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Tissue P system is a class of parallel and distributed model; a feature of traditional tissue P system is that the execution time of
certain biological processes is very sensitive to environmental factors that might be hard to control. In this work, we construct a
family of tissue P systems that works independently from the values associated with the execution times of the rules. Furthermore,
we present a time-free efficient solution to multidimensional 0-1 knapsack problem by timed recognizer tissue P systems.

1. Introduction

Membrane computing is one of the recent branches of natural
computing, which has developed rapidly (already in 2003, ISI
considered membrane computing as fast emerging research
area in computer science; see http://esi-topics.com/).The aim
is to abstract computing ideas (data structures, operations
with data, ways to control operations, computing models,
etc.) from the structure and the functioning of a single cell
and from complexes of cells, such as tissues and organs
including the brain. The various types of membrane systems
are known as P systems after Păun who first conceived the
model in 2000 [1] (the paper was circulated first as a Turku
Center for Computer Science (TUCS) Report 208, 1998).
There are three main classes of P systems investigated: cell-
like P systems [2, 3], tissue-like P systems [4–6], and neural-
like P systems [7, 8].Many variants of these systems have been
also investigated during the past years [9–14], and most of
them are proved to be computationally universal (equal in
power to Turingmachines) [8, 15–17]. A series of applications
of P systems, in biology [11, 18–22], economics [23], graphics
[24, 25], optimization [26–30], fault diagnosis [31], and so
forth, were reported. An overview of the field can be found
in [32, 33], with up-to-date information available at the
membrane computing website (http://ppage.psystems.eu/).

Tissue P systems are inspired from the cell intercommu-
nication in tissues [4], where the membranes are placed in
the nodes of a graph and all of the membranes are at the
same level. In such a framework, intercellular communication
is mainly through the protein channels established among
the membranes of the neighboring cells and the membrane
structure did not change along the computation. Tissue P
systems with cell division rules of the same form as in P
systems with activemembranes (without using polarizations)
were introduced by Păun et al. in 2008 [34]. This kind of
systems can generate exponential workspace in linear time
by trading space for time. Thus, it provides the possibility of
solving NP-hard problems in polynomial or even linear time.

A feature of traditional tissue P systems is that each rule
is executed in exactly one time unit, but this feature does not
have a counterpart in cell biology. In cell biology, the execu-
tion time of a reaction is difficult to know precisely and the
execution time of certain biological processes is very sensitive
to environmental factors thatmight be hard to control.There-
fore, there is a need to construct tissue P systems that work
independently from the values associated with the execution
time of the rules. Tissue P systems with a time mapping
(called timed tissue P systems) can specify the execution time
of each rule. A timed tissue P system that generates the same
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results, independently from the timemapping, is called time-
free tissue P system. The concept of time-free was first
introduced in [35]. In [36], a time-free solution to Hamilton
Path Problems using cell-like P systems was investigated. In
this work, we construct a family of time-free tissue P systems
to solve another well-known NP-complete problem: the mul-
tidimensional 0-1 knapsack problem.

This paper is organized as follows. Firstly, we recall the
definition of tissue P systems.Then,we introduce timed tissue
P systemswith cell division. Finally, a uniform time-free solu-
tion for multidimensional 0-1 knapsack problem is proposed,
and the informal verification of the solution is presented.

2. Tissue P Systems with Cell Division

It is useful for readers to have some familiarity with (basic
elements of) language theory, for example, from [37], as well
as basicmembrane computing [32]. Inwhat followswe briefly
recall some concepts of formal language theory used later in
this paper.

For an alphabet 𝑉, 𝑉∗ denotes the set of all strings
(ordered finite sequences) of symbols from 𝑉, while the
empty string is denoted by 𝜆, and the set of all nonempty
strings over 𝑉 is denoted by 𝑉+.

By N we denote the set of nonpositive integers. Let 𝑈 be
an arbitrary set. A multiset (over 𝑈) is a mapping 𝑀 : 𝑈 →

N. The multiplicity of 𝑎 in the multiset 𝑀 can be denoted
by 𝑀(𝑎) with any 𝑎 ∈ 𝑈. It can be expressed by the pair
(𝑎,𝑀(𝑎)). If the set 𝑈 = {𝑎

1
, 𝑎
2
, . . . , 𝑎

𝑛
} is finite, a multiset

𝑀 over 𝑈, represented by the set of mappings {(𝑎
1
,𝑀(𝑎
1
)),

(𝑎
2
,𝑀(𝑎
2
)), . . . , (𝑎

𝑛
,𝑀(𝑎
𝑛
))} can also be represented by a

string 𝑤 = 𝑎
𝑀(𝑎
1
)

1
𝑎
𝑀(𝑎
2
)

2
⋅ ⋅ ⋅ 𝑎
𝑀(𝑎
𝑛
)

𝑛
or by any of its permuta-

tions. We denote by 𝑀(𝑈) the set of all multisets over 𝑈. In
[34], Păun et al. presented a new model of tissue P systems
with cell division. The biological inspiration is that alive tis-
sues are not static network of cells, since cells are duplicated
via mitosis in a natural way.

Formally, a tissue P system with cell division of degree 𝑞 ≥

1 is a tuple of the form [34]

Π = (Γ,Ω, 𝑤
1
, . . . , 𝑤

𝑞
, 𝑅, 𝑖out) , (1)

where
(1) 𝑞 ≥ 1 is the initial degree of the system, which means

the system contains 𝑞 cells labeled with 1, 2, . . . , 𝑞,
respectively. We use 0 to refer to the environment;

(2) Γ is the alphabet of objects;
(3) 𝑤
1
, . . . , 𝑤

𝑞
are multisets over Γ, describing the objects

placed in the cells of the system at the beginning of
the computation;

(4) Ω ⊆ Γ is the set of objects initially located in the
environment of the system, all of them available in an
arbitrary number of copies;

(5) 𝑅 is a finite set of rules of the following forms:
(a) communication rules: (𝑖, 𝑢/V, 𝑗), for 𝑖, 𝑗 ∈ {0, 1,

2, . . . , 𝑞}, 𝑖 ̸= 𝑗, 𝑖 ̸= 𝑖out, 𝑢, V ∈ 𝑀(Γ)(|𝑢| + |V|
is called the length of the communication rule
(𝑖, 𝑢/V, 𝑗));

(b) division rules: [𝑎]
𝑖
→ [𝑏]

𝑖
[𝑐]
𝑖
, where 𝑖 ∈ {1, . . . ,

𝑞}, 𝑖 ̸= 𝑖out, 𝑎 ∈ Γ, and 𝑏, 𝑐 ∈ Γ ∪ {𝜆};

(6) 𝑖out ∈ {0, 1, 2, . . . , 𝑞} is the output cell if 𝑖out ̸= 0 or the
environment if 𝑖out = 0.

Rules are used as usual in the framework of membrane
computing, that is, in a maximally parallel way. In each step,
all cells which can evolve must evolve in a maximally parallel
way (in each step we apply a multiset of rules which is max-
imal, no further rule can be added), with the following
important mentioning: if a cell is divided, then the division
rule is the only one which is applied for that cell in that step,
its objects do not evolve by means of communication rules.
Their labels precisely identify the rules which can be applied
to them.

The communication rule (𝑖, 𝑢/V, 𝑗) can be applied over
two cells 𝑖 and 𝑗 such that 𝑢 is contained in cell 𝑖 and V is
contained in cell 𝑗.When applying a rule (𝑖, 𝑢/V, 𝑗), the objects
of the multiset represented by 𝑢 are sent from cell 𝑖 to cell 𝑗
and simultaneously the objects of the multiset V are sent from
cell 𝑗 to cell 𝑖.

The division rule [𝑎]
𝑖
→ [𝑏]

𝑖
[𝑐]
𝑖
can be applied over a cell

𝑖 containing object 𝑎. When applying a rule [𝑎]
𝑖
→ [𝑏]

𝑖
[𝑐]
𝑖
,

the cell with label 𝑖 is divided into two cells with the same
label; in the first copy the object 𝑎 is replaced by 𝑏, in the
second copy the object 𝑎 is replaced by 𝑐; all other objects are
replicated and copies of them are placed in the two new cells.

A configuration of Π at an instant 𝑡 is described by the
multisets of objects over Γ associated with all the cells present
in the system at the moment and the multiset over Γ \ Ω

associated with the environment at the instant 𝑡. The com-
putation starts from the initial configuration and proceeds as
defined above; only halting computations give a result, and
the result is encoded (usually by the number of objects) in the
output region 𝑖out (a cell if 𝑖out ∈ {1, . . . 𝑞} or the environment
if 𝑖out = 0) in the halting configuration. The set of numbers
computed in this way by the various halting computations in
Π is denoted by𝑁(Π).

3. Timed Tissue P Systems with Cell Division

A timed tissue P system can be constructed by adding to the
tissue P system a time mapping 𝑒 : 𝑅 → N \ {0}, which
specifies the execution time of each rule of the system. We
suppose to have an external clock (that does not have any
influence on the system) that marks time units of equal
length, starting from time 0. In each step of the rules, all cells
which can evolve must evolve in a maximally parallel way.
There is a need to define the concept of a valid step. If in one
step there exists at least one rule of system Π(𝑒) which can
start, we say that the step is valid. The execution of the rules
does not take the same time unit. When a rule 𝑟 is started,
the occurrences of objects used by this rule are not available
for other rules during the entire execution of 𝑟. We denote
𝑒(𝑟) as the time which rule 𝑟 lasts, that is, execution of rule 𝑟
takes 𝑒(𝑟) time units to be completed. The computation stops
when no rule can be applied in any membrane and there
are no rules in execution (the systems has reached a halting
configuration). The output of a halting computation is always
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defined based on the objects in the output membrane in the
halting configuration.

We can construct a family of timed tissue P systems by
adding different time mappings. The same family of tissue
P systems may produce different results for having different
time mappings. A timed tissue P system that generates the
same computation result, independently from any time map-
ping, is called time-free tissue P system.

3.1. A Timed Recognizer Tissue P System. In this subsection,
we introduce a variant of timed tissue P systemswith cell divi-
sion, namely, timed recognizer tissue P system following the
definitions of complexity classes in terms of membrane com-
puting (see [38]). Such a system of degree 𝑞 ≥ 1 has the form

Π (𝑒) = (Γ, Σ, Ω, 𝑤
1
, . . . , 𝑤

𝑞
, 𝑅, 𝑖in, 𝑖out, 𝑒) . (2)

There are two points that should be noted. First, the working
alphabet Γ has two distinguished objects yes and no, present
in at least one copy in some initial multisets 𝑤

1
, . . . , 𝑤

𝑞
but

not present in Ω. Second, if C is a computation of Π, then
either the object yes or the object no (but not both) must exist
in the environment when the computation halts.

The computations of the system Π with input multiset
𝑤 ∈ 𝑀(Γ) start from a configuration of the form (𝑤

1
, 𝑤
2
, . . . ,

𝑤in𝑤, . . . , 𝑤𝑞, 0), that is, after adding the multiset 𝑤 to the
contents of the input cell 𝑖in. We say that the multiset 𝑤 is
recognized by Π if and only if the object yes is sent to the
environment, and only at the last step of the corresponding
computation. We say that C is an accepting computation
(resp., rejecting computation) if the object yes (resp., no)
appears in the environment associated with the correspond-
ing halting configuration ofC.

Next, we will define the concepts of time-free soundness,
time-free completeness, and time-free polynomially bound-
ing for timed recognizer tissue P systems. Let∏ = {Π(𝑛, 𝑒) |

𝑛 ∈ N} be a family of timed recognizer tissue P systems.
There exists a pair (cod, 𝑠) of polynomial-time computable
functions over𝑋 such that

(i) for each instance 𝑢 ∈ 𝐼
𝑥
, 𝑠(𝑢) is a natural number and

cod(𝑢) is an input multiset of the system Π(𝑠(𝑢));
(ii) the family ∏ is time-free sound with regard to

(𝑋, cod, 𝑠); that is, for each instance of the problem
𝑢 ∈ 𝐼
𝑥
and any mapping 𝑒, if there exists an accepting

computation of the time-free system Π(𝑠(𝑢), 𝑒) (this
means Π(𝑠(𝑢))(𝑒)) with input cod(𝑢), then we have
Θ
𝑥
(𝑢) = 1;

(iii) the family ∏ is time-free complete with regard to
(𝑋, cod, 𝑠); that is, for each 𝑢 ∈ 𝐼

𝑥
and any mapping 𝑒,

if Θ
𝑥
= 1, then every computation of Π(𝑠(𝑢), 𝑒) with

input cod(𝑢) is an accepting one;
(iv) the family ∏ is time-free polynomial bounded with

regard to (𝑋, cod, 𝑠), that is, there exists a polynomial
function 𝑝, such that for each 𝑢 ∈ 𝐼

𝑥
and any time

mapping 𝑒, every computation of the time-free system
Π(𝑠(𝑢), 𝑒) with input cod(𝑢) is halting and, moreover,
it performs at most 𝑝(|𝑢|) steps.

A family ∏ = {Π(𝑠(𝑢), 𝑒) | 𝑢 ∈ 𝐼
𝑥
} of timed recognizer

tissue P systems is a uniform time-free solution to decision
problem 𝑋 = (𝐼

𝑋
, 𝜃
𝑋
) if the following holds:

(i) the family ∏ is polynomially uniform by Turing
machines; that is, there exists a deterministic Turing
machine working in polynomial time which con-
structs the system Π(𝑒) with knowledge involving
only the size of the problem 𝑋 for every instance of
𝑋;

(ii) the family ∏ is time-free polynomially bounded,
time-free sound, and time-free complete.

Given a decision problem 𝑋, if there exists a family of
timed P system ∏ = {Π(𝑠(𝑢), 𝑒) | 𝑢 ∈ 𝐼

𝑥
} which computes

a solution of the instance 𝑢 of 𝑋 and the correctness of the
solution does not depend on the execution time of the rules
involved in the computation, then the solution is called a
time-free solution to problem𝑋 computed by the system∏.

4. Solving Multidimensional 0-1
Knapsack Problem by Time-Free
Recognizer Tissue P Systems

4.1. ProblemFormulation. Themultidimensional 0-1 knapsack
problem (MKP) is a well-known NP-complete combinatorial
problem [39]. The decision MKP can be formulated as fol-
lows: given an integer 𝑘, an objective function𝑓(𝑥

1
, . . . , 𝑥

𝑛
) =

Σ
𝑛

𝑖=1
𝑐
𝑖
𝑥
𝑖
, and constraints Σ𝑛

𝑖=1
𝑤
𝑖𝑗
𝑥
𝑖
≤ 𝑏
𝑗
, for 𝑗 = 1, . . . , 𝑚, 𝑥

𝑖
∈

{0, 1}, for 𝑖 = 1, . . . , 𝑛, where 𝑐
𝑖
, 𝑤
𝑖𝑗
, and 𝑏

𝑗
are nonnegative

integers, decide whether or not there exists an assignment
of variables 𝑥

𝑖
such that it satisfies the constraints and the

objective function is greater than or equal to 𝑘.
The special case of MKP with𝑚 = 1 is the classical knap-

sack problem (KP). In [40], a solution to MKP by recognizer
P systems with active membranes has been proposed. In the
next subsection, we will construct a uniform time-free tissue
P system for the general MKP.

4.2. AUniformTime-Free Solution toMKP. Wepresent a uni-
form time-free solution to MKP in the framework of timed
recognizer tissue P systems.

Let us consider an instance ofMKP as shown in the above
subsection, we call Σ𝑛

𝑖=1
𝑤
𝑖𝑗
𝑥
𝑖
≤ 𝑏
𝑗
(1 ≤ 𝑗 ≤ 𝑚) the 𝑗th con-

straint inequality and Σ
𝑛

𝑖=1
𝑐
𝑖
𝑥
𝑖
≥ 𝑘 the (𝑚 + 1)th inequality.

We construct a family of timed recognizer tissue P system of
degree 2

Π (⟨𝑛,𝑚⟩ , 𝑒) = (Γ, Ω, 𝑤
1
, 𝑤
2
, 𝑅, 𝑖in, 𝑖out, 𝑒) , (3)

where
(i) Γ = {𝑋

𝑖
, 𝑌
𝑖
, 𝑁
𝑖
| 1 ≤ 𝑖 ≤ 𝑛} ∪ {𝑎

𝑖𝑗ℎ
| 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤

𝑚, 1 ≤ ℎ ≤ 𝑤
𝑖𝑗
(only when𝑤

𝑖𝑗
≥ 1)}∪ {𝑏

𝑙𝑗
| 1 ≤ 𝑗 ≤ 𝑚,

0 ≤ 𝑙 ≤ 𝑏
𝑗
+ 1} ∪ {𝑐

𝑖ℎ
| 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ ℎ ≤ 𝑐

𝑖
} ∪ {𝑘
𝑠
| 0 ≤

𝑠 ≤ 𝑘} ∪ {𝑝
1
, 𝑝
2
, 𝑝
3
, yes, no};

(ii) Ω = Γ − {yes, no};
(iii) 𝑤

1
= {yes, no}, 𝑤

2
= {𝑋
1
, . . . , 𝑋

𝑛
, 𝑝
1
, 𝑝
2
} ∪ {𝑎
𝑖𝑗ℎ

| 1 ≤

𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚, 1 ≤ ℎ ≤ 𝑤
𝑖𝑗
} ∪ {𝑐
𝑖ℎ
| 1 ≤ 𝑖 ≤ 𝑛, 1 ≤

ℎ ≤ 𝑐
𝑖
} ∪ {𝑏
0𝑗
, 𝑘
0
| 1 ≤ 𝑗 ≤ 𝑚};
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(iv) 𝑖in = 2 is the input cell;
(v) the output region 𝑖out is the environment;
(vi) 𝑒 : 𝑅 → N is a time mapping from 𝑅 to natural

numbers;
(vii) 𝑅 is the set of rules:

(1) 𝑟
1,𝑖

≡ [𝑋
𝑖
]
2
→ [𝑌

𝑖
]
2
[𝑁
𝑖
]
2
, for 1 ≤ 𝑖 ≤ 𝑛;

(2) 𝑟
2
≡ (1, no/𝜆, 0);

(3) 𝑟
3,𝑖𝑗ℎ𝑙

≡ (2, 𝑌
𝑖
𝑎
𝑖𝑗ℎ
𝑏
𝑙𝑗
/𝑌
𝑖
𝑏
𝑙+1𝑗

, 0), for 1 ≤ 𝑖 ≤ 𝑛, 1 ≤

𝑗 ≤ 𝑚, 1 ≤ ℎ ≤ 𝑤
𝑖𝑗
(only when 𝑤

𝑖𝑗
≥ 1), 0 ≤ 𝑙 ≤

𝑏
𝑗
;

(4) 𝑟
4,𝑖ℎ𝑠

≡ (2, 𝑌
𝑖
𝑐
𝑖ℎ
𝑘
𝑠
/𝑌
𝑖
𝑘
𝑠+1

, 0), for 1 ≤ 𝑖 ≤ 𝑛, 1 ≤

ℎ ≤ 𝑐
𝑖
, 0 ≤ 𝑠 ≤ 𝑘 − 1;

(5) 𝑟
5,𝑗

≡ (2, 𝑏
𝑏
𝑗
+1𝑗

𝑝
𝑗
/𝜆, 0), for 1 ≤ 𝑗 ≤ 𝑚;

(6) 𝑟
6
≡ (2, 𝑘

𝑘
/𝑝
𝑚+1

, 0);
(7) 𝑟
7
≡ (2, 𝑝

1
𝑝
2
⋅ ⋅ ⋅ 𝑝
𝑚+1

/yes, 1);
(8) 𝑟
8
≡ (2, yes/no, 0).

In what follows, a detailed explanation of how this system
Π(⟨𝑛,𝑚⟩, 𝑒) works to MKP is presented. There are three
stages in the computation process: generating, checking, and
outputting.

In the generating stage, rules 𝑟
1,𝑖

and 𝑟
2
start at the same

time. By using the rule 𝑟
1,𝑖
, the system generates 2

𝑛 mem-
branes labeled by 2 after 𝑒(𝑟

1,𝑖
) time units. It takes 𝑛 valid steps

to complete rule 𝑟
1,𝑖
. When the generating stage is ended,

every membrane labeled by 2 represents one assignment of
variables 𝑥. Object 𝑌

𝑖
means that 𝑥

𝑖
= 1, and 𝑁

𝑖
means 0.

Object 𝑛𝑜 can be ejected to the environment after 𝑒(𝑟
2
) steps

by the rule 𝑟
2
.

In the checking stage, the rules 𝑟
3,𝑖𝑗ℎ𝑙

, 𝑟
4,𝑖ℎ𝑠

, 𝑟
5,𝑗
, and 𝑟

6

are started in the same time and in the nondeterministic
maximally parallel manner. Let us explain how these rules
work.The rule 𝑟

3,𝑖𝑗ℎ𝑙
means that if𝑌

𝑖
is in onemembrane with

label 2, object 𝑎
𝑖𝑗ℎ

will be sent to the environment. The range
of subscriptℎ is from0 to𝑤

𝑖𝑗
(the case of𝑤

𝑖𝑗
= 0does not have

any influence on the systems) and the subscript 𝑗 means the
𝑗th constraint. In the same time, object 𝑏

𝑙𝑗
is replaced by object

𝑏
𝑙+1𝑗

. Rule 𝑟
3,𝑖𝑗ℎ𝑙

will stop when there are no objects 𝑎
𝑖𝑗ℎ

in all
the membranes with label 2 or there are no objects 𝑏

𝑙𝑗
in the

environment.The rule 𝑟
3,𝑖𝑗ℎ𝑙

is used to check the 𝑗th constraint
inequality Σ

𝑛

𝑖=1
𝑤
𝑖𝑗
𝑥
𝑖
≤ 𝑏
𝑗
(1 ≤ 𝑗 ≤ 𝑚). Similarly, the rule

𝑟
4,𝑖ℎ𝑠

is in charge of the checking of the (𝑚 + 1)th inequality
Σ
𝑛

𝑖=1
𝑐
𝑖
𝑥
𝑖
≥ 𝑘. If there appears object 𝑏

𝑏
𝑗
+1𝑗

in the membrane,
the 𝑗th constraint inequality Σ𝑛

𝑖=1
𝑤
𝑖𝑗
𝑥
𝑖
≤ 𝑏
𝑗
(1 ≤ 𝑗 ≤ 𝑚) is not

satisfied and object 𝑝
𝑗
will be sent to the environment by

using rule 𝑟
5,𝑗
. On the contrary, the rule 𝑟

6
means that if there

exists object 𝑘
𝑘
, the (𝑚+1)th inequality is satisfied and object

𝑝
𝑚+1

will be sent to the membrane.
In the last stage, outputting stage, rules 𝑟

7
and 𝑟
8
are used

to send the right answer to the environment. After checking
stage, if objects 𝑝

1
, . . . , 𝑝

𝑚+1
are all in the membrane, we

can come to a conclusion that the assignment of variables 𝑥
in this membrane satisfies the constraints and the objective
function is greater than or equal to 𝑘. By using rule 𝑟

7
, objects

𝑝
1
, . . . , 𝑝

𝑚+1
are replaced by object 𝑦𝑒𝑠. This process needs

one valid step. By using rule 𝑟
8
, object 𝑦𝑒𝑠 will be sent to

the environment to exchange for object 𝑛𝑜. The system halts
with object 𝑦𝑒𝑠 in the environment, which means that the
answer to the decision problem is positive. On the contrary,
if some of the objects 𝑝

𝑗
(1 ≤ 𝑗 ≤ 𝑚 + 1) are not in the

membrane, it means that this assignment of 𝑥 does not meet
the requirements and object𝑦𝑒𝑠will remain in themembrane
labeled by 1, object 𝑛𝑜 will exist in the environment when the
computation halts. In this case, the answer to the decision
problem is negative.

4.3. Verification. Next, we prove that the family of timed rec-
ognizer tissue P systems built above is a uniform time-free
solution to MKP.

First, according to the definition of uniform time-free
solution, we need to show that the family Π(⟨𝑛,𝑚⟩, 𝑒) is
polynomially uniform by deterministic Turingmachines. It is
easy to check that the rules of the system Π(⟨𝑛,𝑚⟩, 𝑒) of the
family are defined recursively from the values 𝑛 and 𝑚.
Besides, the necessary resources to build an element of the
family are of a polynomial order, as shown below.

(i) Size of the alphabet: 3𝑛+Σ𝑚
𝑗=1

Σ
𝑛

𝑖=1
𝑤
𝑖𝑗
+Σ
𝑛

𝑖=1
𝑐
𝑖
+Σ
𝑚

𝑗=1
𝑏
𝑗
+

3𝑚 + 𝑘 + 4 ∈ Θ(𝑛𝑚).
(ii) Initial number of cells: 2 ∈ Θ(1).
(iii) Initial number of objects: 𝑛+Σ𝑚

𝑗=1
Σ
𝑛

𝑖=1
𝑤
𝑖𝑗
+Σ
𝑛

𝑖=1
𝑐
𝑖
+𝑚+

5 ∈ Θ(𝑛𝑚).
(iv) Number of rules: 𝑛+Σ

𝑚

𝑗=1
Σ
𝑛

𝑖=1
𝑤
𝑖𝑗
𝑏
𝑗
+𝑘Σ
𝑛

𝑖=1
𝑐
𝑖
+𝑚+4 ∈

Θ(𝑛𝑚).
(v) Number of execution time associated with rules: 𝑛 +

Σ
𝑚

𝑗=1
Σ
𝑛

𝑖=1
𝑤
𝑖𝑗
𝑏
𝑗
+ 𝑘Σ
𝑛

𝑖=1
𝑐
𝑖
+ 𝑚 + 4 ∈ Θ(𝑛𝑚).

(vi) Maximal length of a rule: 5 ∈ Θ(1).

Therefore, a deterministic Turing machine can build Π(⟨𝑛,

𝑚⟩, 𝑒) in a polynomial time with respect to 𝑛 and𝑚.
It is clear that the family of timed tissue P systems con-

structed above is time-free sound, time-free complete, and
time-free polynomially bounded. And the total number of
valid steps to complete the whole computation process is no
more than 𝑛 +Max{𝑘 + 1, 𝑏

𝑗
+ 2 | 1 ≤ 𝑗 ≤ 𝑚} + 2. From all the

above we have the following result.

Theorem 1. A family of timed tissue P system ∏ = {Π(𝑠(𝑢),

𝑒) | 𝑢 ∈ 𝐼
𝑥
} can be constructed as a uniform time-free sol-

ution to multidimensional 0-1 knapsack problem. For any time
mapping e, the correctness of the solution does not depend on
the execution time of the rules.

5. Conclusions and Remarks

In this paper, we have proposed a time-free solution to a
NP-complete problem, the multidimensional 0-1 knapsack
problem.The feature of time-free tissue P systems is that they
can work independently from the values associated with the
execution times of the rules. The solution above can be used
as a scheme for designing solutions to other NP-complete
problems by a space-time trade off strategy. In the future
work, we will give direct time-free solutions to other NP-
complete problems or even PSPACE-problems.
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[18] J. M. Cecilia, J. M. Garćıa, G. D. Guerrero, M. A. Mart́ınez-del-
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