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Copyright © 2014 Yu-Hua Zeng et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In market transactions, volatility, which is a very important risk measurement in financial economics, has significantly intimate
connection with the future risk of the underlying assets. Identifying the implied volatility is a typical PDE inverse problem. In
this paper, based on the total variation regularization strategy, a bivariate total variation regularization model is proposed to
estimate the implied volatility. We not only prove the existence of the solution, but also provide the necessary condition of the
optimal control problem—Euler-Lagrange equation. The stability and convergence analyses for the proposed approach are also
given. Finally, numerical experiments have been carried out to show the effectiveness of the method.

1. Introduction

Volatility is a very important risk measurement in financial
economics. The estimation of it is critical for option pricing
and management of the derivative positions. In order to esti-
mate the volatility effectively, two main classes of parametric
approaches have been developed: discrete-time models and
continuous-time models.

There are numerous literatures on the discrete-time
models and here we provide only a partial overview related
to our studies. The ARCH model developed by Engle [1]
is the first model that provided a systematic framework for
volatilitymodeling. Based on theARCHmodel, Bollerslev [2]
proposed the GARCH model and Nelson [3] and Glosten et
al. [4] argued that the GARCHmodel provides more flexibil-
ity. There are many popular extensions including EGARCH
[3], GJR-GARCH [4], QGARCH [5], TGARCH [6], and
GARCH-M [7]. Moreover, a multifactors volatility structure
has been studied in Engel and Lee [8], Christoffersen et al.
[9], Li and Zhang [10], and Adrian and Rosenbery [11]. On
the other hand, models for asset pricing under risk-neutral
measure have been dominated traditionally by continuous-
time processes. Heston [12] proposed an option pricing

model with stochastic volatility. Duan [13] and Heston and
Nandi [14] developed an option pricing model based on the
GARCH process. However, those models fail to address the
smile and the smirk quantitatively. Existing literatures have
attempted to cope with this by combining stochastic volatility
specifications with jump process or by using nonnormal
innovations in GARCH models; see, for example, Bates [15,
16], Pan [17], Duan et al. [18, 19], Eraker [20], Broadie et al.
[21], Christoffersen et al. [22–24], and so forth.

However, those models generally suffer from a curse of
dimension that severely constrains their practice and the
coming of high frequency financial data makes it worse.
Nowadays, the availability of intraday data has facilitated
the use of the so-called Realized Volatility (RV) which was
introduced in the literature by Taylor and Xu [25] and
Anderson and Bollerslev [26] and which is grounded in the
framework of continuous time finance with the notion of
quadratic variation of a martingale. The literature on RV
models has grown remarkably over the last decade; see,
for example, Andersen et al. [27], Andersen et al. [28, 29],
Barndorff-Nielsen and Shephard [30, 31], Bandi et al. [32],
and references therein. The RV model has the clear advan-
tage of providing a precise nonparametric measure of daily
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volatility which leads to simplicity in model estimation and
superior forecasting performance. Corsi et al. [33] followed
a similar approach by jointly modeling returns and the
two-scale realized volatility [34]. Christoffersen et al. [35]
developed a new class of affine discrete-time models that
allow for closed-form option valuation formulas using the
conditional moment generation function and modeled daily
returns as well as realized volatility.

There is also a common practice to infer the volatility
from quoted option prices based on the Black-Scholes the-
oretical framework [36], called implied volatility; see, for
example, Dupier [37], Lagnado and Osher [38], Chiarella et
al. [39], Jiang and Tao [40], Crépey [41], Isakov [42], Egger
and Engl [43], Ngnepieba [44], Deng et al. [45], and so forth.
The volatility value implied by an observed market option
price (implied volatility) indicates a consensual view about
the volatility level determined by the market. This paper is
devoted to studying the regularization method of identifying
the implied volatility.

The stochastic process of the asset price 𝑆
𝑡
is modeled to

satisfy the Geometric Brownian motion:

𝑑𝑆
𝑡
= 𝜇𝑆

𝑡
𝑑𝑡 + 𝜎𝑆

𝑡
𝑑𝜔 (𝑡) , (1)

where 𝜇 is the expected rate of return, 𝜎 is the volatility, and
𝜔(𝑡) is the standard Brownian process; here 𝐸[𝜔(𝑡)2] = 𝑡.

An option is classified either as a call option or a put
option. A call (put) option is a contract which gives the buyer
(the owner) the right, but not the obligation, to buy (or sell)
an underlying asset or instrument at a specified strike price
on or before a specified date.

Suppose 𝑉(𝑆
𝑡
, 𝑡) is the price of a European option, the

differential of which is given by

𝑑𝑉 = (
𝜕𝑉

𝜕𝑆
𝜇𝑆 +

𝜕𝑉

𝜕𝑡
+
1

2
𝜎
2
𝑆
2 𝜕

2
𝑉

𝜕𝑆2
)𝑑𝑡 +

𝜕𝑉

𝜕𝑆
𝜎𝑆𝑑𝑤 (𝑡) . (2)

Consider a portfolio that involves short selling of one unit
of a European call option and long holding of Δ

𝑡
units of the

underlying asset.The portfolio valueΠ(𝑆
𝑡
, 𝑡) at time 𝑡 is given

by

Π = −𝑉 + Δ
𝑡
𝑆. (3)

By virtue of the no-arbitrage principle, we have

𝜕𝑉

𝜕𝑡
+ 𝑟𝑆

𝜕𝑉

𝜕𝑆
+
1

2
𝜎
2
𝑆
2 𝜕

2
𝑉

𝜕𝑆2
= 𝑟𝑉, (4)

𝑉
𝑇
= (𝑆

𝑇
− 𝐾)

+

= max (𝑆
𝑇
− 𝐾, 0) , call option (5)

𝑉
𝑇
= (𝐾 − 𝑆

𝑇
)
+

= max (𝐾 − 𝑆
𝑇
, 0) , put option, (6)

where 𝑟 is the riskless interest rate, 𝑇 is the maturity, and
𝐾 is the strike price. The above parabolic partial differential
equation is the famous Black-Scholes equation. With the
boundary condition 𝑉(0, 𝑡) = 0, that is, the option is
worthless if the stock is valued at nothing, the analytical
solution of the European call option is given by

𝑉 (𝑆, 𝑡) = 𝑆𝑁 (𝑑
1
) − 𝐾𝑒

−𝑟(𝑇−𝑡)
𝑁(𝑑

2
) , (7)

where

𝑁(𝑥) =
1

√2𝜋
∫

𝑥

−∞

𝑒
−𝜔
2
/2
𝑑𝜔,

𝑑
1
=

ln (𝑆/𝐾) + (𝑟 + (𝜎2/2)) (𝑇 − 𝑡)

𝜎√(𝑇 − 𝑡)
,

𝑑
2
= 𝑑

1
− 𝜎√(𝑇 − 𝑡).

(8)

The option prices obtained from the Black-Scholes pric-
ing model are functions of five parameters: 𝑆, 𝐾, 𝑟, 𝑇, and 𝜎.
Except for the volatility parameter, the other four parameters
𝑇,𝐾, 𝑞, and 𝑟 are observable quantities.There is evidence that
the volatility is time varying [46, 47] in actual markets. For
any fixed maturity, implied volatility varies with the strike
price in a parabolic shape that is often called the volatility
smile. The pattern of implied volatilities across maturities
is known as the volatility term structure. One possibility to
explain the volatility smiles in the Black-Scholes model is to
use a deterministic function of underlying asset price 𝑆

𝑡
and

time 𝑡; that is, 𝜎 = 𝜎(𝑆, 𝑡).
A natural question then arises: how canwe get the implied

volatility of the future underlying asset by option quotes?This
is the typical IPOP (inverse problem of option pricing).

The PDE inverse problem of option pricing was first
considered by Dupire in [37] where he obtained a formula
of the local volatility with all possible strike prices and
maturities. However, the formula was instable and could not
be used in practice. The inverse problem which consists in
using the results of actual measurements to infer the values of
the parameters is usually ill-posed. The fact that the solution
fails to depend continuously upon the given data is the
source of many difficulties inherently in solving the inverse
problem. Ill-posed problems require the use of regularization
techniques for any practical application. The most widely
known and applicable regularization methods is Tikhonov
regularization [48], where regular items play a critical role of
stability. Over the past decades, the inverse problem of deter-
mining the implied volatility has already obtainedwidespread
development; see, for example, [38–45, 49] and references
therein. However, the traditional Tikhonov regularization
strategymay oversmooth the solution, so that the regularized
solution cannot effectively approximate the exact solution of
the original problem, when the exact solution is nonsmooth
or even has some singularities. This shortcoming will blur
the edge of the restored image in image processing. To
overcome the shortcoming, Rudin et al. [50] proposed the
total variation regularization strategy (TV-𝐿2 model):

min
𝑢∈Ω

𝜆

2

𝑢 − 𝑓


2

𝐿
2
(Ω)

+ |∇𝑢|
𝐿
1
(Ω)
. (9)

The total variation regularization might be able to char-
acterize the properties (the jump, overnight, weekend effect,
etc.) of the volatility better. So whether the total variation reg-
ularization strategy could be applied to identify the implied
volatility is a question worth pondering.

This paper is organized as follows. Section 2 introduces
the total variation regularization item in the inverse problem
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of option pricing and puts forward a newmodelwith terminal
observations. In Section 3, we give mathematical analysis of
the existence of the solution and the necessary condition of
the optimal control problem.The stability and convergence of
the proposed regularized approach are analyzed in Section 4.
Section 5 presents a selection of numerical experiments.
Section 6 concludes the paper.

2. Total Variation Regularization Model

In [38] Lagnado and Osher determined this inverse problem
by using Tikhonov regularization strategy that is attempting
to minimize

𝐺 (𝜎) =
1

2

𝑁
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𝑖

∑
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0
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𝑖
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)
2

+ ‖∇𝜎‖
2

2
, (10)

where ∇ denotes the gradient operator. This regularization
strategy is just for one fixed value of underlying asset 𝑆

0
, at

one fixed point at time 𝑡 = 0. There is no guarantee that the
value of𝜎 calculated by this approachwill be correct either for
other underlying assets or at future times, and the estimated
volatility may be negative in some cases.

Based on their work, Chiarella et al. [39] modified the
objective functional as follow:
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2
,

(11)

where 𝑇cur is the current time.
Tikhonov regularization strategy may oversmooth the

solution, so it may not preserve the singularities of the
solution well. We adopt total variation regularization strategy
proposed by Rudin et al. [50] to maintain the singularity (the
jump, overnight, weekend effect, etc.) of volatility. In fact,
total variation regularization strategy can preserve the edge
of the restored image and has become a standard approach
for the computation of discontinuous solutions of inverse
problems.

Set𝑉(𝑆, 𝑡, 𝜎(𝑆, 𝑡)) (hereafter denote𝑉(𝑆, 𝑡, 𝜎(𝑆, 𝑡)) by𝑉(𝜎)
for convenience sake) to be the solution of the Black-Scholes
equations (4) and (5); then we regard 𝑉(𝜎) as a nonlinear
operator with respect to 𝜎:

𝐿
2
(Ω) ⊇ D ∋ 𝜎

𝑉

→ 𝑉 (𝜎) ∈ 𝐿
2
(Ω) . (12)

Consider the following bivariate total variation regular-
ization problem:

min
𝜎∈D

𝐽 (𝜎) =
1

2
‖𝑉 (𝜎) − V‖2 + 𝛼𝐽 (𝜎) , (13)

where 𝐽(𝜎) is the seminorm

𝐽 (𝜎) = ∫
Ω

|∇𝜎| 𝑑𝑆 𝑑𝑡, (14)

𝛼 denotes the regularization parameter, and V is the vector of
market observed prices at the calibration time.D : D(𝐽) ̸= 0

for “operator” 𝑉(𝜎), Ω : (0, 𝑆max) × (0, 𝑇cur] and

D (𝐽) := {𝜎 ∈ Λ : 𝐽 (𝜎) ̸=∞} ,

Λ = {𝜎 ≡ 𝜎 (𝑆, 𝑡) | 0 ≤ 𝜎min ≤ 𝜎 ≤ 𝜎max, 𝜎 ∈ 𝐿
2
(Ω)} ,

(15)

where 𝜎min, 𝜎max are given constants.
The term |∇𝜎|

−1 will appear in later necessary optimality
condition. To avoid |∇𝜎| ≈ 0 in the flat area, as is done in the
image processing, the problem (13) is usually approximated
by

min
𝜎∈𝐷

𝐽 (𝜎) =
1

2
‖𝑉 (𝜎) − V‖2 + 𝛼𝐽

𝛽
(𝜎) , (16)

where

𝐽
𝛽
(𝜎) = ∫

Ω

√|∇𝜎|
2
+ 𝛽2𝑑𝑆 𝑑𝑡. (17)

𝛽 is a (typically small) positive parameter which usually can
be taken as a constant, for example, 𝛽 = 10

−6.
Our total variation regularization strategy has two advan-

tages compared with Tikhonov regularization strategy pro-
posed by Lagnado and Osher: one is that it contains no
terms involving the Dirac delta function [51]; the other is that
the total variation regularization strategy may maintain the
singularities of the solution better. Next we will investigate
mathematical properties of the solution such as the existence,
necessary condition, stability, and convergence.

3. Existence and Necessary
Optimality Condition

The minimization problem (16) is quite different from the
standard Tikhonov regularization strategy since the regular-
ization item involves 𝐽

𝛽
(𝜎).

Lemma 1. Under the constraints of the total variation regular-
ization problem (16), if {𝜎

𝑛
} ⇀ 𝜎

∗, then {𝑉(𝜎
𝑛
)} ⇀ 𝑉(𝜎

∗
),

where 𝑉(𝜎
𝑛
) is the solution to (4) when 𝜎 = 𝜎

𝑛
.

This lemma can easily be similarly proved like proposition
A.3 in [43].

Theorem 2. The total variation minimization problem (16) at
least attains a minimizer �̃� ∈ D.

Proof. The weak lower semicontinuity of the norm and
weakly continuity of the operator 𝑉(𝜎) imply the lower
semicontinuity of the functionals ‖𝑉(𝜎) − V‖2 and 𝐽

𝛽
(𝜎).

Moreover, the level sets of the functional 𝐽
𝛽
(𝜎) are compact

in 𝐿
2
(Ω). So the total variation minimization problem (16)

has a compact set of minimizers byTheorem 2 in [48].
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We can calculate approximate solutions by solving the
Euler-Lagrange equation. Generally speaking, the total vari-
ational regularization problem (16) is not strictly convex or
even nonconvex. Next we deduce the necessary condition
Euler-Lagrange equation which has to be satisfied by each
optimal control minimum.

Set

𝐹 =
1

2
[𝑉 (𝜎) − V]2 + 𝛼 |∇𝜎 (𝑆, 𝑡)| , (18)

and further assume that 𝐹 is the third-order differentiable
function and 𝜎 = 𝜎(𝑆, 𝑡) is the second-order differentiable
function.

Theorem 3. Necessary optimality condition: let 𝜎 be a solution
of the total variation regularization problem (16); then 𝜎

satisfies

𝜕𝑉

𝜕𝜎
(𝑆, 𝑡, 𝜎) [𝑉 (𝜎) − V] − 𝛼∇ ⋅ (

∇𝜎

√|∇𝜎|
2
+ 𝛽2

) = 0. (19)

Proof. By using the variational method, the corresponding
Euler-Lagrange partial differential equation is

𝐹
𝜎
−

𝜕

𝜕𝑆
{𝐹

𝑝
} −

𝜕

𝜕𝑡
{𝐹

𝑞
} = 0, (20)

where

𝑝 =
𝜕𝜎 (𝑆, 𝑡)

𝜕𝑆
, 𝑞 =

𝜕𝜎 (𝑆, 𝑡)

𝜕𝑡
. (21)

Combining (18) and (20), we have

𝐹
𝜎
=
𝜕𝑉

𝜕𝜎
(𝑆, 𝑡, 𝜎) [𝑉 (𝜎) − V] ,

𝐹
𝑝
=
𝜕𝜎/𝜕𝑆

|∇𝜎|
, 𝐹

𝑞
=
𝜕𝜎/𝜕𝑡

|∇𝜎|
.

(22)

Therefore
𝜕𝑉

𝜕𝜎
(𝑆, 𝑡, 𝜎) [𝑉 (𝜎) − V]
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𝜕
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{(

𝜕𝜎/𝜕𝑆
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)} +

𝜕
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⇒
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|∇𝜎|
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⇒
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𝜕
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𝜕
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) ⋅ {

1

|∇𝜎|
(
𝜕𝜎

𝜕𝑆
,
𝜕𝜎

𝜕𝑡
)} = 0,

⇒
𝜕𝑉

𝜕𝜎
(𝑆, 𝑡, 𝜎) [𝑉 (𝜎) − V] − 𝛼∇ ⋅ (

∇𝜎

|∇𝜎|
) = 0.

(23)

The corresponding Euler-Lagrange equation related to the
total variation model with |∇𝜎| replaced by |∇𝜎|

𝛽
is given by

𝜕𝑉

𝜕𝜎
(𝑆, 𝑡, 𝜎) [𝑉 (𝜎) − V] − 𝛼∇ ⋅ (

∇𝜎

√|∇𝜎|
2
+ 𝛽2

) = 0. (24)

This completes the proof.

The next theorem states well posedness of the regularized
problem.

Theorem 4. Under the constraints of the total variation
regularization problem (16), the minimization of

𝐽
𝛿

𝛽
(𝜎) =

1

2


𝑉 (𝜎) − V𝛿



2

+ 𝛼𝐽
𝛽
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is stable with respect to perturbations in the data; that is, 𝛼 >
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(Ω) and 𝜎

𝑘
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for every 𝜎 ∈ D. Thus {𝜎
𝑘
} is bounded in D and therefore

has a weakly convergent subsequence {𝜎
𝑚
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𝑚
} corresponding to {𝜎

𝑚
} such

that {𝑉
𝑚
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the weak lower semicontinuity of 𝐽
𝛽
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𝑚
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If {𝜎
𝑚
, 𝑉

𝑚
} does not converge strongly to {�̂�, �̂�}, then
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and there exists a subsequence {𝜎
𝑛
, 𝑉

𝑛
} of {𝜎

𝑚
, 𝑉

𝑚
} satisfying

𝜎
𝑛
⇀ �̂�, 𝑉

𝑛
⇀ �̂�, 𝐽

𝛽
(�̂�) ≤ lim

𝑛→∞
𝐽
𝛽
(𝜎

𝑛
) ,

1

2


𝑉
𝑛
− V𝛿



2

→ 𝐶.

(32)

This combined with (30) implies

𝛼 lim
𝑛→∞

𝐽
𝛽
(𝜎

𝑛
) = 𝛼𝐽

𝛽
(�̂�) +

1

2


�̂� − V𝛿



2

− 𝐶 < 𝛼𝐽
𝛽
(�̂�) , (33)

which is a contradiction to (32), so we have

{𝜎
𝑛
} → �̂�, 𝐽

𝛽
(𝜎

𝑛
) → 𝐽

𝛽
(�̂�) . (34)

This completes the proof.

In the next theorem, we show that under the same condi-
tions on𝛼(𝛿) as in the linear case solutions of (25) converge to
a minimum-norm-solution, that is, a least squares solution.

Theorem 5. Under the constraints of the total variation reg-
ularization problem (16), there exists at least one minimizing
solution of (25). Assume that the sequence {𝛿

𝑘
} converges

monotonically to 0 and V𝑘 := V𝛿𝑘 satisfies ‖V − V𝑘‖ ≤ 𝛿
𝑘
; here V

denotes the solution of the Black-Scholes model with respect to
the minimum solution.

Moreover, assume that 𝛼(𝛿) satisfies

𝛼 (𝛿) → 0,
𝛿
2

𝛼 (𝛿)
→ 0 as 𝛿 → 0, (35)

and 𝛼(⋅) is monotonically increasing. Then every sequence
{𝜎

𝛿
𝑘

𝛼
𝑘

}, where 𝛿
𝑘
→ 0, 𝛼

𝑘
:= 𝛼(𝛿

𝑘
),

𝜎
𝛿
𝑘

𝛼
𝑘

∈ argmin {𝑉 (𝜎) − V𝑘


2

+ 𝛼𝐽 (𝜎) : 𝜎 ∈ D} , (36)

has a convergent subsequence. The limit of every convergent
subsequence is a minimum solution. If, in addition, the min-
imum solution 𝜎+ is unique, then

lim
𝛿→0

𝜎
𝛿

𝛼(𝛿)
= 𝜎

+
. (37)

Proof. Let 𝛼
𝑘
and {𝜎𝛿𝑘

𝛼
𝑘

} be as above, and let 𝜎+ be a minimum
solution. Then by the definition of {𝜎𝛿𝑘

𝛼
𝑘

}, we have


𝑉 (𝜎

𝛿
𝑘

𝛼
𝑘

) − V𝑘


2

+ 𝛼
𝑘
𝐽 (𝜎

𝛿
𝑘

𝛼
𝑘

)

≤

𝑉 (𝜎

+
) − V𝑘



2

+ 𝛼
𝑘
𝐽 (𝜎

+
)

= 𝛿
2

𝑘
+ 𝛼

𝑘
𝐽 (𝜎

+
) ,

(38)
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Figure 1: Gridding.

which shows that

lim
𝑘→∞

𝑉(𝜎
𝛿
𝑘

𝛼
𝑘

) = V, (39)

lim sup
𝑘→∞

𝐽 (𝜎
𝛿
𝑘

𝛼
𝑘

) ≤ 𝐽 (𝜎
+
) . (40)

This combinedwith (15) implies that {𝜎𝛿𝑘
𝛼
𝑘

} is bounded.Hence,
there exist an element �̇� ∈ D and a subsequence again
denoted by {𝜎𝛿𝑘

𝛼
𝑘

} such that

𝜎
𝛿
𝑘

𝛼
𝑘

⇀ �̇� as 𝑘 → ∞. (41)

Using the assumption that 𝑉(𝜎) is continuous with respect
to 𝜎 and that the norm convergence on 𝐿

2
(Ω) is stronger, it

follows from (40) that 𝑉(�̇�) = V.
From the lower semicontinuity of 𝐽(𝜎), it follows that

𝐽 (�̇�) ≤ lim inf
𝑘→∞

𝐽 (𝜎
𝛿
𝑘

𝛼
𝑘

) ≤ lim sup
𝑘→∞

𝐽 (𝜎
𝛿
𝑘

𝛼
𝑘

) ≤ 𝐽 (𝜎
+
) ≤ 𝐽 (𝜎) ,

(42)

for all 𝜎 ∈ D satisfying 𝑉(𝜎) = V. Taking 𝜎 = �̇� shows that
𝐽(�̇�) = 𝐽(𝜎

+
). That means �̇� is a minimizing solution of the

total variation regularization problem.
Using this and (42), it follows that 𝐽(𝜎𝛿𝑘

𝛼
𝑘

) → 𝐽(𝜎
+
).

If the minimizing solution of (25) is unique denoted by
𝜎
+, it follows that every sequence {𝜎𝛿𝑘

𝛼
𝑘

} has a subsequence,
and the limit of any subsequence of {𝜎𝛿𝑘

𝛼
𝑘

} has to be equal to
𝜎
+. This completes the proof.

4. Discretization and Algorithm

Next we will discretize the term ∇ ⋅ (∇𝜎/√|∇𝜎|2 + 𝛽2). Let
{Δ𝑆, Δ𝑡} denote the grid size and construct an approximation
for 𝜎(𝑆, 𝑡) at a set of points (𝑚Δ𝑆, 𝑛Δ𝑡) onΩ.

As in Figure 1, at a given target pixel 𝑂(𝑚, 𝑛) (we denote
𝑂(𝑚Δ𝑆,𝑚Δ𝑡) by 𝑂(𝑚, 𝑛) for convenience sake), let 𝐸,𝑁,𝑊,
and 𝑆 denote its four adjoint pixels, and let 𝑒, 𝑛, 𝑤, and 𝑠 be
the corresponding four midway points (not directly available
from the gridding).
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Let V = (V1, V2) = ∇𝜎/|∇𝜎|
𝛽
; then

∇ ⋅ V =
𝜕V1

𝜕𝑆
+
𝜕V2

𝜕𝑡
≈
V1
𝑒
− V1

𝑤

Δ𝑆
+
V2
𝑛
− V2

𝑠

Δ𝑡
. (43)

Next, we give further approximations at the midway points:

V1
𝑒
=

1

∇𝜎𝑒
𝛽

[
𝜕𝜎

𝜕𝑆
]

𝑒

≈
1

∇𝜎𝑒
𝛽

𝜎
𝐸
− 𝜎

𝑂

Δ𝑆
;

∇𝜎𝑒
𝛽 ≈

√(
𝜎
𝐸
− 𝜎

𝑂

Δ𝑆
)

2

+ (
𝜎
𝑁𝐸

+ 𝜎
𝑁
− 𝜎

𝑆
− 𝜎

𝑆𝐸

4Δ𝑡
)

2

+ 𝛽2.

(44)

Namely, we approximate [𝜕𝜎/𝜕𝑆]
𝑒
by the central difference

scheme and [𝜕𝜎/𝜕𝑡]
𝑒
by the average of (𝜎

𝑁𝐸
− 𝜎

𝑆𝐸
)/2Δ𝑡 and

(𝜎
𝑁
− 𝜎

𝑆
)/2Δ𝑡. Similar discussion applies to the other three

directions𝑁,𝑊, and 𝑆:

V1
𝑤
=

1

∇𝜎𝑤
𝛽

[
𝜕𝜎

𝜕𝑆
]

𝑤

≈
1

∇𝜎𝑤
𝛽

𝜎
𝑊
− 𝜎

𝑂

Δ𝑆
;

∇𝜎𝑤
𝛽 ≈

√(
𝜎
𝑊
− 𝜎

𝑂

Δ𝑆
)

2

+ (
𝜎
𝑁𝑊

+ 𝜎
𝑁
− 𝜎

𝑆
− 𝜎

𝑆𝑊

4Δ𝑡
)

2

+ 𝛽2;

V2
𝑛
=

1

∇𝜎𝑛
𝛽

[
𝜕𝜎

𝜕𝑡
]

𝑛

≈
1

∇𝜎𝑛
𝛽

𝜎
𝑁
− 𝜎

𝑂

Δ𝑡
;

∇𝜎𝑛
𝛽 ≈

√(
𝜎
𝑁
− 𝜎

𝑂

Δ𝑡
)

2

+ (
𝜎
𝑁𝐸

+ 𝜎
𝐸
− 𝜎

𝑊
− 𝜎

𝑊𝑁

4Δ𝑆
)

2

+ 𝛽2;

V2
𝑠
=

1

∇𝜎𝑠
𝛽

[
𝜕𝜎

𝜕𝑡
]

𝑠

≈
1

∇𝜎𝑠
𝛽

𝜎
𝑆
− 𝜎

𝑂

Δ𝑡
;

∇𝜎𝑠
𝛽 ≈

√(
𝜎
𝑆
− 𝜎

𝑂

Δ𝑡
)

2

+ (
𝜎
𝐸𝑆
+ 𝜎

𝐸
− 𝜎

𝑊
− 𝜎

𝑊𝑆

4Δ𝑆
)

2

+ 𝛽2,

(45)

and then we have

−∇ ⋅ (
∇𝜎

|∇𝜎|
𝛽

) = − ∇ ⋅ V = (
V1
𝑤
− V1

𝑒

Δ𝑆
) + (

V2
𝑠
− V2

𝑛

Δ𝑡
)

= ∑

𝑝∈𝑊,𝐸

1


∇𝜎

𝑝

𝛽

[
𝜎 (𝑂) − 𝜎 (𝑝)

(Δ𝑆)
2

]

+ ∑

𝑝∈𝑁,𝑆

1


∇𝜎

𝑝

𝛽

[
𝜎 (𝑂) − 𝜎 (𝑝)

(Δ𝑡)
2

] .

(46)

At a pixel 𝑂(𝑚, 𝑛), (19) is discretized to

0 =

𝐼

∑

𝑖=1

𝐽

∑

𝑗=1

𝜕𝑉

𝜕𝜎
(𝑚Δ𝑆, 𝑛Δ𝑡, 𝐾

𝑖
, 𝑇

𝑗
, 𝜎 (𝑚Δ𝑆, 𝑛Δ𝑡))

× [𝑉 (𝑚Δ𝑆, 𝑛Δ𝑡, 𝐾
𝑖
, 𝑇

𝑗
, 𝜎 (𝑚Δ𝑆, 𝑛Δ𝑡)) − V

𝑖𝑗
]

+ 𝛼 ∑

𝑝∈𝑊,𝐸

1


∇𝜎

𝑝

𝛽

[
𝜎 (𝑚Δ𝑆, 𝑛Δ𝑡) − 𝜎 (𝑝)

(Δ𝑆)
2

]

+ 𝛼 ∑

𝑝∈𝑁,𝑆

1


∇𝜎

𝑝

𝛽

[
𝜎 (𝑚Δ𝑆, 𝑛Δ𝑡) − 𝜎 (𝑝)

(Δ𝑡)
2

] .

(47)

To obtain the local optimal solution, we have to handle
the problem of calculating the partial derivative 𝜕𝑉/𝜕𝜎 in
the Euler-Lagrange equation. By the Black-Scholes formula,
the option price 𝑉 and partial derivative 𝜕𝑉/𝜕𝜎 can be
approximated, respectively, as follows:

𝐶 (𝑆, 𝑡) = 𝑆𝑁 (𝑑
1
) − 𝐾𝑒

−𝑟(𝑇−𝑡)
𝑁(𝑑

2
) ,

𝜕𝐶

𝜕𝜎
= 𝑆𝑁


(𝑑

1
)
𝜕𝑑

1

𝜕𝜎
− 𝐾𝑒

−𝑟(𝑇−𝑡)
𝑁

(𝑑

2
)
𝜕𝑑

2

𝜕𝜎

=
𝑆√𝑇 − 𝑡𝑒

−𝑑
2

1
/2

√2𝜋
.

(48)

Let

𝐴 := {𝑊, 𝐸} , 𝐵 := {𝑁, 𝑆} ,

𝐴
𝑝1
= 𝛼∑

𝑝∈𝐴

1


∇
𝑝

𝛽
(Δ𝑆)

2
, 𝐵

𝑝2
= 𝛼∑

𝑝∈𝐵

1


∇𝜎

𝑝

𝛽
(Δ𝑡)

2
,

𝐶 =

𝐼

∑

𝑖=1

𝐽

∑

𝑗=1

𝜕𝑉

𝜕𝜎
(𝑚Δ𝑆, 𝑛Δ𝑡, 𝐾

𝑖
, 𝑇

𝑗
, 𝜎 (𝑚Δ𝑆, 𝑛Δ𝑡))

× [𝑉 (𝑚Δ𝑆, 𝑛Δ𝑡, 𝐾
𝑖
, 𝑇

𝑗
, 𝜎 (𝑚Δ𝑆, 𝑛Δ𝑡)) − V

𝑖𝑗
] ,

(49)

and then we have

𝜎 (𝑚Δ𝑆, 𝑛Δ𝑡) =
𝐴
𝑝1
𝜎 (𝑝1) + 𝐵

𝑝2
𝜎 (𝑝2) − 𝐶

𝐴
𝑝1
+ 𝐵

𝑝2

. (50)

We adopt the Gauss-Jacobi iteration scheme. At each step 𝑘,
we update 𝜎𝑘−1 to 𝜎𝑘 by

𝜎
𝑘
(𝑚Δ𝑆, 𝑛Δ𝑡) =

𝐴
𝑘−1

𝑝1
𝜎
𝑘−1

(𝑝1) + 𝐵
𝑘−1

𝑝2
𝜎
𝑘−1

(𝑝2) − 𝐶
𝑘−1

𝐴
𝑘−1

𝑝1
+ 𝐵

𝑘−1

𝑝2

.

(51)

An important issue in practice is the choice of the
regularization parameter 𝛼, which determines the balance
between accuracy and regularity in the method. In general,
the smaller the 𝛼, the preciser the solution.When 𝛼 → 0, the
optimal control functional can reach the exact solution but is
unstable. So regularization parameter 𝛼 should not be too big
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so that the process of seeking 𝜎
𝛼
is stable.There are two main

approaches to set 𝛼. One is a priori methods, in which the
choice of 𝛼 only depends on 𝛿, the level on noise on the data,
such as the size of bid-ask spread; the other is a posteriori
methods, in which 𝛼may depend on the data in a less specific
way. In financial literatures themost commonly usedmethod
for choosing 𝛼 is the a posteriori methods based on the so-
called discrepancy principle (such as Morozov discrepancy
principle [52]), which consists in choosing the greatest level
of 𝛼 for which the data fidelity item does not exceed the level
of noise 𝛿 on the observations:

𝛼 := sup {𝛼 > 0,

𝑉 (𝜎) − V𝛿


< 𝑑𝛿} . (52)

Algorithm 6. Total variation for solving the implied volatility.

(1) Choose a function 𝜎
0
(𝑆, 𝑡). This will be the initial

approximation to the true volatility.
(2) Determine 𝜎

0
(𝑚Δ𝑆, 𝑛Δ𝑡).

(3) Compute 𝑉(𝑚Δ𝑆, 𝑛Δ𝑡, 𝐾
𝑖
, 𝑇

𝑗
, 𝜎

𝑘
(𝑚Δ𝑆, 𝑛Δ𝑡)) and

(𝜕𝑉/𝜕𝜎)(𝑚Δ𝑆, 𝑛Δ𝑡, 𝐾
𝑖
, 𝑇

𝑗
, 𝜎

𝑘
(𝑚Δ𝑆, 𝑛Δ𝑡)) by using

the Black-Scholes formula:

𝐶 (𝑆, 𝑡) = 𝑆𝑁 (𝑑
1
) − 𝐾𝑒

−𝑟(𝑇−𝑡)
𝑁(𝑑

2
) ,

𝜕𝐶

𝜕𝜎
= 𝑆𝑁


(𝑑

1
)
𝜕𝑑

1

𝜕𝜎
− 𝐾𝑒

−𝑟(𝑇−𝑡)
𝑁

(𝑑

2
)
𝜕𝑑

2

𝜕𝜎

=
𝑆√𝑇 − 𝑡𝑒

−𝑑
2

1
/2

√2𝜋
.

(53)

(4) Compute 𝐴𝑘

𝑝1
, 𝐵

𝑘

𝑝2
, 𝐶

𝑘
, 𝜎

𝑘
(𝑝1), and 𝜎𝑘(𝑝2).

(5) Adopt the Gauss-Jacobi iteration scheme:

𝜎
𝑘+1

(𝑚Δ𝑆, 𝑛Δ𝑡) =

𝐴
𝑘

𝑝1
𝜎
𝑘
(𝑝1) + 𝐵

𝑘

𝑝2
𝜎
𝑘
(𝑝2) − 𝐶

𝑘

𝐴
𝑘

𝑝1
+ 𝐵

𝑘

𝑝2

. (54)

(6) If ‖𝜎
𝑘+1

− 𝜎
𝑘
‖
∞

< tol, the iteration is stopped;
otherwise 𝑘 = 𝑘 + 1 and go to step 3.

5. Numerical Experiments

In this section, we present numerical experiments to illustrate
the theory and algorithm presented in above sections. First
we assume that the true volatility function,𝜎

𝑒𝑥
(𝑆, 𝑡), is defined

as

𝜎
𝑒𝑥
(𝑆, 𝑡) =

{{

{{

{

0.2 + 0.01𝑒
−0.01𝑆

+
cos (3𝑡)
100

;

0.19 + 0.01𝑒
−0.01𝑆

+
cos (3𝑡)
100

.

(55)

In numerical experiments, the interest rate 𝑟 = 0.05,
𝑆max = 100, we consider only one time to option maturity
𝑇 = 1. We take Δ𝑆 = 1, Δ𝑡 = 0.01 and 𝐾

1
= 40, 𝐾

2
=

41, . . . 𝐾
21
= 60. Figure 2 displays the true volatility function.

We solve the volatility by using Algorithm 6, and Figure 3
shows the error between 𝜎

𝑒𝑥
(𝑆, 𝑡) and the estimated 𝜎50TV(𝑆, 𝑡),
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Figure 2: Volatility function 𝜎
𝑒𝑥
(𝑆, 𝑡).
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Figure 3: The error between 𝜎
𝑒𝑥
(𝑆, 𝑡) and 𝜎50TV(𝑆, 𝑡).

where 𝜎50TV(𝑆, 𝑡) denotes the 50 iterations of total variation
algorithm. Almost all errors fell in the region [−0.002, 0.002]
and ‖𝜎50TV(𝑆, 𝑡) − 𝜎𝑒𝑥(𝑆, 𝑡)‖∞ = 0.0069.

If we fix 𝑆 = 𝑆
∗, for example, 𝑆∗ = 40, Figure 4

shows the comparison between 𝜎
𝑒𝑥
(40, 𝑡) (continuous line)

and 𝜎
50

TV(40, 𝑡). Figure 5 shows the comparison between the
𝜎
𝑒𝑥
(40, 𝑡) and 𝜎50TIK(40, 𝑡) (by using the classical Tikhonov reg-

ularization strategy) and ‖𝜎50TIK(𝑆, 𝑡) − 𝜎𝑒𝑥(𝑆, 𝑡)‖∞ = 0.0161.
According to Figures 4 and 5, the estimation of implied

volatility using total variation regularization has two advan-
tages compared with the classical Tikhonov regularization:
one is that the total variation regularization maintains the
singularities of the solution better (when 𝑇 = 0.5) and
the Tikhonov regularization oversmooths the discontinuity
point; the other is that the error (‖𝜎(𝑆, 𝑡) − 𝜎

𝑒𝑥
(𝑆, 𝑡)‖

∞
)

obtained by total variation regularization is smaller.

6. Conclusion

A lot of research works have been made to determine the
implied volatility by regularization strategies. Based on the
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advantages and great success of the total variation regulariza-
tion strategy in image processing, we propose the total varia-
tion regularization strategy to estimate the implied volatility
under the framework of the Black-Scholesmodel.We identify
the implied volatility by solving an optimal control problem
and investigate a rigorousmathematical analysis. Not only the
existence is discussed, but also the stability and convergence
for this regularized approach are given. We also deduce
the Euler-Lagrange equation. Furthermore, the results of
numerical experiments are presented.
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