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Thiswork addresses the stability study for stochastic cellular neural networkswith time-varying delays. By utilizing the new research
technique of the fixed point theory, we find some new and concise sufficient conditions ensuring the existence and uniqueness as
well as mean-square global exponential stability of the solution. The presented algebraic stability criteria are easily checked and
do not require the differentiability of delays. The paper is finally ended with an example to show the effectiveness of the obtained
results.

1. Introduction

Cellular neural networks (CNNs), firstly proposed by Chua
andYang in 1988 [1, 2], have become a research focus owing to
their numerous successful applications in various fields such
as optimization, linear and nonlinear programming, asso-
ciative memory, pattern recognition, and computer vision.
Taking into account the finite switching speed of amplifiers in
the implementation of neural networks, we see that the time
delays are inevitable and therefore a new important model,
namely, delayed cellular neural networks (DCNNs), is put
forward.

On the other hand, it is noteworthy that, besides delay
effects, stochastic and impulsive as well as diffusion effects
are also likely to exist in the neural networks. Up to now, there
have been amass of works [3–12] on the dynamic behaviors of
complex CNNs such as impulsive delayed reaction-diffusion
CNNs and stochastic delayed reaction-diffusion CNNs.

Referring to the current publications of complex CNNs,
we note that Lyapunov theory is always the primary method
for the stability analysis. However the unavoidable reality
is that there also exist lots of difficulties in the application
of corresponding results to specific problems. So it does
seem that some new methods are needed to resolve those
difficulties.

Encouragingly, the fixed point theory is successfully ap-
plied by Burton and other authors to investigate the stability
of deterministic systems, followed by some valid conclusions
presented; for example, see the monograph [13] and the
papers [14–25]. Furthermore, this new idea is developed to
discuss the stability of stochastic (delayed) differential equa-
tions, turning out to be effective for the stability analysis of
dynamical systemswith delays and stochastic effects; see [26–
32]. Specifically, in [27–29], Luo used the fixed point theory to
study the exponential stability of mild solutions for stochastic
partial differential equations with bounded delays and with
infinite delays. In [30, 31, 33–35], Sakthivel et al. used the
fixed point theory to investigate the asymptotic stability in pth
moment of mild solutions to nonlinear impulsive stochastic
partial differential equations with bounded delays and with
infinite delays. In [32], Luo used the fixed point theory to
study the exponential stability of stochastic Volterra-Levin
equations.

Themotivation of this paper is discussing the feasibility of
using the fixed point theory to tackle the stability research of
complex CNNs and thereupon enlarging the applications of
the fixed point theory as well as enriching the stability theory
of complex CNNs. In detail, via Banach contraction mapping
principle, studied in this paper is the mean-square global
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exponential stability of stochastic delayed CNNs. Remark-
ably, Banach contraction mapping principle is far different
from Lyapunov method. By establishing a new inequality, we
first construct a proper Banach space and thereby investigate,
in mean-square sense, the existence and uniqueness as well
as global exponential stability of the solution simultaneously.
The obtained results show that, in regard to the stability
research of complex CNNs, the fixed point theory does
work and has its own advantage; namely, it works with no
need for Lyapunov functions. Some algebraic stability criteria
are finally presented, which are easily checked and do not
require the differentiability of delays, let alone the monotone
decreasing behavior of delays.

2. Preliminaries

Let {Ω,F, 𝑃} be a complete probability space equipped with
some filtration {F

𝑡
}
𝑡≥0

satisfying the usual conditions; that
is, the filtration is right continuous and F

0
contains all 𝑃-

null sets. Let {𝜔(𝑡), 𝑡 ≥ 0} denote a standard Brownian
motion defined on {Ω,F, 𝑃}.𝑅𝑛 stands for the 𝑛-dimensional
Euclidean space and ‖ ⋅ ‖ represents the Euclidean norm.
N ≜ {1, 2, . . . , 𝑛}. 𝑅

+
= [0,∞). 𝐶(𝑋, 𝑌) corresponds to the

space of continuous mappings from the topological space 𝑋
to the topological space 𝑌.

Consider the following stochastic cellular neural network
with time-varying delays:

𝑑𝑥
𝑖
(𝑡)

=
{

{

{

−𝑎
𝑖
𝑥
𝑖
(𝑡)+

𝑛

∑
𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑡))+

𝑛

∑
𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝑡 − 𝜏
𝑗
(𝑡)))

}

}

}

𝑑𝑡

+

𝑛

∑
𝑗=1

𝜎
𝑗
(𝑡, 𝑥
𝑗
(𝑡) , 𝑥
𝑗
(𝑡 − 𝜏
𝑗
(𝑡))) 𝑑𝜔 (𝑡) , 𝑡 ≥ 0

(1)

𝑥
𝑖
(𝑠) = 𝜑

𝑖
(𝑠) , −𝜏 ≤ 𝑠 ≤ 0, (2)

where 𝑖 ∈N and 𝑛 is the number of the neurons in the neural
network. 𝑥

𝑖
(𝑡) corresponds to the state of the 𝑖th neuron

at time 𝑡. 𝑓
𝑗
(⋅), 𝑔
𝑗
(⋅) ∈ 𝐶(𝑅, 𝑅); moreover, 𝑓

𝑗
(𝑥
𝑗
(𝑡)) is the

activation function of the 𝑗th neuron at time 𝑡 and 𝑔
𝑗
(𝑥
𝑗
(𝑡 −

𝜏
𝑗
(𝑡))) is the activation function of the 𝑗th neuron at time
𝑡 − 𝜏
𝑗
(𝑡). The constant 𝑏

𝑖𝑗
represents the connection weight

of the 𝑗th neuron on the 𝑖th neuron at time 𝑡 and the constant
𝑎
𝑖
> 0 represents the rate with which the 𝑖th neuron will reset

its potential to the resting state when disconnected from the
network and external inputs. The constant 𝑐

𝑖𝑗
represents the

connection strength of the 𝑗th neuron on the 𝑖th neuron at
time 𝑡 − 𝜏

𝑗
(𝑡), where 𝜏

𝑗
(𝑡) corresponds to the transmission

delay along the axonof the 𝑗th neuron and satisfies 0 ≤ 𝜏
𝑗
(𝑡) ≤

𝜏. 𝜎
𝑗
(𝑡, 𝑥
𝑗
(𝑡), 𝑥
𝑗
(𝑡 −𝜏
𝑗
(𝑡))) ∈ 𝐶(𝑅

+
×𝑅×𝑅, 𝑅) denotes the dif-

fusion coefficient. 𝜑(𝑠) = (𝜑
1
(𝑠), . . . , 𝜑

𝑛
(𝑠))
𝑇
∈ 𝑅
𝑛 and 𝜑

𝑖
(𝑠) ∈

𝐶([−𝜏, 0], 𝑅).
Throughout this paper, we always assume that 𝑓

𝑗
(0) =

𝑔
𝑗
(0) = 𝜎

𝑗
(𝑡, 0, 0) = 0 (𝑗 ∈ N). Denote by x(𝑡) ≜ x(𝑡; 𝑠, 𝜑) =

(𝑥
1
(𝑡; 𝑠, 𝜑

1
), . . . , 𝑥

𝑛
(𝑡; 𝑠, 𝜑

𝑛
))
𝑇
∈ 𝑅
𝑛 the solution of (1) with the

initial condition (2).

Definition 1. Equation (1) is said to be globally exponentially
stable in mean square if, for any 𝜑(𝑠) ∈ 𝐶([−𝜏, 0], 𝑅𝑛), there
exists a pair of positive constants 𝜆 and𝑀 such that

E {
󵄩󵄩󵄩󵄩x (𝑡; 𝑠, 𝜑)

󵄩󵄩󵄩󵄩
2

} ≤ 𝑀𝑒
−𝜆𝑡
, ∀𝑡 ≥ 0. (3)

Lemma 2. Assume that q(𝑡), h(𝑡) ∈ U2([−𝜏,∞), 𝑅𝑛), where
U2([−𝜏,∞), 𝑅𝑛) denotes the space consisting of functions𝜒(𝑡) :
[−𝜏,∞) → 𝑅

𝑛 satisfying E{∫𝑡
0
‖𝜒(𝑠)‖

2
𝑑𝑠} < ∞; then

𝑛

∑
𝑖=1

√E{sup
𝑡≥−𝜏

󵄨󵄨󵄨󵄨𝑞𝑖 (𝑡) + ℎ𝑖 (𝑡)
󵄨󵄨󵄨󵄨
2

}

≤

𝑛

∑
𝑖=1

√E{sup
𝑡≥−𝜏

𝑞2
𝑖
(𝑡)} +

𝑛

∑
𝑖=1

√E{sup
𝑡≥−𝜏

ℎ2
𝑖
(𝑡)}

(4)

holds for q(𝑡) = (𝑞
1
(𝑡), . . . , 𝑞

𝑛
(𝑡))
𝑇 and h(𝑡) = (ℎ

1
(𝑡), . . . ,

ℎ
𝑛
(𝑡))
𝑇.

Proof. As

{E(sup
𝑡≥−𝜏

(2
󵄨󵄨󵄨󵄨𝑞𝑖ℎ𝑖

󵄨󵄨󵄨󵄨))}

2

≤ 4E(sup
𝑡≥−𝜏

(𝑞
2

𝑖
ℎ
2

𝑖
))

≤ 4E(sup
𝑡≥−𝜏

(𝑞
2

𝑖
) sup
𝑡≥−𝜏

(ℎ
2

𝑖
))

= 4E(sup
𝑡≥−𝜏

(𝑞
2

𝑖
))(Esup

𝑡≥−𝜏

(ℎ
2

𝑖
)) ,

(5)

we derive E(sup
𝑡≥−𝜏
(2𝑞
𝑖
ℎ
𝑖
)) ≤ E(sup

𝑡≥−𝜏
(2|𝑞
𝑖
ℎ
𝑖
|)) ≤

2√E(sup
𝑡≥−𝜏
(𝑞2
𝑖
))√E(sup

𝑡≥−𝜏
(ℎ2
𝑖
)). Hence, it is easy to see

𝑛

∑
𝑖=1

√E{sup
𝑡≥−𝜏

[
󵄨󵄨󵄨󵄨𝑞𝑖 (𝑡) + ℎ𝑖 (𝑡)

󵄨󵄨󵄨󵄨
2

]}

≤

𝑛

∑
𝑖=1

√E{sup
𝑡≥−𝜏

[𝑞2
𝑖
(𝑡)]} +

𝑛

∑
𝑖=1

√E{sup
𝑡≥−𝜏

[ℎ2
𝑖
(𝑡)]}.

(6)

Lemma 3 (see [36]). Assume that 𝛼(𝑡) ∈ U2(𝑅
+
, 𝑅), where

U2(𝑅
+
, 𝑅) denotes the space consisting of functions 𝜒(𝑡) :

𝑅
+
→ 𝑅 satisfying E{∫𝑡

0
|𝜒(𝑠)|
2
𝑑𝑠} < ∞, 𝛽 ≥ 2; then

E{
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑡

0

𝛼 (𝑠) 𝑑𝜔 (𝑠)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛽

}

≤ [
𝛽 (𝛽 − 1)

2
]

𝛽/2

𝑡
((𝛽/2)−1)

∫
𝑡

0

E {|𝛼 (𝑠)|
𝛽
} 𝑑𝑠.

(7)

Remark 4. In Lemma 3, it is derived from letting 𝛽 = 2 that

E{
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑡

0

𝛼 (𝑠) 𝑑𝜔 (𝑠)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

} ≤ ∫
𝑡

0

E {|𝛼 (𝑠)|
2
} 𝑑𝑠. (8)
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The consideration of this paper is based on the following
fixed point theorem.

Theorem 5 (see [37]). Let Υ be a contraction operator on a
complete metric spaceΘ; then there exists a unique point 𝜁 ∈ Θ
for which Υ(𝜁) = 𝜁.

3. Main Results

In this section, we discuss, by means of the contraction
mapping principle stated in Theorem 5, the existence and
uniqueness as well as global exponential stability of the
solution to (1)-(2) in mean-square sense. Before proceeding,
we introduce some assumptions as follows.

(A1) There exist nonnegative constants 𝑙
𝑗
such that, for any

𝜂, 𝜐 ∈ 𝑅,

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗
(𝜂) − 𝑓

𝑗
(𝜐)
󵄨󵄨󵄨󵄨󵄨
≤ 𝑙
𝑗

󵄨󵄨󵄨󵄨𝜂 − 𝜐
󵄨󵄨󵄨󵄨 , 𝑗 ∈N. (9)

(A2) There exist nonnegative constants 𝑘
𝑗
such that, for any

𝜂, 𝜐 ∈ 𝑅,

󵄨󵄨󵄨󵄨󵄨
𝑔
𝑗
(𝜂) − 𝑔

𝑗
(𝜐)
󵄨󵄨󵄨󵄨󵄨
≤ 𝑘
𝑗

󵄨󵄨󵄨󵄨𝜂 − 𝜐
󵄨󵄨󵄨󵄨 , 𝑗 ∈N. (10)

(A3) There exist nonnegative constants 𝜉
𝑗
and 𝜁
𝑗
such that,

for any 𝜂
1
, 𝜂
2
, 𝜐
1
, 𝜐
2
∈ 𝑅,

󵄨󵄨󵄨󵄨󵄨
𝜎
𝑗
(𝑡, 𝜂
1
, 𝜐
1
) − 𝜎
𝑗
(𝑡, 𝜂
2
, 𝜐
2
)
󵄨󵄨󵄨󵄨󵄨
≤ 𝜉
𝑗

󵄨󵄨󵄨󵄨𝜂1 − 𝜂2
󵄨󵄨󵄨󵄨 + 𝜁𝑗

󵄨󵄨󵄨󵄨𝜐1 − 𝜐2
󵄨󵄨󵄨󵄨 ,

𝑗 ∈N.

(11)

LetH =H
1
× ⋅ ⋅ ⋅ ×H

𝑛
, and letH

𝑖
(𝑖 ∈ N) be the space

consisting ofF-adapted processes 𝜙
𝑖
(𝑡, 𝜔) : [−𝜏,∞) × Ω →

𝑅 which satisfy, for fixed 𝜔 ∈ Ω, the following:

(1) 𝜙
𝑖
(𝑡, 𝜔) is continuous in mean-square;

(2) 𝜙
𝑖
(𝑠, 𝜔) = 𝜑

𝑖
(𝑠) on 𝑠 ∈ [−𝜏, 0];

(3) lim
𝑡→∞

𝑒
𝛼𝑡E{𝜙2
𝑖
(𝑡, 𝜔)} = 0, where 𝛼 is a positive

constant satisfying 𝛼 < min
𝑖∈N{2𝑎𝑖};

here 𝜑
𝑖
(s) is defined as shown in (2). From

Lemma 2, we equip H with the norm ‖𝜙‖ =

∑
𝑛

𝑖=1
√E{sup

𝑡∈[−𝜏,∞)
𝜙2
𝑖
(𝑡)}, where 𝜙(𝑡) = (𝜙

1
(𝑡), . . . ,

𝜙
𝑛
(𝑡)) ∈ H; thereby H is also a complete metric

space.

Theorem 6. Assume that conditions (A1)–(A3) hold. If there
exist constants 0 < 𝜀, 𝜂 < 1 such that ∑𝑛

𝑖=1
√𝜆
𝑖
< 1, where

𝜆
𝑖
=

𝑛

𝑎2
𝑖
(1 − 𝜀) (1 − 𝜂)

max
𝑗∈N

{𝑏
2

𝑖𝑗
𝑙
2

𝑗
} +

𝑛

𝑎
𝑖
𝜀
max
𝑗∈N

{𝜉
2

𝑗
+ 𝜁
2

𝑗
}

+
𝑛

𝑎2
𝑖
(1 − 𝜀) 𝜂

max
𝑗∈N

{𝑐
2

𝑖𝑗
𝑘
2

𝑗
} ,

(12)

then (1) is globally exponentially stable in mean square.

Proof. By Ito formula, we compute the differential of 𝑒𝑎𝑖𝑡𝑥
𝑖
(𝑡)

along the solution of (1)-(2):

𝑑𝑒
𝑎𝑖𝑡𝑥
𝑖
(𝑡)

= 𝑒
𝑎𝑖𝑡𝑑𝑥
𝑖
(𝑡) + 𝑎

𝑖
𝑥
𝑖
(𝑡) 𝑒
𝑎𝑖𝑡𝑑𝑡

= 𝑒
𝑎𝑖𝑡
{

{

{

−𝑎
𝑖
𝑥
𝑖
(𝑡) +

𝑛

∑
𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑡))

+

𝑛

∑
𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝑡 − 𝜏
𝑗
(𝑡)))

}

}

}

𝑑𝑡

+ 𝑒
𝑎𝑖𝑡

𝑛

∑
𝑗=1

𝜎
𝑗
(𝑡, 𝑥
𝑗
(𝑡), 𝑥
𝑗
(𝑡 − 𝜏
𝑗
(𝑡))) 𝑑𝜔 (𝑡)+𝑎

𝑖
𝑥
𝑖
(𝑡) 𝑒
𝑎𝑖𝑡𝑑𝑡

= 𝑒
𝑎𝑖𝑡
{

{

{

𝑛

∑
𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑡)) +

𝑛

∑
𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝑡 − 𝜏
𝑗
(𝑡)))

}

}

}

𝑑𝑡

+ 𝑒
𝑎𝑖𝑡

𝑛

∑
𝑗=1

𝜎
𝑗
(𝑡, 𝑥
𝑗
(𝑡) , 𝑥
𝑗
(𝑡 − 𝜏
𝑗
(𝑡))) 𝑑𝜔 (𝑡) ,

𝑡 > 0, 𝑖 ∈N

(13)

which yields after integrating from 0 to 𝑡 > 0

𝑥
𝑖
(𝑡) = 𝜑

𝑖
(0) 𝑒
−𝑎𝑖𝑡

+ 𝑒
−𝑎𝑖𝑡 ∫
𝑡

0

𝑒
𝑎𝑖𝑠
{

{

{

𝑛

∑
𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑠))

+

𝑛

∑
𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝑠 − 𝜏

𝑗
(𝑠)))

}

}

}

𝑑𝑠

+ 𝑒
−𝑎𝑖𝑡 ∫
𝑡

0

𝑒
𝑎𝑖𝑠

𝑛

∑
𝑗=1

𝜎
𝑗
(𝑠, 𝑥
𝑗
(𝑠) , 𝑥
𝑗
(𝑠 − 𝜏

𝑗
(𝑠))) 𝑑𝜔 (𝑠) ,

𝑡 > 0, 𝑖 ∈N.

(14)

Note 𝑥
𝑖
(0) = 𝜑

𝑖
(0) in (14); hence we define the following

operator 𝜋 acting onH, for x(𝑡) = (𝑥
1
(𝑡), . . . , 𝑥

𝑛
(𝑡)) ∈H,

𝜋 (x) (𝑡) = (𝜋 (𝑥
1
) (𝑡) , . . . , 𝜋 (𝑥

𝑛
) (𝑡)) , (15)

where 𝜋(𝑥
𝑖
)(𝑡) : [−𝜏,∞) → 𝑅 obeys the following rules:

𝜋 (𝑥
𝑖
) (𝑡) = 𝜑

𝑖
(0) 𝑒
−𝑎𝑖𝑡

+ 𝑒
−𝑎𝑖𝑡 ∫
𝑡

0

𝑒
𝑎𝑖𝑠
{

{

{

𝑛

∑
𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑠))

+

𝑛

∑
𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝑠 − 𝜏

𝑗
(𝑠)))

}

}

}

𝑑𝑠

+ 𝑒
−𝑎𝑖𝑡∫
𝑡

0

𝑒
𝑎𝑖𝑠

𝑛

∑
𝑗=1

𝜎
𝑗
(𝑠, 𝑥
𝑗
(𝑠) , 𝑥
𝑗
(𝑠 − 𝜏

𝑗
(𝑠))) 𝑑𝜔 (𝑠)

(16)

on 𝑡 ≥ 0 and 𝜋(𝑥
𝑖
)(𝑠) = 𝜑

𝑖
(𝑠) on 𝑠 ∈ [−𝜏, 0], 𝑖 ∈N.
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Now we will, by applying the contraction mapping prin-
ciple, prove the existence and uniqueness as well as global
exponential stability of solution to (1)-(2) in mean-square
sense. The subsequent proof can be divided into two steps.

Step 1. We need to prove 𝜋(H) ⊂H. To testify 𝜋(H) ⊂H, it
is necessary to show the mean-square continuity of 𝜋(𝑥

𝑖
)(𝑡)

on [−𝜏,∞) and lim
𝑡→∞

𝑒
𝛼𝑡E{|𝜋(𝑥

𝑖
)(𝑡)|
2
} = 0 for 𝑖 ∈N. First,

in light of the expression of 𝜋(𝑥
𝑖
)(𝑡), we have, for a fixed time

𝑡
1
> 0,

𝜋 (𝑥
𝑖
) (𝑡
1
+ 𝑟) − 𝜋 (𝑥

𝑖
) (𝑡
1
) = 𝐼
1
+ 𝐼
2
+ 𝐼
3
+ 𝐼
4
, (17)

where

𝐼
1
= 𝜑
𝑖
(0) 𝑒
−𝑎𝑖(𝑡1+𝑟) − 𝜑

𝑖
(0) 𝑒
−𝑎𝑖𝑡1 ,

𝐼
2
= 𝑒
−𝑎𝑖(𝑡1+𝑟) ∫

𝑡1+𝑟

0

𝑒
𝑎𝑖𝑠

𝑛

∑
𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑠)) 𝑑𝑠

− 𝑒
−𝑎𝑖𝑡1 ∫

𝑡1

0

𝑒
𝑎𝑖𝑠

𝑛

∑
𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑠)) 𝑑𝑠,

𝐼
3
= 𝑒
−𝑎𝑖(𝑡1+𝑟) ∫

𝑡1+𝑟

0

𝑒
𝑎𝑖𝑠

𝑛

∑
𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝑠 − 𝜏

𝑗
(𝑠))) 𝑑𝑠

− 𝑒
−𝑎𝑖𝑡1 ∫

𝑡1

0

𝑒
𝑎𝑖𝑠

𝑛

∑
𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝑠 − 𝜏

𝑗
(𝑠))) 𝑑𝑠,

𝐼
4
= 𝑒
−𝑎𝑖(𝑡1+𝑟) ∫

𝑡1+𝑟

0

𝑒
𝑎𝑖𝑠

𝑛

∑
𝑗=1

𝜎
𝑗
(𝑠, 𝑥
𝑗
(𝑠) , 𝑥
𝑗
(𝑠 − 𝜏

𝑗
(𝑠))) 𝑑𝜔 (𝑠)

− 𝑒
−𝑎𝑖𝑡1 ∫

𝑡1

0

𝑒
𝑎𝑖𝑠

𝑛

∑
𝑗=1

𝜎
𝑗
(𝑠, 𝑥
𝑗
(𝑠) , 𝑥
𝑗
(𝑠 − 𝜏

𝑗
(𝑠))) 𝑑𝜔 (𝑠) .

(18)

It is obvious that E{|𝜋(𝑥
𝑖
)(𝑡
1
+ 𝑟)− 𝜋(𝑥

𝑖
)(𝑡
1
)|
2
} ≤ 4∑

4

𝑖=1
E{𝐼2
𝑖
}

holds. In addition, it is easy to see that lim
𝑟→0

E{𝐼
𝑖

2
} = 0 for

𝑖 = 1, 2, 3. Furthermore, by Lemma 3, we get

E {𝐼
2

4
}

≤ 2𝑒
−2𝑎𝑖(𝑡1+𝑟)

× ∫
𝑡1+𝑟

0

𝑒
2𝑎𝑖𝑠E[

[

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑
𝑗=1

𝜎
𝑗
(𝑠, 𝑥
𝑗
(𝑠) , 𝑥
𝑗
(𝑠 − 𝜏

𝑗
(𝑠)))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

]

]

𝑑𝑠

+ 2𝑒
−2𝑎𝑖𝑡1

× ∫
𝑡1

0

𝑒
2𝑎𝑖𝑠E

× [

[

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑
𝑗=1

𝜎
𝑗
(𝑠, 𝑥
𝑗
(𝑠) , 𝑥
𝑗
(𝑠 − 𝜏

𝑗
(𝑠)))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

]

]

𝑑𝑠 󳨀→ 0,

as 𝑟 󳨀→ 0.
(19)

Thus, we know lim
𝑟→0

E{|𝜋(𝑥
𝑖
)(𝑡
1
+ 𝑟) − 𝜋(𝑥

𝑖
)(𝑡
1
)|
2
} = 0 for

𝑖 ∈N, whichmeans𝜋(𝑥
𝑖
)(𝑡) is continuous inmean square on

(0,∞). Moreover, owing to 𝜑
𝑖
(𝑠) ∈ 𝐶([−𝜏, 0], 𝑅), we conclude

𝜋(𝑥
𝑖
)(𝑡) is indeed continuous in mean square on [−𝜏,∞) for

𝑖 ∈N.
Next, we will prove 𝑒𝛼𝑡E{|𝜋(𝑥

𝑖
)(𝑡)|
2
} → 0 as 𝑡 → ∞ for

𝑖 ∈N. It is derived from (A1) that

𝑃
1
= 𝑒
𝛼𝑡
E
{

{

{

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑒
−𝑎𝑖𝑡 ∫
𝑡

0

𝑒
𝑎𝑖𝑠

𝑛

∑
𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑠)) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

}

}

}

≤ (𝑒
−𝑎𝑖𝑠 ∫
𝑠

0

𝑒
𝑎𝑖V
𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(V))
󵄨󵄨󵄨󵄨󵄨
𝑑V)

2

≤ (𝑒
−𝑎𝑖𝑠 ∫
𝑠

0

𝑒
𝑎𝑖V
𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗
𝑙
𝑗
𝑥
𝑗
(V)
󵄨󵄨󵄨󵄨󵄨
𝑑V)

2

≤ (𝑒
−𝑎𝑖𝑠 ∫
𝑠

0

𝑒
𝑎𝑖V
𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗
𝑙
𝑗

󵄨󵄨󵄨󵄨󵄨
sup
V∈[0,𝑠]

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗
(V)
󵄨󵄨󵄨󵄨󵄨
𝑑V)

2

= (𝑒
−𝑎𝑖𝑠

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗
𝑙
𝑗

󵄨󵄨󵄨󵄨󵄨
sup
V∈[0,𝑠]

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗
(V)
󵄨󵄨󵄨󵄨󵄨
∫
𝑠

0

𝑒
𝑎𝑖V𝑑V)

2

≤ 𝑒
−2𝑎𝑖𝑠𝑛

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗
𝑙
𝑗

󵄨󵄨󵄨󵄨󵄨

2

sup
V∈[0,𝑠]

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗
(V)
󵄨󵄨󵄨󵄨󵄨

2 𝑒
2𝑎𝑖𝑠

𝑎2
𝑖

=
𝑛

𝑎2
𝑖

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗
𝑙
𝑗

󵄨󵄨󵄨󵄨󵄨

2

sup
V∈[0,𝑠]

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗
(V)
󵄨󵄨󵄨󵄨󵄨

2

.

(20)

So, sup
𝑠∈[−𝜏,𝑡]

𝑃
1
≤ (𝑛/𝑎

2

𝑖
) ∑
𝑛

𝑗=1
|𝑏
𝑖𝑗
𝑙
𝑗
|
2sup
𝑠∈[−𝜏,𝑡]

|𝑥
𝑗
(𝑠)|
2, which

leads to

𝑒
𝛼𝑡
E( sup
𝑠∈[−𝜏,𝑡]

𝑃
1
)

≤
𝑛

𝑎2
𝑖

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗
𝑙
𝑗

󵄨󵄨󵄨󵄨󵄨

2

𝑒
𝛼𝑡
E( sup
𝑠∈[−𝜏,𝑡]

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗
(𝑠)
󵄨󵄨󵄨󵄨󵄨

2

) 󳨀→ 0, as 𝑡 󳨀→ ∞.

(21)

In addition, from (A2), we deduce that

𝑃
2
≤ (𝑒
−𝑎𝑖𝑠 ∫
𝑠

0

𝑒
𝑎𝑖V
𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(V − 𝜏

𝑗
(V)))

󵄨󵄨󵄨󵄨󵄨
𝑑V)

2

≤ (𝑒
−𝑎𝑖𝑠 ∫
𝑠

0

𝑒
𝑎𝑖V
𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗
𝑘
𝑗
𝑥
𝑗
(V − 𝜏

𝑗
(V))
󵄨󵄨󵄨󵄨󵄨
𝑑V)

2

≤ (𝑒
−𝑎𝑖𝑠 ∫
𝑠

0

𝑒
𝑎𝑖V
𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗
𝑘
𝑗

󵄨󵄨󵄨󵄨󵄨
sup
𝑢∈[−𝜏,𝑠]

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗
(𝑢)
󵄨󵄨󵄨󵄨󵄨
𝑑V)

2
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= (𝑒
−𝑎𝑖𝑠

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗
𝑘
𝑗

󵄨󵄨󵄨󵄨󵄨
sup
𝑢∈[−𝜏,𝑠]

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗
(𝑢)
󵄨󵄨󵄨󵄨󵄨
∫
𝑠

0

𝑒
𝑎𝑖V𝑑V)

2

≤ 𝑛𝑒
−2𝑎𝑖𝑠

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗
𝑘
𝑗

󵄨󵄨󵄨󵄨󵄨

2

sup
𝑢∈[−𝜏,𝑠]

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗
(𝑢)
󵄨󵄨󵄨󵄨󵄨

2 𝑒
2𝑎𝑖𝑠

𝑎2
𝑖

=
𝑛

𝑎2
𝑖

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗
𝑘
𝑗

󵄨󵄨󵄨󵄨󵄨

2

sup
𝑢∈[−𝜏,𝑠]

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗
(𝑢)
󵄨󵄨󵄨󵄨󵄨

2

.

(22)

Therefore, sup
𝑠∈[−𝜏,𝑡]

𝑃
2
= (𝑛/𝑎

2

𝑖
)∑
𝑛

𝑗=1
|𝑐
𝑖𝑗
𝑘
𝑗
|
2sup
𝑠∈[−𝜏,𝑡]

|𝑥
𝑗
(𝑠)|
2,

which leads to

𝑒
𝛼𝑡
E( sup
𝑠∈[−𝜏,𝑡]

𝑃
2
)

≤
𝑛

𝑎2
𝑖

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗
𝑘
𝑗

󵄨󵄨󵄨󵄨󵄨

2

𝑒
𝛼𝑡
E( sup
𝑠∈[−𝜏,𝑡]

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗
(𝑠)
󵄨󵄨󵄨󵄨󵄨

2

) 󳨀→ 0, as 𝑡 󳨀→ ∞.

(23)

Moreover, from (A3) and Lemma 3, we get

𝑃
3
=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑒
−𝑎𝑖𝑠 ∫
𝑠

0

𝑒
𝑎𝑖V
𝑛

∑
𝑗=1

𝜎
𝑗
(V, 𝑥
𝑗
(V) , 𝑥

𝑗
(V − 𝜏

𝑗
(V))) 𝑑𝜔(V)2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

≤ 𝑒
−2𝑎𝑖𝑠 ∫

𝑠

0

𝑛𝑒
2𝑎𝑖V
𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝜎
𝑗
(V, 𝑥
𝑗
(V) , 𝑥

𝑗
(V − 𝜏

𝑗
(V)))

󵄨󵄨󵄨󵄨󵄨

2

𝑑V

≤ 𝑒
−2𝑎𝑖𝑠∫

𝑠

0

𝑛𝑒
2𝑎𝑖V

×

𝑛

∑
𝑗=1

(𝜉
𝑗

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗
(V)
󵄨󵄨󵄨󵄨󵄨
+𝜁
𝑗

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗
(V − 𝜏

𝑗
(V))
󵄨󵄨󵄨󵄨󵄨
)
2

𝑑V

≤ 𝑒
−2𝑎𝑖𝑠 ∫

𝑠

0

2𝑛𝑒
2𝑎𝑖V

×

𝑛

∑
𝑗=1

(𝜉
2

𝑗

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗
(V)
󵄨󵄨󵄨󵄨󵄨

2

+ 𝜁
2

𝑗

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗
(V − 𝜏

𝑗
(V))
󵄨󵄨󵄨󵄨󵄨

2

) 𝑑V

≤ 𝑒
−2𝑎𝑖𝑠 ∫

𝑠

0

2𝑛𝑒
2𝑎𝑖V
𝑛

∑
𝑗=1

(𝜉
2

𝑗
sup
V∈[0,𝑠]

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗
(V)
󵄨󵄨󵄨󵄨󵄨

2

)𝑑V

+ 𝑒
−2𝑎𝑖𝑠 ∫

𝑠

0

2𝑛𝑒
2𝑎𝑖V
𝑛

∑
𝑗=1

(𝜁
2

𝑗
sup
𝑢∈[−𝜏,𝑠]

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗
(𝑢)
󵄨󵄨󵄨󵄨󵄨

2

)𝑑V

= 𝑒
−2𝑎𝑖𝑠

𝑛

∑
𝑗=1

(𝜉
2

𝑗
sup
V∈[0,𝑠]

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗
(V)
󵄨󵄨󵄨󵄨󵄨

2

)∫
𝑠

0

2𝑛𝑒
2𝑎𝑖V𝑑V

+ 𝑒
−2𝑎𝑖𝑠

𝑛

∑
𝑗=1

(𝜁
2

𝑗
sup
𝑢∈[−𝜏,𝑠]

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗
(𝑢)
󵄨󵄨󵄨󵄨󵄨

2

)∫
𝑠

0

2𝑛𝑒
2𝑎𝑖V𝑑V

≤ 2𝑛𝑒
−2𝑎𝑖𝑠

𝑛

∑
𝑗=1

(𝜉
2

𝑗
sup
V∈[0,𝑠]

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗
(V)
󵄨󵄨󵄨󵄨󵄨

2

)
𝑒
2𝑎𝑖𝑠

2𝑎
𝑖

+ 2𝑛𝑒
−2𝑎𝑖𝑠

𝑛

∑
𝑗=1

(𝜁
2

𝑗
sup
𝑢∈[−𝜏,𝑠]

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗
(𝑢)
󵄨󵄨󵄨󵄨󵄨

2

)
𝑒
2𝑎𝑖𝑠

2𝑎
𝑖

=
𝑛

𝑎
𝑖

𝑛

∑
𝑗=1

(𝜉
2

𝑗
sup
V∈[0,𝑠]

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗
(V)
󵄨󵄨󵄨󵄨󵄨

2

)

+
𝑛

𝑎
𝑖

𝑛

∑
𝑗=1

(𝜁
2

𝑗
sup
𝑢∈[−𝜏,𝑠]

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗
(𝑢)
󵄨󵄨󵄨󵄨󵄨

2

) .

(24)

So,

𝑒
𝛼𝑡
E( sup
𝑠∈[−𝜏,𝑡]

𝑃
3
)

≤
𝑛

𝑎
𝑖

𝑛

∑
𝑗=1

((𝜉
2

𝑗
+ 𝜁
2

𝑗
) 𝑒
𝛼𝑡
E( sup
𝑠∈[−𝜏,𝑡]

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗
(𝑠)
󵄨󵄨󵄨󵄨󵄨

2

)) 󳨀→ 0,

as 𝑡 󳨀→ ∞.
(25)

It then follows from (21)–(25) that 𝑒𝛼𝑡E{|𝜋(𝑥
𝑖
)(𝑡)|
2
} → 0 as

𝑡 → ∞ for 𝑖 ∈N. We therefore conclude 𝜋(H) ⊂H.

Step 2. We need to prove 𝜋 is contractive. For x = (𝑥
1
(𝑡), . . . ,

𝑥
𝑛
(𝑡)) ∈H and y = (𝑦

1
(𝑡), . . . , 𝑦

𝑛
(𝑡)) ∈H, we know that, for

0 < 𝜀, 𝜂 < 1,

󵄨󵄨󵄨󵄨𝜋 (𝑥𝑖) (𝑡) − 𝜋 (𝑦𝑖) (𝑡)
󵄨󵄨󵄨󵄨
2

= (𝑄
1
+ 𝑄
2
+ 𝑄
3
)
2

≤
1

(1 − 𝜀) (1 − 𝜂)
𝑄
2

1
+

1

(1 − 𝜀) 𝜂
𝑄
2

2
+
1

𝜀
𝑄
2

3
,

(26)

where

𝑄
1
= 𝑒
−𝑎𝑖𝑡 ∫
𝑡

0

𝑒
𝑎𝑖𝑠

𝑛

∑
𝑗=1

{𝑏
𝑖𝑗
(𝑓
𝑗
(𝑥
𝑗
(𝑠)) − 𝑓

𝑗
(𝑦
𝑗
(𝑠)))} 𝑑𝑠,

𝑄
2
= 𝑒
−𝑎𝑖𝑡 ∫
𝑡

0

𝑒
𝑎𝑖𝑠

𝑛

∑
𝑗=1

{𝑐
𝑖𝑗
(𝑔
𝑗
(𝑥
𝑗
(𝑠 − 𝜏

𝑗
(𝑠)))

−𝑔
𝑗
(𝑦
𝑗
(𝑠 − 𝜏

𝑗
(𝑠))))} 𝑑𝑠,

𝑄
3
= 𝑒
−𝑎𝑖𝑡 ∫
𝑡

0

𝑒
𝑎𝑖𝑠

𝑛

∑
𝑗=1

{𝜎
𝑗
(𝑠, 𝑥
𝑗
(𝑠) , 𝑥
𝑗
(𝑠 − 𝜏

𝑗
(𝑠)))

−𝜎
𝑗
(𝑠, 𝑦
𝑗
(𝑠) , 𝑦
𝑗
(𝑠 − 𝜏

𝑗
(𝑠)))} 𝑑𝜔 (𝑠) .

(27)
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Note

𝑄
2

1
= 𝑒
−2𝑎𝑖𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫
𝑡

0

𝑒
𝑎𝑖𝑠

𝑛

∑
𝑗=1

{𝑏
𝑖𝑗
(𝑓
𝑗
(𝑥
𝑗
(𝑠)) − 𝑓

𝑗
(𝑦
𝑗
(𝑠)))} 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

≤ 𝑒
−2𝑎𝑖𝑡(∫

𝑡

0

𝑒
𝑎𝑖𝑠

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗
(𝑓
𝑗
(𝑥
𝑗
(𝑠)) − 𝑓

𝑗
(𝑦
𝑗
(𝑠)))

󵄨󵄨󵄨󵄨󵄨
𝑑𝑠)

2

≤ 𝑒
−2𝑎𝑖𝑡(∫

𝑡

0

𝑒
𝑎𝑖𝑠

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗
𝑙
𝑗

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗
(𝑠) − 𝑦

𝑗
(𝑠)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑠)

2

≤ 𝑒
−2𝑎𝑖𝑡((

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗
𝑙
𝑗

󵄨󵄨󵄨󵄨󵄨
sup
𝑠∈[0,𝑡]

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗
(𝑠) − 𝑦

𝑗
(𝑠)
󵄨󵄨󵄨󵄨󵄨
)∫
𝑡

0

𝑒
𝑎𝑖𝑠𝑑𝑠)

2

≤ 𝑒
−2𝑎𝑖𝑡((

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗
𝑙
𝑗

󵄨󵄨󵄨󵄨󵄨
sup
𝑠∈[0,𝑡]

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗
(𝑠) − 𝑦

𝑗
(𝑠)
󵄨󵄨󵄨󵄨󵄨
)
𝑒
𝑎𝑖𝑡

𝑎
𝑖

)

2

≤
𝑛

𝑎2
𝑖

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗
𝑙
𝑗

󵄨󵄨󵄨󵄨󵄨

2

sup
𝑠∈[0,𝑡]

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗
(𝑠) − 𝑦

𝑗
(𝑠)
󵄨󵄨󵄨󵄨󵄨

2

(28)

which implies

E{sup
𝑡≥−𝜏

𝑄
2

1
} ≤

𝑛

𝑎2
𝑖

(

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗
𝑙
𝑗

󵄨󵄨󵄨󵄨󵄨

2

E( sup
𝑠∈[−𝜏,∞]

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗
(𝑠) − 𝑦

𝑗
(𝑠)
󵄨󵄨󵄨󵄨󵄨

2

)) ,

𝑄
2

2
= 𝑒
−2𝑎𝑖𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫
𝑡

0

𝑒
𝑎𝑖𝑠

𝑛

∑
𝑗=1

[𝑐
𝑖𝑗
(𝑔
𝑗
(𝑥
𝑗
(𝑠 − 𝜏

𝑗
(𝑠)))

−𝑔
𝑗
(𝑦
𝑗
(𝑠 − 𝜏

𝑗
(𝑠))))] 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

≤ 𝑒
−2𝑎𝑖𝑡(∫

𝑡

0

𝑒
𝑎𝑖𝑠

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗
𝑘
𝑗

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗
(𝑠 − 𝜏

𝑗
(𝑠))

−𝑦
𝑗
(𝑠 − 𝜏

𝑗
(𝑠))
󵄨󵄨󵄨󵄨󵄨
𝑑𝑠)

2

≤ 𝑒
−2𝑎𝑖𝑡(

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗
𝑘
𝑗

󵄨󵄨󵄨󵄨󵄨
sup

V∈[−𝜏,𝑡]

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗
(V) − 𝑦

𝑗
(V)
󵄨󵄨󵄨󵄨󵄨
∫
𝑡

0

𝑒
𝑎𝑖𝑠𝑑𝑠)

2

≤
𝑛

𝑎2
𝑖

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗
𝑘
𝑗

󵄨󵄨󵄨󵄨󵄨

2

sup
V∈[−𝜏,𝑡]

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗
(V) − 𝑦

𝑗
(V)
󵄨󵄨󵄨󵄨󵄨

2

(29)

which implies

E{sup
𝑡≥−𝜏

𝑄
2

2
} ≤

𝑛

𝑎2
𝑖

(

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗
𝑘
𝑗

󵄨󵄨󵄨󵄨󵄨

2

E( sup
𝑠∈[−𝜏,∞]

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗
(𝑠) − 𝑦

𝑗
(𝑠)
󵄨󵄨󵄨󵄨󵄨

2

)) .

(30)

In addition,

𝑄
2

3
= 𝑒
−2𝑎𝑖𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫
𝑡

0

𝑒
𝑎𝑖𝑠

𝑛

∑
𝑗=1

{𝜎
𝑗
(𝑠, 𝑥
𝑗
(𝑠) , 𝑥
𝑗
(𝑠 − 𝜏

𝑗
(𝑠)))

−𝜎
𝑗
(𝑠, 𝑦
𝑗
(𝑠) , 𝑦
𝑗
(𝑠−𝜏
𝑗
(𝑠)))} 𝑑𝜔 (𝑠)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

≤ 𝑒
−2𝑎𝑖𝑡 ∫

𝑡

0

𝑒
2𝑎𝑖𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑
𝑗=1

{𝜎
𝑗
(𝑠, 𝑥
𝑗
(𝑠) , 𝑥
𝑗
(𝑠 − 𝜏

𝑗
(𝑠)))

−𝜎
𝑗
(𝑠, 𝑦
𝑗
(𝑠) , 𝑦
𝑗
(𝑠 − 𝜏

𝑗
(𝑠)))}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑠

≤ 𝑛𝑒
−2𝑎𝑖𝑡 ∫

𝑡

0

𝑒
2𝑎𝑖𝑠

𝑛

∑
𝑗=1

{
󵄨󵄨󵄨󵄨󵄨
𝜎
𝑗
(𝑠, 𝑥
𝑗
(𝑠) , 𝑥
𝑗
(𝑠 − 𝜏

𝑗
(𝑠)))

−𝜎
𝑗
(𝑠, 𝑦
𝑗
(𝑠) , 𝑦
𝑗
(𝑠 − 𝜏

𝑗
(𝑠)))

󵄨󵄨󵄨󵄨󵄨

2

} 𝑑𝑠

≤ 𝑛𝑒
−2𝑎𝑖𝑡 ∫

𝑡

0

𝑒
2𝑎𝑖𝑠

𝑛

∑
𝑗=1

{ [𝜉
𝑗

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗
(𝑠) − 𝑦

𝑗
(𝑠)
󵄨󵄨󵄨󵄨󵄨

+ 𝜁
𝑗

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗
(𝑠 − 𝜏

𝑗
(𝑠))

−𝑦
𝑗
(𝑠 − 𝜏

𝑗
(𝑠))
󵄨󵄨󵄨󵄨󵄨
]
2

} 𝑑𝑠

≤ 2𝑛𝑒
−2𝑎𝑖𝑡 ∫

𝑡

0

𝑒
2𝑎𝑖𝑠

𝑛

∑
𝑗=1

{𝜉
2

𝑗

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗
(𝑠) − 𝑦

𝑗
(𝑠)
󵄨󵄨󵄨󵄨󵄨

2

+ 𝜁
2

𝑗

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗
(𝑠 − 𝜏

𝑗
(𝑠))

−𝑦
𝑗
(𝑠 − 𝜏

𝑗
(𝑠))
󵄨󵄨󵄨󵄨󵄨

2

} 𝑑𝑠

≤ 2𝑛𝑒
−2𝑎𝑖𝑡 ∫

𝑡

0

𝑒
2𝑎𝑖𝑠

𝑛

∑
𝑗=1

{𝜉
2

𝑗
sup
𝑠∈[−𝜏,𝑡]

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗
(𝑠) − 𝑦

𝑗
(𝑠)
󵄨󵄨󵄨󵄨󵄨

2

+𝜁
2

𝑗
sup
𝑠∈[−𝜏,𝑡]

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗
(𝑠) − 𝑦

𝑗
(𝑠)
󵄨󵄨󵄨󵄨󵄨

2

}𝑑𝑠

= 2𝑛𝑒
−2𝑎𝑖𝑡

𝑛

∑
𝑗=1

{(𝜉
2

𝑗
+ 𝜁
2

𝑗
) sup
𝑠∈[−𝜏,𝑡]

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗
(𝑠) − 𝑦

𝑗
(𝑠)
󵄨󵄨󵄨󵄨󵄨

2

}

× ∫
𝑡

0

𝑒
2𝑎𝑖𝑠𝑑𝑠

≤
𝑛

𝑎
𝑖

𝑛

∑
𝑗=1

{(𝜉
2

𝑗
+ 𝜁
2

𝑗
) sup
𝑠∈[−𝜏,𝑡]

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗
(𝑠) − 𝑦

𝑗
(𝑠)
󵄨󵄨󵄨󵄨󵄨

2

}

(31)

which implies

E{sup
𝑡≥−𝜏

𝑄
2

3
}

≤
𝑛

𝑎
𝑖

(

𝑛

∑
𝑗=1

(𝜉
2

𝑗
+ 𝜁
2

𝑗
)E( sup
𝑠∈[−𝜏,∞]

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗
(𝑠) − 𝑦

𝑗
(𝑠)
󵄨󵄨󵄨󵄨󵄨

2

)) .

(32)
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Therefore,

E{sup
𝑡≥−𝜏

{
󵄨󵄨󵄨󵄨𝜋 (𝑥𝑖) (𝑡) − 𝜋 (𝑦𝑖) (𝑡)

󵄨󵄨󵄨󵄨
2

}}

≤
1

(1 − 𝜀) (1 − 𝜂)
E{sup
𝑡≥−𝜏

𝑄
2

1
} +

1

(1 − 𝜀) 𝜂
E{sup
𝑡≥−𝜏

𝑄
2

2
}

+
1

𝜀
E{sup
𝑡≥−𝜏

𝑄
2

3
}

≤
𝑛

𝑎2
𝑖
(1 − 𝜀) (1 − 𝜂)

× (

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗
𝑙
𝑗

󵄨󵄨󵄨󵄨󵄨

2

E( sup
𝑠∈[−𝜏,∞]

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗
(𝑠) − 𝑦

𝑗
(𝑠)
󵄨󵄨󵄨󵄨󵄨

2

))

+
𝑛

𝑎2
𝑖
(1 − 𝜀) 𝜂

(

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗
𝑘
𝑗

󵄨󵄨󵄨󵄨󵄨

2

E( sup
𝑠∈[−𝜏,∞]

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗
(𝑠) − 𝑦

𝑗
(𝑠)
󵄨󵄨󵄨󵄨󵄨

2

))

+
𝑛

𝜀𝑎
𝑖

(

𝑛

∑
𝑗=1

(𝜉
2

𝑗
+ 𝜁
2

𝑗
)E( sup
𝑠∈[−𝜏,∞]

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗
(𝑠) − 𝑦

𝑗
(𝑠)
󵄨󵄨󵄨󵄨󵄨

2

))

≤

{{

{{

{

𝑛

𝑎2
𝑖
(1 − 𝜀) (1 − 𝜂)

max
𝑗∈N

{𝑏
2

𝑖𝑗
𝑙
2

𝑗
} +

𝑛

𝑎
𝑖
𝜀
max
𝑗∈N

{𝜉
2

𝑗
+ 𝜁
2

𝑗
}

+
𝑛

𝑎2
𝑖
(1 − 𝜀) 𝜂

max
𝑗∈N

{𝑐
2

𝑖𝑗
𝑘
2

𝑗
}

}}

}}

}

×

𝑛

∑
𝑗=1

E( sup
𝑠∈[−𝜏,∞)

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗
(𝑠) − 𝑦

𝑗
(𝑠)
󵄨󵄨󵄨󵄨󵄨

2

)

≜ 𝜆
𝑖

𝑛

∑
𝑗=1

E( sup
𝑠∈[−𝜏,∞)

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗
(𝑠) − 𝑦

𝑗
(𝑠)
󵄨󵄨󵄨󵄨󵄨

2

) ,

(33)

which results in

𝑛

∑
𝑖=1

√E{ sup
𝑡∈[−𝜏,∞)

󵄨󵄨󵄨󵄨𝜋 (𝑥𝑖) (𝑡) − 𝜋 (𝑦𝑖) (𝑡)
󵄨󵄨󵄨󵄨
2

}

≤ (

𝑛

∑
𝑖=1

√𝜆
𝑖
)√

𝑛

∑
𝑗=1

E( sup
𝑠∈[−𝜏,∞)

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗
(𝑠) − 𝑦

𝑗
(𝑠)
󵄨󵄨󵄨󵄨󵄨

2

)

≤ (

𝑛

∑
𝑖=1

√𝜆
𝑖
)

𝑛

∑
𝑗=1

√E( sup
𝑠∈[−𝜏,∞)

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗
(𝑠) − 𝑦

𝑗
(𝑠)
󵄨󵄨󵄨󵄨󵄨

2

).

(34)

As ∑𝑛
𝑖=1
√𝜆
𝑖
< 1, 𝜋 is a contraction mapping and hence

there exists a unique fixed point x(⋅) of 𝜋 inH which means
x𝑇(⋅) is the solution of (1)-(2) and 𝑒𝛼𝑡E{‖x𝑇(⋅)‖2} → 0 as 𝑡 →
∞. This completes the proof.

Remark 7. The main idea of this proof is based on the
fixed point theory rather than Lyapunov method. By using
Banach contraction mapping principle with no need for
Lyapunov functions, we simultaneously explore the existence

and uniqueness as well as global exponential stability of
solution to (1)–(14) in mean-square sense, whereas Lyapunov
method fails to do this.

Lemma8. Assume that conditions (A1)–(A3) hold. If∑𝑛
𝑖=1
√𝜆
𝑖

< 1, where 𝜆
𝑖
= (3𝑛/𝑎

2

𝑖
)max
𝑗∈N{𝑏

2

𝑖𝑗
𝑙
2

𝑗
} + (3𝑛/𝑎

𝑖
)max
𝑗∈N{𝜉
2

𝑗
+

𝜁
2

𝑗
} + (3𝑛/𝑎

2

𝑖
)max
𝑗∈N{𝑐
2

𝑖𝑗
𝑘
2

𝑗
}, then (1) is globally exponentially

stable in mean square.

Proof. Lemma 8 is the direct corollary of Theorem 6 by
choosing 𝜀 = 1/3 and 𝜂 = 1/2.

Remark 9. The obtained algebraic stability criteria are easily
checked anddonot require even the differentiability of delays,
let alone the monotone decreasing behavior of delays which
is necessary in some relevant works.

4. Example

Consider the following two-dimensional stochastic cellular
neural network with time-varying delays:

𝑑𝑥
𝑖
(𝑡)

=
{

{

{

−𝑎
𝑖
𝑥
𝑖
(𝑡)+

2

∑
𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑡))+

2

∑
𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝑡 − 𝜏
𝑗
(𝑡)))

}

}

}

𝑑𝑡

+

2

∑
𝑗=1

𝜎
𝑗
(𝑡, 𝑥
𝑗
(𝑡) , 𝑥
𝑗
(𝑡 − 𝜏
𝑗
(𝑡))) 𝑑𝜔 (𝑡) , 𝑡 ≥ 0

(35)

with the initial conditions 𝑥
1
(𝑠) = cos(𝑠), 𝑥

2
(𝑠) = sin(𝑠) on

−𝜏 ≤ 𝑠 ≤ 0, where 𝑎
1
= 𝑎
2
= 9, 𝑏

𝑖𝑗
= 0, 𝑐

11
= 0, 𝑐

12
= −1/7,

𝑐
21
= 0, 𝑐

22
= 1/7, 𝑓

𝑗
(𝑠) = 𝑔

𝑗
(𝑠) = (|𝑠 + 1| − |𝑠 − 1|)/4,

𝜎
𝑗
(𝑡, 𝑥
𝑗
(𝑡), 𝑥
𝑗
(𝑡−𝜏
𝑗
(𝑡))) = arctan(0.5𝑥

𝑗
(𝑡−𝜏
𝑗
(𝑡))). It is easy to

see that 𝑘
𝑗
= 1/2 and 𝜁

𝑗
= 1/2. We compute, for 𝑖 = 1, 2,

𝜆
𝑖
=
3𝑛

𝑎
𝑖

max
𝑗∈N

{𝜁
2

𝑗
} +
3𝑛

𝑎2
𝑖

max
𝑗∈N

{𝑐
2

𝑖𝑗
𝑘
2

𝑗
} =

1

6
+

1

54 × 49
, (36)

which yields 2√𝜆
𝑖
< 1. FromLemma 8,we conclude this two-

dimensional stochastic cellular neural network with time-
varying delays is mean-square globally exponentially stable.

5. Conclusions

The main contribution of this work is confirming the fea-
sibility of utilizing the fixed point theory to address the
stability research of complex CNNs and thereby enlarging
the applications of the fixed point theory as well as enriching
the stability theory of complex CNNs. Specifically, by Banach
contraction mapping principle with no need for Lyapunov
functions, we complete the proof of the existence and unique-
ness as well as global exponential stability of solution to
stochastic delayed neural networks simultaneously, whereas
Lyapunov method cannot do this. The derived algebraic
stability criteria are novel and easily checked and do not
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require the differentiability of delays. Aswe all know, the fixed
point theory has various forms, for example, Krasnosleskii’s
fixed point theorem. Considering many mathematical mod-
els can be transformed into a linear part and other nonlinear
parts, our future work is trying to explore the application of
Krasnosleskii’s fixed point theorem to the stability analysis of
complex CNNs.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

Thiswork is supported by theNational Natural Science Foun-
dation of China under Grant nos. 71171116 and 60904028,
Humanities and Social Sciences Foundation of Ministry of
Education of China under Grant no. 09YJC630129, Project
Funded by the Priority Academic Program Development of
Jiangsu Higher Education Institutions, and “China’s Man-
ufacturing Industry Development Academy”—Key Philos-
ophy and Social Science Research Center of University in
Jiangsu Province.

References

[1] L.O.Chua andL. Yang, “Cellular neural networks: theory,” IEEE
Transactions on Circuits and Systems, vol. 35, no. 10, pp. 1257–
1272, 1988.

[2] L. O. Chua and L. Yang, “Cellular neural networks: applica-
tions,” IEEE Transactions on Circuits and Systems, vol. 35, no.
10, pp. 1273–1290, 1988.

[3] J. Cao, “New results concerning exponential stability and
periodic solutions of delayed cellular neural networks,” Physics
Letters A, vol. 307, no. 2-3, pp. 136–147, 2003.

[4] P. P. Civalleri, M. Gilli, and L. Pandolfi, “On stability of cellular
neural networks with delay,” IEEE Transactions on Circuits and
Systems I, vol. 40, no. 3, pp. 157–165, 1993.

[5] J. Cao, “A set of stability criteria for delayed cellular neural
networks,” IEEE Transactions on Circuits and Systems I, vol. 48,
no. 4, pp. 494–498, 2001.

[6] G. T. Stamov and I. M. Stamova, “Almost periodic solutions for
impulsive neural networks with delay,” Applied Mathematical
Modelling, vol. 31, no. 7, pp. 1263–1270, 2007.

[7] S. Ahmad and I. M. Stamova, “Global exponential stability for
impulsive cellular neural networks with time-varying delays,”
Nonlinear Analysis. Theory, Methods & Applications A, vol. 69,
no. 3, pp. 786–795, 2008.

[8] K. Li, X. Zhang, and Z. Li, “Global exponential stability
of impulsive cellular neural networks with time-varying and
distributed delay,” Chaos, Solitons and Fractals, vol. 41, no. 3, pp.
1427–1434, 2009.

[9] J. Qiu, “Exponential stability of impulsive neural networks with
time-varying delays and reaction-diffusion terms,” Neurocom-
puting, vol. 70, no. 4-6, pp. 1102–1108, 2007.

[10] X. Wang and D. Xu, “Global exponential stability of impulsive
fuzzy cellular neural networks with mixed delays and reaction-
diffusion terms,” Chaos, Solitons & Fractals, vol. 42, no. 5, pp.
2713–2721, 2009.

[11] Y. Zhang and Q. Luo, “Global exponential stability of impulsive
delayed reaction-diffusion neural networks via Hardy-Poincarè
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