𝑀) ,𝐷

𝑛

𝜆
(𝑁)) < 𝜀. (19)

Suppose that 𝑢 ∈ 𝑒(𝑀) (recall that 𝑒(𝑀) = {𝑢 ∈ F(𝐶
𝜆
) |

[𝑢]
0
⊆ 𝑀}), and by continuity of 𝑖

𝜆
and (19), we have

𝐻(𝐷
𝑛

𝜆
([𝑢]
0
) , 𝐷
𝑛

𝜆
(𝑁)) < 𝜀

󳨐⇒ 𝐻(𝑖
𝜆
∘ 𝐷
𝑛

𝜆
([𝑢]
0
) , 𝑖
𝜆
∘ 𝐷
𝑛

𝜆
(𝑁)) < 𝜀

󳨐⇒ 𝐻(𝐷
𝜆

𝑛

𝑔
∘ 𝑖
𝜆
([𝑢]
0
) , 𝐷
𝜆

𝑛

𝑔
∘ 𝑖
𝜆
(𝑁))

= 𝑑
∞

(𝐷
𝜆

𝑛

𝑔
(𝑢) , 𝐷

𝜆

𝑛

𝑔
(])) < 𝜀.

(20)

Without loss of generality, assume that ] = 𝑖
𝜆
(𝑁) ∈

F(𝐶
𝜆
). This completes the proof.

Remark 17. Theorem 9 together with Theorem 10 shows that
𝑓
𝑔

𝑀-chaotic implies 𝑓 𝑀-chaotic, but generally speaking,
the converse is not true, which has been discussed in
Example 11 and Proposition 16.

4. Conclusions and Discussions

In this present investigation, we discuss relations between
Martelli chaotic properties of the original and 𝑔-fuzzified
dynamical systems. More specifically, we study stability of
the orbits and transitivity and present several examples to

illustrate the relations between two dynamical systems. We
show that the dynamical properties of the original system and
its fuzzy extension mutually inherit some global characteris-
tics. The following main results are obtained.

(a) If 𝐿(𝑢
0
) = F(𝑋), then there exists 𝑥

0
∈ [𝑢
0
]
𝑔

𝛼
such that

𝐿(𝑥
0
) = 𝑋 (Theorem 10).

(b) The instability of orb(𝑢, 𝑓
𝑔
) implies the instability of

orb(𝑥, 𝑓), where 𝑢 ∈ F(𝑋), 𝑥 ∈ [𝑢]
𝑔

𝛽
, and 𝛽 ∈ [0, 1]

(Theorem 12).
(c) 𝑓
𝑔

𝑀-chaotic implies 𝑓 𝑀-chaotic (Theorem 14).

(d) 𝑓 𝑀-chaotic does not imply 𝑓
𝑔

𝑀-chaotic (Example
11 and Proposition 16).

It is worth noting that any 𝑔-fuzzification is connected to
a crisp discrete dynamical system in two different ways [19].
One way is to connect two systems via 𝛼-cut, and another
approach is to consider𝑔-fuzzified discrete dynamical system
as a crisp system that is induced by a certain productmap.We
develop, in this present paper, the first method. It would be
interesting to use the second approach to study the relations
between dynamical properties of the original and 𝑔-fuzzified
dynamical systems, and this will be one aspect of our future
works.
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