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The goal of this paper is to study an initial boundary value problem of stochastic viscoelastic wave equation with nonlinear damping
and source terms. Under certain conditions on the initial data: the relaxation function, the indices of nonlinear damping, and source
terms and the random force, we prove the local existence and uniqueness of solution by the Galerkin approximation method. Then,
considering the relationship between the indices of nonlinear damping and nonlinear source, we give the necessary conditions of
global existence and explosion in finite time in some sense of solutions, respectively.

1. Introduction

We consider a stochastic viscoelastic wave equation with non-
linear damping and source terms

t
u, — Au+ L h(t-1)Au(r)dr + |ut|q_2ut

= [ulfu+eo (x,t) O,W (t,x), O

u(x,t) =0, (x,t)€oDx][0,T],

u(x,0)=uy(x), u,(x0)=u(x), x €D,

where D is a bounded domain in R" with smooth boundary
0D, q > 2, p > 2,eisagiven positive constant which measures
the strength of noise, and W (¢, x) is an infinite dimensional
Wiener process, o(x, t, w) is L*(D)-valued progressively mea-
surable and A is a positive relaxation function satisfying some
conditions to be specified later. By simplicity, we have set
equal to 1 all the coeflicients in the equation different from
the random force.

For the deterministic case on viscoelastic wave equation,
many authors studied the following problem:

U, — Au+ a|ut|q_2ut = blu’*u, (x,t) € Dx(0,T),

u(x,t)=0, (x,t)€oDx(0,T), 2)

u(x,0) =uy(x), u,(x,0)=u(x), x €D,

where a,b > 0.If a > 0, b = 0. Haraux and Zuazua [1] and
Kopdckova [2] proved that the damping term assures exis-
tence of global solution and decay of solution for arbitrary
initial data. If @ = 0, b > 0, Ball [3] and Kalantarov and
Ladyzhenskaya [4] gave that the source term causes finite
time blow-up with the large initial data. Ifa > 0, b > 0, the
interaction between damping term and source term occurs;
Levine et al. [5, 6] studied the linear damping (i.e., g = 2) and
proved that the solution with negative initial energy blows up
in finite time; Georgiev and Todorova [7] considered nonlin-
ear damping and source terms; they showed that the solution
blows up in finite time if p > g > 2 for sufficiently large initial
data and exists globally if g > p > 2 with large initial data.
Alves et al. [8] and Rammaha [9] focused the nonlinear wave
equations or systems on the influence between damping and
source and described the existence, uniform decay rates, and
blow-up to the solutions.
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In fact, lots of investigators have paid attention to the
viscoelastic wave equation, which has its origin in the math-
ematical description of viscoelastic materials. The dynamic
properties of viscoelastic materials are of great importance
as they appear in many applications to natural sciences. The
general viscoelastic wave equation has the following form:

t

utt—Au+Joh(t—T)Au(T)dT+g(ut)=f(u),

(x,t) € Dx(0,T), 3)

u(x,t)=0, (x,t)€eoDx(0,T),

u(x,0) =uy(x), u,(x,0)=u(x), x €D,

where h is a relaxation function and f, g are given functions.
If f is nonlinear, g is linear; Kafini and Messaoudi [10]
established a blow-up result; if f(u) = |ul’u, g(u,) = |u,|y,.
Messaoudi [11] showed that the solution with negative initial
energy blows up in finite time if p > g and exists globally if
q = p under suitable conditions on relaxation function . This
blow-up result has been pushed to the case of positive initial
energy by Messaoudi [12]. For g(w) = —Aw, Song and Zhong
[13] obtained that the solution with positive initial energy
blows up in finite time. Ikehata [14] gave some remarks on
the wave equations with nonlinear damping and source
terms. Aassila et al. [15], Cavalcanti et al. [16], and Cavalcanti
etal. [17] studied the boundary damping and proved the exist-
ence and uniform decay of the solutions. Cavalcanti et al. [18]
discussed the asymptotic stability of the wave equation on a
compact Riemannian manifold; they proved that the solu-
tions of the corresponding partial viscoelastic model decay
exponentially to zero under some conditions.

Under the consideration of random environment, some
authors investigated the following stochastic wave equation
with nonlinear damping and source terms:

Uy — Au+ g (u,) = f (u) + eo (u, Vu, x, ) O,W (£, x),

(x,t) e Dx (0,T),

(4)
u(x,t) =0, (x,t)€oDx(0,T),

u(x,0) =uy(x), u,(x,0)=u(x), x €D,

where W (¢, x) is a V-valued R-Wiener process on some com-
pleted probability space, and R is a nonnegative operator with
finite trace on V (see [19-26]). If f(w) = lw|?w, gw) =
—Aw or w; Bo et al. [27] showed that the solution blows
up with positive probability or it is explosive in L* sense. If
gw) = |w|T*w, Gao et al. [28] showed that the global solu-
tion exists for g > p, and the solution blows up with positive
probability or is explosive in energy sense for p > q.
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Recently, Wei and Jiang [29] and Liang and Gao [30] con-
sidered the following nonlinear stochastic viscoelastic wave
equation with linear damping:

t

utt—Au+J-Oh(t—T)Au(T)dT+ut

= u|Pu + eo (u, Vu, x, £) oW (t,x), (5)

u(x,t) =0, (x,t)€oDx(0,T),

u(x,0) =uy(x), u,(x,0)=u(x), x €D,

and they used the fixed point theorem to prove the existence
and uniqueness of local mild solution; then by an appropriate
energy inequality and estimations, they obtained the global
existence and the decay estimate of the energy function of the
solution and showed that the solution blows up with positive
probability or it is explosive in L* sense under some condi-
tions.

As we know, no one considers the stochastic viscoelastic
wave equation (1) with the interaction between nonlinear
damping and nonlinear source terms. In this paper, we study
the global existence and the explosive phenomena under
some suitable conditions on the nonlinear damping and non-
linear source terms.

In contrast with the model in [27], we add a viscoelastic

term _[Ot h(t — ) Au(t)dt and use the nonlinear damping term

|u,|7 %y, instead of the linear damping ku, and the strong
damping Au,. To the model in [28], we add a viscoelastic term

_[Ot h(t — t)Au(t)dr. To the model in [29, 30], we use the non-

linear damping term |u,|9 1, instead of the linear damping
u,. To the model in [12], we add a random force. In this paper,
we generalize the blow-up and global existence results to the
solution of (1) with interaction among viscoelastic memory,
nonlinear damping, nonlinear source, and random force.
This paper is organized as follows. In the next section, we
recall some preliminaries related to assumptions and def-
initions for the solutions of the stochastic equations. In
Section 3, we use the Galerkin approximation method to get
the local solution of stochastic viscoelastic wave equations
with nonlinear damping and source terms. In Section 4, by
the energy function and some estimates, we prove that the
solution blows up with positive probability or it is explosive
in energy sense for p > g. In the last section, we obtain the
existence of global solution by the Borel-Cantelli Lemma.

2. Preliminaries

Let (X,||-|lx) be a separable Hilbert space with Borel o-
algebra B(X), and let (Q, #, P) be a probability space. We set
H = L*(D) with the inner product and norm denoted by (-, -)
and || - [, respectively. Denote by || - IIq the LY(D) norm for

1 < g < coandby ||V |, the Dirichlet norm in V' = Hé (D)



Journal of Applied Mathematics

which is equivalent to H' (D) norm. We also assume that g, p
satisfy

2(n-1
n—

), if n>3,
2 (6)

itn=1,2.

q22, p>2, max{pq}<

q=2, p>2,
Lemmal (see [27]). Forallu,v € H'(R") and0 < p<(2/(n-
2))(n = 3)orp > 0(n = 1,2), there exists a constant ¢, =
¢ (n, p) > 0 such that

vl <

lull 2oy < cpllellges "u”Zl Vg (7)
One assumes thath: R — R'isa l()xg)unded nonincreas-
ing C! function satistying h(0) > 0, l—jo h(s)ds =1 > 0,and

there exist positive constants &; and &, such that

—&h(t) < W () < =-&h(t),

In this paper, E(-) stands for expectation with respect to
probability measure P, W(t,x) (t > 0) is a V-valued R-
Wiener process on the probability space with the covariance
operator R satisfying Tr(R) < oco. A complete orthonormal
system {e;} o, in V with C; := sup.,llegll,, < o0, and a
bounded sequence of nonnegative real numbers {A;}72;
satisfies that Re; = Arep, k= 1,2,....

To simplify the computations, we assume that the covari-
ance operator R and Laplacian —A with homogeneous Dirich-
let boundary condition have a common set of eigenfunctions,
that is,

t>0. (8)

-Ae, = e, x €D,
)
e, =0, xeoD,
and then, for any t € [0, T], W(t, x) has an expansion
(o]
W (t0) = Y e () e (), (10)
k=1

where {f(t)};2, are real valued Brownian motions mutually
independent on (Q, &, P). Let # be the set ong = LZ(RUZV,
V)-valued processes with the norm

; 1/2
10Ol = (E | 10 ©1ds)
' (11)
¢ 12
= (E J.O Tr (® (s) RO (s)) ds) < 00,

where @ (s) denotes the adjoint operator of ®(s). For any
process O(t) € #, we can define the stochastic integral with
respect to the R-Wiener process as _[Ot D(s)dW(s), which is a
martingale. For more details about the infinite dimension
Wiener process and the stochastic integral, we refer the
readers to [21].

Definition 2. Assume that (ug,u;) € Hé (D) x L*(D), and

T
E Io ||o(t)||§dt < 00; u is said to be a solution of (1) on the

interval [0, T], if (u,u,) is Hé (D) x L*(D)-valued progres-
sively measurable, (u,u,) € L2(Q; C([0, T Hé (D) x L*(D))),
u, € L1((0,T) x D), and such that (1) holds in the sense of
distributions over (0, T) x D for almost all w.

3. Local Existence and Uniqueness

In this section, we establish the local existence and unique-
ness of solution to problem (1) by the Galerkin approximation
method. Set f(u) = lulP2u, g(s) = |s|72s. For each N > 1,
we define a cut-off function y, € Cy°, such that 0 < y5(s) <
1, IIQd\,(s)II00 < 2fors € R,and

1, |s| <N,

12
0, |s|=N+1. 12)

XN (s) = {

Denote fy(u) = xn(IVull,) f(u) for u € Hé(D), then,
Lemma 1 implies that

I @) = fxW], < Cull = vy,

where Cy is a constant depending only on N.
For any A > 0, the Yosida approximation of mapping g is

for u,v € HS (D), (13)

gy (%) = % (x -(I+ /\g)_1 (x)) =g(I+ )\g)_l (x), x€R,
(14)

and it has the following properties (see [28, 31, 32]):

G eC(R), 0<g(x)<

>

> =

(15)
@I <lg@l. o<1 1xl, vxer

Lemma 3 (see [28]). Let {A,} be a sequence of positive
numbers, and let {x,} be a sequence of real numbers such that
A, = O0andx, — xasn — 00, then

Jim gy (x,) = g(x). (16)

Lemma 4 (see [33]). Let D be a bounded domain in R" (n >
1). Suppose that {¢,} is a bounded sequence in LY(D) (1 < g <
00), such that ¢ (x) — ¢(x) for almost all x € D, for some
¢(x) € LYD). Then ¢(x) — ¢(x) weakly in L1(D).

Fix A > 0 and N > 0; we consider the regularized initial
boundary value problem

t

utt—Au+J h(t - 1) Au(r)dr + g, (u,)

0

= fn (W) + &0 (x,t) O,W (£, x), 1)

u(x,t) =0, (x,t)€oDx(0,T),

M(X,O):MO(X), ut(-x>0):u1 (.X), .XGB,
with the initial data

(ug-uy) € (H* (D) N Hy (D)) x Hy (D), (18)



and o(x,t) is Hé (D) N L*(D)-valued progressively measur-
able such that

T
[ (1Wo0R+lo @)t <co. 09

For notational convenience, we omit D in the Hilbert
space.

Lemma 5. Assume (18), (19), and the conditions on h hold.
Then there is a pathwise unique solution u of (17) such that u €
LA L°(0, T; H2 0 HY)) n L2(Q;C([0, T); HY)), and u, €
L*(Q ; L®(0, T; Hy))NL*(Q; C([0, T; L*)). Moreover, it holds
that

2
E ("”t“Lw(o,T;Hg) + ””"im(o,T;Hang)
(20)

T
+ J J g () u,dx dt) <C,
o Jp

where C denotes a positive constant independent of A.

Proof. Letu,,(x,t) = Z] | Gy j€;(x) and leta,,
m) be the solution of the following system:

JG=12,

(u::, (t)e; (x)) + (Vum,ej)
- L h(t-1) (Vum (1) ,Vej) dr + (g)L (u:n) ,ej)

(fN(um) e)+e(e adW) (x,t) e Dx (0,T),

m m

u,, (0) = Z (uo,ej) , u:n 0) = Z (ul,ej), x €D.
— —
j j o

By It6 formula, we have

i, O + Ve O < 15, @ + [V, O
-2 r J JS h(s - 1) (Au,, (1)) dru,, (s)dxds
0Jplo
+2J J fu () i), (s)dxds+28j (u (s),0dW )

-2 J: JD ga (uin) u, (s)dxds

+Tr(R)CSOZO:J ' €, €0 ' ds,
=1

Journal of Applied Mathematics
2 2
"Vu:n(t)"2 + ||Aum(t)||§ < "Vu:n (0)"2 + ||Aum (0)||§
t s
-2 J J J h(s—-1)Au,, (1) d‘rAu:n (s)dxds
0oJpJo
t
- 2J J o () Aud, (s)dx ds
0Jp
t
+2¢ J (Vul, (5),V (0dW,))
0

t
+2J J g (u;n) Au, (s)dxds
oJp

+ Tr (R) Céi Jt '(ej, sVa)'st
j=1°0

+ZZ/\ j '(e eo'Ve |ds,

j=li=
(22)
forall t € [0, T] and almost all w, where
Tr(R) = Z/\i < 00, Co = sup|leg], < 0. (23)
i=1 k>1

Using Holder’s inequality, Young’s inequality, Poincaré’s in-
equality, and Lemma 1, we have

2 | o) 9 = 20 () oo,

< 2Cy et 11

(24)
< C”V“m"2||u:n”2
< OV, + e
and so we have
—2 r J Ir (t,) ty, (5) dx ds
o Jp (25)

! 2 T
<C L [Vut,,|lods + C L "umnzds.

Since

-2 J fur () AU, (s) dx
D
= 2(p=1) | (19l 910,
<2(p = 1) |Vl (V) et |90
< C(p= V)|V | 19 st (19300 )

-2
< C(p = 1) |Vir, | Jdutn o200 (V1)) |92

<C(p-1)(N+ 1P|V | | Aw,

(26)

< Cllaw, |3 +C|[vu |},

mlz
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thus we have

-2 Jt J f (u,,) Al (s) dx ds
0 Jp @)

<C Jt ||Aum||§ds +C Jt "Vu:nuids,
0 0

where C depends on the fixed number N.
Due to integration by parts, we have

JD ga (uin) Au! dx = - jD A (uin) |Vu,'n|2dx <0. (28)

Since g, (x) is the Yosida approximation of mapping g(x), by
the Lemma 3 and sign-preserving theorem of limit, for small
enough A, we have

(91 (4, ®) 14, () 2 0. (29)

Moreover, by the conditions of h, we get

Jt J h(t - 7)Au,, (1) u:n (t)dxdr
0Jp

_ _% j h(t - 1) (Va, (7), Vu, (6)) de

+h(0) (Vu,, (), Vi, (1))

(30)

. Jt W (¢ = 7) (Vu, (1), Vi, (1)) d,
0
-2 J: J: (h (s—1)Au,, (1), u:n (s)) drds
t
=2 JO h(t-1)(Vu,, (1), Vu,, (t))dr
~2h(0) Jt (Vus, (s), Vs, (s)) ds
0
-2 Jt r W (s - 1) (Vu,, (1), Vu,, (s)) dr ds,
0 Jo
o (31)
2 Jo L (h (s-1)Auy,, (1), Au:n (s)) drds
t
=2 Jo h(t-1)(Au, (1), Au, (t)) dr

- 2h(0) J: (Au,, (s),Au,, (s))ds

-2 Jt Js W (s = 1) (Au,, (1), Au,, (s)) dr ds.
0 Jo

Next, from the properties of h, we have

2 Jt h(t - 1) (Vu,, (1), Vu,, (t)) dr
0

2

< lllwm @) + C||j h(t - 1) Vu,, (1) dr (32)
2 0

2

< 19, @ +C [ 1V, (i,
0

—2h(0) r (Vu,, (s), Vu,, (s)) ds
b (33)
— 2h(0) J [V, (5)|2ds < 0,
0

|—2 Jt r W (s = 1) (Vu, (1), Vu,, (s)) dr ds

0 Jo

<2 [ W =019, @19, Ol e s
0 Jo

< cj j B (s = 1) [Viay, (O, [ Vit (5)], 7 ds
0 Jo

. (34)
< Ch(0) L L 194, (O] Vs, (5)] s

t 2
< Ch(0) (L [V, (T)||2df>

t t
<Ch(O)T L [V, (1) < C JO V4, (0)|dr,

t

|—2 J h(t - 1) (A, (1), Au, (t))dr
0

t (33)
1
< 5 law,, 0|;+C L |Au,, (2)]>d,

and similar to the derivation of (34), we have
t s
2 J J W (s = 1) (Au,, (1), Au,, (s)) dr ds
0 Jo (36)

t
< cj lAu,, ().
0

By the B-D-G inequality and Young’s inequality, we have

E ( sup )
te[0,T]

!
< eCE <t€s[1(1))};] “um (t)"2

J-o (um (s), sodWS)

© T 1/2
X [ZJ (a(x,t)Rei,a(x,t)ei)dt] >

i=1 70



E sup ”u (t)" +e CEJ ||0(t)||§dt,

te[0,T]

J-t (Vu,'q1 (s),eV (adWS))
0

E ( sup
t€[0,T]

< zEtEs%I;] “Vu (t)”

T
+£CE | (190 (0 + o (0, ) d

From (22)-(37), we get

E sup (“u (t)" +||Vu (t)"2

te[0,T
i, 0 + w0
<[, @[ + V2, O]

+ [Vl O + | Au,, )]
T
-2E L (g)L (u:n (s)) ,u:n (s)) ds

1 2 1 12
+=-E \% +=-E
3 tes[l;};]ll nllz + 3 t:[g};]"”muz

+ 2E sup ||Aum||2

te[0,T

1
2 + EEtES[I;I;]"VLlME

T, 2 2
+3CE L (lse O + 196

#9u, G + 2, () ds

+sCEj (lo )12 + 19 12 + llo OI2,) dt

+Tr(R)CSOZO:J | €j, €0 | ds
=1

+ Tr (R) Céi Jt |(ej,sV0)'2ds
j=170

+ZZ/\ j '(e eoVe 'ds,

j=li=1

then,
! 2 2
E sup (e, @1, + Ve, O

+|vad, @ + aw, )2

(37)

(38)
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<2([ur, @[ + [vu,, O

+vid, [ + |au, ©[)
T
—4E L (g)L (u:n (s)) ,u:n (s)) ds
T
+6CE [ (Ju, 0} + 19, O

o|ved, @[, + aw, 9 ) ds

+C (T, o1l 2o, 7)x0s 1) ||0||L2([0,T]xQ;L°°)) -
(39)

Set

@) = Jul, O + Vet O + |V, O + At D],

(40)
and we can rewrite (39) as follows:
T
E sup y(t) < Cj Esup y(t)ds
te[0,T] 0 te[0,s]
(41)

a2 [ (g (u) ) ds
0

and due to Gronwall’s inequality and (29), it is clear that
E (ti[‘é,% (O R o T

+ LT (Eh (u:n) , u:n) ds> <C

Let P,, be the orthogonal projection of L*(D) into the
space Span {e,,...,e,,}, such that

(42)

Py = Z (v.e)e; (43)

i=1

Define M(t) := j(: odW,, where o(x,t) is an HS (D)NL*®(D)-
valued progressively measurable such that (19) holds and

{W(t,x) : t > 0} is an HS -valued process; there is a subset
Q, € Qwith P(Q;) = 1 such that foreachw € Q;, M €
C([0,T]; Hé), and we have

0, (u:n - &P, M (t)) =- Jt h(t—1)Au, (1) dr
0

+ Aum - ng/\ (u:n) + meN (um)
(44)

forallm > 1.
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From (42), there is a subsequence {umk}zil, for each w €
Q,, such that,

u, — u, weakly star in L™ (O,T; H’n Hé) ,

my

u,, — u, stronglyin C (0, T; Hé),

my
(45)
! ! . o] 1
u, — u, weakly starin L (0, T; Ho) )

my

for u=u(w),

and by the properties of relaxation function 4 and Holder’s
inequality, we get

t q/(q-1)
J h(t—1)Au, (1)dr
0

La/@=D(0,T;H")

cof ([ou) ™

x j h(s - 1) |y, ()9 ds
0

Ja-1) T /s 9/(q-1)
< C sup |Au,, 0] j <j h(7) d1> ds < C.
| 0

te[0, T 0

(46)
From (15) and embedding theorem we have
! 9/(q-1)

”g’\ (umk (t))“Lq/(qfl)(O)T;H—l) < C (47)

Together with (42)-(47), we obtain

!

[, ) = Pu MO i o gy S (48)

forall k > 1. By (48) and u:nk ) —u't) weakly star in L*°(0,
T; Hé), we have
hy, (£) = €P,, M (t) — u' —eM (1),
(49)
strongly in C ([O,T] ;LZ) .

This implies that there exists a subsequence still denoted by
{u:nk (t)} such that

u:nk (t) — u' (t), for almost all (t,x) € (0,T) x D.
(50)

Due to (47) and Lemma 4, it is clear that
) (”:nk ®) — g2 (' @®),

weakly in LYV ((0,T) x D).

(51)

Thus, u = u(w) satisfies (17) in the sense of distributions over
(0,T) x D.

Next, we will prove the uniqueness of the solution. If there
is another solution #i(w) of (17), w € Q, in the above sense,
then w = u — # satisfies

w,, — Aw + Jth (t - 1) Aw(r)dT + g) (u,) — g5 (&%)
0 (52)

= fy W) - fy @),

Taking the inner product of (51) with w'(¢) in L*(D), we
obtain

w(0) =0, w, (0) =0.

%% (J' ®[; + vwol2)

o[ he-n (wm . ©)dr )

+ (.% (u,) - gy (i) , w' (f))
= (fa ) = fiy @, w' ).
From (15), we have
(92 () - gx (@), 0" (1) > 0. (54)
By Lemma 1 and Holder’s inequality,
(S ) = fu @, O)] < | fx @) = fx @[’ @)

< CyllVul,|w’ @),
(55)

Due to (30), we have
r h(t-1)(Aw(r),w' (1))dr
0

- _% Lt h(t-1)(Vw (1), Vw (1)) dr

+h(0) [Vw ()] + Lt W (t - 1) (Vw (1), Vw (t)) dr.
(56)

Combining (52) with (55), similar to (32) and (34), we get

o'+ vt <G [ (1w + o) s
¥ Jt h(t-71)(Vw(r), Vw (1)) dt
0
. J.t js % (s=1) (Vw (1), Vw (s)) drds
0Jo
t
< [, (1wt ') s

t
+ &V} + C, L IVwll3ds
(57)



which implies w = 0, that is, u(w) = #i(w). So u = u(w) is well
defined, for each w € Q.

Finally, we state that (u, u,) is (H*(D) N Hy (D)) x Hy (D)-
valued progressively measurable for any 0 < ¢ < T, and the
energy inequality holds true; this can be established by the
similar argument in [28, 31]. O

Moreover, we still fix N > 0 and consider the following
problem:

u, — Au+ J-th(t—T)Au(T)dr+g(ut)
0

= fy (W) +e0 (x,t) o,W (t,x), (58)

u(x,t) =0, (x,t)€oDx(0,T),

u(x,0) =uy(x), u,(x,0)=u(x), x € D.

The following lemma is important to prove the local existence
of solution of (1).

Lemma 6 (see [28, 31]). Assume that (18), (19), and the con-

ditions of h hold. Then there is a pathwise unique solution u of
(58) such that

ue L2 (L% (0, H n Hy))n L? (2 C ([0, T]; Hy ),
u € I (L% (0, T: Hy ) ) n L (@€ ([0, 7] L)),

u, € L1((0,T) x D).
(59)

From Lemmas 5 and 6, we state a local existence theorem of (1);
the proof is standard; for more information we refer the readers
to [28, 31].

Theorem 7 (see [28, 31]). Assume that (uy,u,) € H,(D) x

13(D), E |, lo(®)|3dt < 0o, (6), and the conditions of h hold;
there is a pathwise unique local solution u of (1) according to
Definition 2 such that the following energy equation holds:

[ @ + v @I

= O + v )12

-2 Jt J Jsh(t - 1) Au () dru’ (s)dx ds

0 JD Jo

t t
+2J, J [ul? (s)dxds+ZJ (u' (s),sadWS)
0oJp 0

t Ot
-2 u|'dxds + & J J Aelo’dxds.
Jo JD| | JZ{ olJp 7

(60)
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4. Blow Up

In this section we prove our main result for p > g. For this
purpose, we give refined restrictions on o(x, t) and relaxation
function / such that

o o p(p-2)
EL -[DG (x,t) dxdt < oo, Jo h(s)ds < (p—1)2 .
(61)

Define an energy function

F@) = 2, 0 + 2 (1= [ hesyds) 1vu @1
<>—5||ut(>||2+5( —L (s) s>|| w0l
(62)
1 1 »
# 5 (e Vi (O = Jlu O,

where
(ho Vu) (8) = L h(t—9)u() -u(ds.  (63)

For each N, introduce the stopping time 1y by 7y =
inf{t > 0; |Vull, > N}, where 7y is increasing in N, let 7., =
limy _, o Tn-

In order to prove our blow-up result, we rewrite (1) as an
equivalent It system

du = vdt,

t
dv = <Au - j h(t—1)Au(t)dr — V|72 + |u|P*2u> dt
0

+ée0 (x,t) dW (t, x),
u(x,t) =0, (x,t)€oDx(0,T),

x €D,
(64)

u(x,0) =uy(x), v(x,0)=vy(x)=u(x),

where (u,1,) € Hé x L2. Then the energy function F(t)
becomes

FO) =3O+ (1 - L h(s) ds) 19u ()
(65)
1 I
#5 (V) @~ IO,

First we give alemma.
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Lemma 8. Assume that (6), (61), and the conditions of h hold.
Let (u, v) be a solution of system (64) with initial data (u,, v,) €
Hé x L?. Then we have

d q. 1 2% 2,8 2
L EIF@O] < -Elvlj+ e FZIE JD A€ (x)0” (x, 1) dx,

(66)
E[(u,v)(1)]

t t
= (g, vy) — J E||Vu||§ds - J E (u, |V|‘1—2y) ds
0 0

t t s
N L Elulds + E JO JO h(s— 1) (Vi (), Vuu (s)) dr ds

t
+ j E|lv|3ds.
0
(67)
Proof. Using Ito formula to ||v||§ and (u, v), respectively, and
taking the expectations, in the same way as our discussions in

existence of solution to deal with the memory term, it is easy
to get (66) and (67) (see [28]). O

Let
_ i <[ 2 2
G(t) = 5 FZIE L JD )Ljej (x) 0" (x,s)dx ds. (68)

Due to (61), we have
82 [es) 0
G =SYE [ | 1w o dxas
j=1

2 [e's)
< Tr(R)CgEJ J o’ (x,s)dxds = E, < oo.
o Jp
(69)

€
2

We set H(t) := G(t) — E[F(¢)]. Then, (66) implies that

H'()=G0)- SEFOI 2 Bl 20 (00

Lemma 9. Let (u,v) be a solution of system (64). Then there
exists a positive constant C > 0 such that

Elu ()}, <C|G (1) - H(t) - Elv (1)l

FE @I -5 eV @], Y

2<s<p.

Proof. If |ull, < 1 then [lull}, < llull;, < ClVul’3 by Sobolev
embedding theorem. If [ u|| p2 1 then ||u||; < ||u||§. Therefore,

combination with the definition of energy function, we can
get (71). O

Theorem 10. Assume that (6), (61), and the conditions of h
hold. Let (u,v) be a solution of system (64) with initial data
(ug> Vo) € Hy x L? satisfying

F(0)<—(1+p)E, (72)

where 3 > 0 is an arbitrary constant. If p > q, then the solution
(u, v) and the lifespan 1., defined above, either

(1) P(ty, < +00) > 0, that is, |Vu(t)|, blows up in finite
time with positive probability, or

(2) there exists a positive time T" € (0, T,] such that

lim E[F (t)] = +oo, (73)

where

T = l1-«
| aKL o) 74)

L(0) = H"*(0) + OE (ug, u;) > 0,

and a, K are given in later.

Proof. For the lifespan 7, of the solution {u(t);t > 0} of (1)

with Hé norm, firstly we treat the case when P(7, = +00) <
1. Then, for sufficiently large T' > 0, by (70) and (72), we have

0<(1+B)E, <-F(0)=H(0)<H(t) <G(t)

1o . (75)
Il < Byl
Define L(t) = H™*(t) + 8E(u, v), where
(1 p=-2p- q}
0<(x<m1n<[—, , , (76)
2 2p  pq

and d is a very small constant determined in later.
Using (67) and (70), we obtain

'@®)=0-a)H"()H ()

+0 [ — EIVull5 - E (u, V") + Ellull}

+E Lt h(t—1)(Vu(z),Vu @) dr + E||v||§]
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> (1-o) H*(t) Ellvil] + 6p [H (t) - G () + EF (1)]
— SE|[Vull; + SE|IvI5 - OE (u, [v|* ) + SE|ul?
+0 Lth(t — 1) (Vu (1), Vu (b)) dr
> (1-a)H * (1) ElvI]

+8pH(t)+8(p

2
P 1) E[[Vu?

+o (g + 1) E|lvl2 - 8 (u, v )
+ 0E Jt h(t-1)(Vu(r),Vu(t))dr
0

+%p(how) (t)

6 t
- TPEJ 1 (2) de|Vu()| - 8pG (1),
0
(77)

S Jt h(t — 1) (Vu(t), Vu () dr
0
=0E jt h(t—1)(Vu(r) = Vu(t),Vu(t))dr (78)
0
t
+OF J h (2) de| Va2,
0

and by the Holder’s inequality,

SF r h(t - 1) (Vi () = Vi (), Vs () de
0

> —0E [2 Jt h(t — 1) |Vu(r) - Vu (t)|3dt
2 Jo
(79)

I 2
‘5 L h () dr|Vu (t)||2]

5 5
- —571’ (he Vi) (1)~ L h (x) de][Vu ()1

Inserting (78) and (79) into (77), we get

L't>(1-a)H® (t)EllvllZ +OpH (1)

+5<§ - 1>E||Vu||§ . 6(3 + 1)E||v||§

2

P+l (80)
)

—8pG(t)+6<1—

X J;: h(t)dt|Vu (t)|; - OE (u, |V|q72v) .
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From g < p, by EIIuIIZ < CEIIuIIZ7 and Hélder’s inequality, we
obtain the estimate of the last term in (80)

'E (u, |v|q72v)| < (E||V||Z)(q_l)/q(E||“||Z)l/q

C(EImIE) T (Efuyt) "

IN

C(E||1/||Z)(q_l)/q(EHu"g)I/P (81)

IN

(qfl)/q(

< C(EIvIE) " () "

(1/p)-(1/q)
x (Elul?) :

and the Young’s inequality implies that

1-q
(g-1)/q /g q-1
(B (Elul?) ™ < 2—uElvI + ‘“‘TEnunp,

q
(82)
where p is a constant determined in later.
In view of (75), we have
Elulb = p(H(t) -G () = pH (1), (83)

where p = pf/(1 + ). We assume H(0) > 1, (83), and (76)
imply that

WD) (1)~ e (1)1
(Elul?) < P UIP-1) (p)

< p(l/P)—(l/q)H—a (t) < p(l/P)—(l/q)H—a (0) )

(84)
Combining (82) with (84), we arrive that
q-2 q- 1 qry—o
|E (1,17 v)| < alTyEHvlqu (t)
(85)
u -a
+ al—EIIullgH (0),
q
where a, = Cp//P~1/9),
Hence, substituting (85) into (80),
’ q-1 —a
Ltz(l-a-a ud | H*(t) E||v||2
q
L OpH (t) + 6 (§ - 1) E[Vul? + 6 <§ + 1>E||v||§
SpG (1) +6( 1 P+l
p 2p
! 2 Hl_q -
x L (@) eIV - 00, ~ENIZH ™ 0).
(86)
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By Lemma 9 with s = p and (86), we have

-1 .
L@ s (1 ca-a ;48)H (t) BVl

L OpH () + 6 (g - 1) E[[Vul?

+5 (P ‘ 1) Elv|2 - 8pG (1)

2
+8(1—p 1
2p

- 8ay 1[G (1)~ H(0) - EIW;

t
) L h (1) delVu ()

1
+ Elul} - (e V)

2<l—oc—a1q_

+6 (p + azyl_q)H(t) -

1 —a

b8 ) H* () B
S(p+au' )Gt
+5 (p F1+ap” ‘1) Ellv|?2

Sau'
~ Sau" E|ull + %E (h o V)

2 1 t
o [E i (1 %) | h(r)dr] IVu O,
(87)

where a, = Ca,(H *(0)/q).
Note that

1 1 1 1
H(t) =G () + Euun; = SIS = SIVully = 2 (e Vi) (1),
(88)

and denote

2 0
a3=§—1+(1—p2;1>J0 h(r)dr > 0. (89)

We write p = 2a, + (p — 2a,), where a, = min{a,,a}, the
estimate (87) yields

-1 706
L'(t)z(l—(x—alq WS)H (t) Ellv)

) (p -2a, + aa‘ulfq) H(t)
-6 (p - 2a, + azyl_q) G(t)

+6 <§ +1—a,+ azyl_q> E|lv|3

1

+6 <a2;41_q +
+0 ( o
2

+68(ay -

2a,
—4) Ellull?
p

—a4)E(hoVu)

a,) EllVu (£)]3.
(90)

From (72) and (75), we obtain

(p —2a, + az;/tl_q) G(t) < (p —2a, + amul_q) E,

_ 1-q (91)
cpoatau T ).

1+p

Substituting (91) into (90), we get

1
@)= (1 —a—ad ;46) H™ (1) Elv|

+6 (p —2a, + azyl_q) %H (1)

+6 +1 —a4+a2;41 q) E||v||

(
+5( )EII [

1-q
+8<a2‘l; —a4)E(hoVu)

+8(as — a,) IVu (1)|15.

(Sl e~}

(92)

Next, we can choose p large enough so that (92) becomes

_1
@)= (1 —a-ad ;46) H™ (1) ElvI

+8y (H (@) + EIVIE + Elull? ©3)

~E (ho Vu) + [Vu (1)]2),

wherey > 0is the minimum of the coeflicients of H(¢), E ||v||§,
Ellullg, E(hoVu),and IIVu(t)Ilg in (93). Once p is fixed, we pick
0 small enough so that

“1
l—a-a 1" ps>o. (94)

Therefore, (93) takes the form

L' (t) > 8y (H () + EIV; + Ellull?
(95)
—E(hoVu) + [Vu(®)]3) 2 0

Consequently we have
L(t)>L(0) =

H"(0) + OE (g, 1) >0, Vt=0. (96)
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Since
172 172
|EJDuvdxlgc(E||u||§,) (EWE)"” o)

it implies that

1/(1-a)
|E J uvdx
D

<C {(Euuu;)”/ 20

+(EME) ]
(98)

for (1/n) + (1/) = 1.
We choose { = 2(1-«),n7 = 2(1-«)/(1-2c); then#/2(1—
a) = 1/(1 - 2a) < p/2, by (76) and (98) becomes

1/(1-a)

IEJ uvdx < C{ENl? " + Evi}}.  (99)
D

Using Lemma 9 with s = 2/(1 — 2«), we obtain

1/(1-a)
|EJ uvdx
D

C (H (&) + EIVul} + EIVIS +Elul} + E (ho V)
(100)
forallt > 0.
Therefore we have
L0 () = (H () + OF (u, ) 7

< 2!/ (H(t) +6/0 g

J uvdx
D

1/(1—0¢)>

C(H (t) + EIVull; + Ellv;

+Ellullb + E (h o Vu))
(101)

for all t > 0. Combining (95) and (101),
vVt >0,

L't > KLV @), (102)

where K is a positive constant depending only on C and §y;
then it yields

L9107 () > l -«

T (1 —a) L0 (0) — aKt' (103)

Let

1-«

KL ) (104)

Ty =

Then L(t) — ooast — T,. This means that there exists a
positive time T™ € (0, T,] such that

tlin;*E [F (t)] = +oo. (105)
As for the case when P(7,, = +00) < 1 (i.e, P(7,, < +00) >

0), then [|Vu(t)||, blows up in finite time T* € (0, 7,,] with
positive probability.
The proof of Theorem 10 is completed. O
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Remark 11. (1) In the deterministic case of ¢ = 0, it is well
known that for (1, u;) € Hé x L?, the condition F(0) < 0 and
_[OOO h(s)ds < p(p-2)/(p - 1) already imply that the solution
blows up in finite time (see, e.g., [11]). In the stochastic case of
& > 0, to balance the influence of W (t, x) such that the local
solution of (1) blows up with positive probability or is explo-
sive in L* sense, the initial energy and relaxation function
should be satisfied that F(0) < —(1 + )E,, and _[(;X’ h(s)ds <

pp-2)/(p-1)°.
(2) Our results have included the case which is without
viscoelastic term (i.e., h = 0 satisfied (61)).

5. Global Existence

In this section we show that solution of (1) is global if g > p.
We use the Borel-Cantelli Lemma to prove the existence of
global solution. For this aim, we introduce an energy function

e(u(t) = [u, O + IVu ®15 + lu (I + (ho Vi) (£) .
(106)

Theorem 12. Assume that (1), (ug,u,) € Hy(D) x L*(D),
E jOT lo(®)3dt < 0o, and the conditions of h hold. If q > p, u(t)

is a solution of (1) with initial data (uy, u,) € Hé x L according
to Definition 2 on the interval [0, T1; then for any T > 0,

E sup e (u(t)) < co.

0<t<T (107)

Proof. For any T > 0, we will show that uy(t) = u(t A1y) —
u(a.s.) as N — oo foranyt < T, so that the local solution
becomes a global solution where 7y is a stopping time which
is defined in Section 4. Similar to [28], by the Theorem 7, for
t € [0, TATy), u(t) = un(t) = u(t Aty) is the local solution of
(1), so the following energy equation holds:

e(u(tAnty)) = e(up) +

(heoVu) (t ATy)
Jmm I J h(t—7) Au (7) drud’ (s) dx ds

tA
+4 L
+2 Jt
ZL J |ut|quds

O ATy
+ szz J J /\ ezazdx ds.

j=1

J [ul??u (s) dx ds

u' (s),e0dW, )

(=]

(108)
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theorem, we have

Using Holder’s inequality, Young’s inequality, and embedding

HD ul? 2 (1) dxl <l |, < oo

+ Cllullh < Collug]l? + C, lullh,

+ r h(s—1) J Vu, (s) Vu, (s) dxdt
0 D

1(° d
ELh(S_T)_J |Vu T)—Vut(s)| dxdr

o1 J h) L J IVu () 2dx d
(109) "2
1d/((°
where v > 0,C is the embedding constant, and C, is a con- 3 ds <L h(7)dr|Vu (5)"; —(hoVu) ($)>
stant depending on v, consequently; we have
1
e(u(t Aty)) + 2 (K (9) 2 Vu) (9 - —h (8) IVu(s)I;
<e(ug) + (hoVu) (t A1y) < %di <j h (1) de|[Vu (s)])? = (h o Vi) (s)>
AT s s 0
-2 J. J J h(s - 1) Au () dru (s)dxds (112)
0 pJo
e 1o which implies that
. 4ch llfds +ac, | pugas 0 s
-2 J J J h(s—71) (Au (7)) dtu, (s)dx ds
tATy tATN 0 D Jo
2 j (' (), codW,) -2 j Ju s (113)
0 0 N
. < L h () dt|Vu (t)||§ —(hoVu)(tATy).
+& Tr(R)C} J lol3ds.
0

Since g > p, we distinguish two cases
(1) Either IIutIIZ > 150 we choose v so small that —2|u, |2
4| < o.
(2) Or IIutIIZ <

1; in this case, we have —2[u,|2
4Cv||ut||f; < 4Cw.

Hence, in either case, we have

e(u(tnty)) <e(ug) + (hoVu)(t A1y)
-2 LMTN JD J: h(s—1)Au(r)dru, dxds

tATN
+4Cy (t ATy) +2 J (' (s), eod‘/\fs)
0

tATN
+4C, L ||u||§ds

tATN
+& Tr(R)C) J lol3ds.
0

(111)
Using the conditions of s, we obtain

_ J rh(s — ) (Au (1)) dru, dx
D Jo
= r h(s—1) J Vu (1) Vu, (s) dx dt
0 D

= J-S h(s-1) J (Vu (1) = Vu, (s)) Vu, (s) dx dr
0 D

Consequently we have

e (u(t ATy)) < e (ug) + L " h@) delvu @)

2

tATN
+4Cy (tATy) +2 j (u' (s), eadWS)
0

tATN
+4C, L ||u||§ds

tATN
+& Tr(R)C) J lol>ds.

(114)
Taking the expectation of (114), we get
(u(tn1y)) <e(uy) +4Cy (tATy)
tATN
+C Jo Ee(u(s))ds (115)
EATN
+& Tr (R)C) j Ello|3ds.
The Gronwall’s inequality implies that
Ee(u(tAnty)) < (e(uy) +CT) T < Cy. (116)

On the other hand, we have

Ee(u(tnty)) 2 E (ITN<Te (u (TN)))

> CE (L, r|Vu (t)[3) = CN?P (1 < T)

(117)

13
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where I(-) denotes the indicator function. In view of (116) and
(117), we get
Cr

P(TN<T)SF.

(118)
The Borel-Cantelli lemma implies that P(7, < T) = 0 for any
T > 0. This shows that u = limy_, uy(t) is the global
solution. O
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