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The cost-based system optimum problem in networks with continuously distributed value of time is formulated as a path-based
form, which cannot be solved by the Frank-Wolfe algorithm. In light of magnitude improvement in the availability of computer
memory in recent years, path-based algorithms have been regarded as a viable approach for traffic assignment problems with
reasonably large network sizes. We develop a path-based gradient projection algorithm for solving the cost-based system optimum
model, based on Goldstein-Levitin-Polyak method which has been successfully applied to solve standard user equilibrium and
system optimum problems. The Sioux Falls network tested is used to verify the effectiveness of the algorithm.

1. Introduction

The traffic assignment problem consists in determining
which routes to assign to the drivers who travel on a
transportation network from some origins and some desti-
nations. Wardrop [1] stated two principles for determining
the assignment. The first principle leads to an equilibrium
state in which no user can reduce his travel time by using
an alternative route. The second principle induces a system
optimal state in which the total travel time of all users (or the
average journey time in a network) isminimum regarding the
benefit of the society (i.e., whole traffic). It is well known that,
in the standard traffic network equilibriummodel, a so-called
marginal-cost toll (equivalent to the negative externality
that an additional individual imposes on other users of the
system) can drive a user equilibrium flow pattern to a system
optimum [2]. This conventional traffic network equilibrium
model typically assumes that users’ VOTs are identical,
that is, homogeneous users. However, user heterogeneity is
manifested in the fact that some travelers take slower paths
to avoid tolls while others choose tolled roads to save time.
Some studies pointed out that the VOT varies significantly

across individuals because of different socioeconomic char-
acteristics, trip purposes, attitudes, and inherent preferences
[3–6].

The concept of value of time (VOT) plays a central role in
road pricing analysis as it describes how users make tradeoffs
between money and time in response to road toll charges.
The network disutility can be measured in travel time or
travel cost. It is obvious that different system optimal (SO)
flow patterns will be obtained if we use different units (time
or money) to measure the system disutility. Previous studies
that address user heterogeneity can be classified into two
categories [7]. The first is the multiclass approach in which
the entire feasible VOT range is divided into several prede-
termined intervals according to a discrete VOT distribution
or some socioeconomic characteristics [2, 8–10]. The second
lets VOTs be continuously distributed across the population
of trips, which is regarded to be more rational than others
[11–15]. In the these studies, including those dealingwith two-
route or highway/transit two-mode problems [12, 16–19], the
continuously distributed VOT between each OD pair was
treated as a random variable following a probability density
function [13, 15, 20–22].
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For more realistically capturing the travelers’ path choice
behavior in response to toll charges, Wu and Huang [23]
assumed that the VOT varies significantly across individuals
because of their different socioeconomic characteristics, trip
purposes, attitudes, and inherent preferences. Furthermore,
the VOT of each user is assumed to be deterministic and con-
stant, because the factors influencing VOT keep unchanged
within a certain time period. They extended the work of
Yang andHuang [2] to the case with continuously distributed
value of time across users, for finding anonymous tolls to
realize target flow pattern in networks with continuously
distributed value of time. To find anonymous tolls to realize
systemoptimum in cost units,Wu andHuang [23] proposed a
cost-based system optimum model in general networks with
continuously distributed value of time but did not study its
traffic assignment algorithms.The calculation of the model is
very difficult [24]. It is formulated in a path-based form and
cannot be solved by the Frank-Wolfe algorithmwhich is link-
based and cannot provide path flows.

In the past, path-based algorithms, even those not enu-
merating all possible paths, were traditionally discarded by
transportation researchers for solving large-scale network
problems because of intensive memory requirements and the
difficulties in manipulating and storing paths [25]. However,
path-based algorithms automatically provide not only the
link-flow solution but also the path-flow solution that may
be required in certain applications. In light of magnitude
improvement in the availability of computer memory in
recent years, recent research on path-based algorithms has
demonstrated and established that it is a viable approach for
traffic assignment problems with reasonably large network
sizes [26–29]. Chen et al. [25] stated that much of the
attention has been focused on two particular algorithms: the
disaggregate simplicial decomposition (DSD) algorithm and
the gradient projection (GP) algorithm. Application of GP to
solve the traffic assignment problem is relatively new, but GP
is as good as or better than DSD in direct comparisons.

In this paper, we develop a GP algorithm for the proposed
cost-based system optimum model, based on the Goldstein-
Levitin-Polyak (GLP) GP method formulated by Bertsekas
[30] for general nonlinear multicommodity problems which
is successfully used for solving traffic assignment problems
[26]. The proposed GLP algorithm includes five key opera-
tions: (1) assigning the flow on each path to the links along to
find the total link flows, (2) computing link travel times and
path travel times and sorting path travel times in decreasing
order, (3) computing the first derivative lengths (marginal
social path travel costs) for all paths between each OD pair
and finding the shortest first derivative lengths for each
OD pair, (4) finding the second derivative lengths for each
OD pair, and (5) updating the path flows using the second
derivative lengths as scaling.

In the next section, a system optimum problem in cost
units is formulated in fixed demand networks with contin-
uously distributed value of time. In Section 3, we develop a
GP algorithm for the cost-based system optimum model. A
numerical example is presented in Section 4 for testing the
GP algorithm. Section 5 concludes the paper.
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Figure 1: Continuously distributed VOTs for users between each
OD pair 𝑤.

2. Cost-Based System Optimum Problem

In this section, we formulate the system optimum in cost
units in a fixed demand network with heterogeneous users in
terms of a continuously distributed VOT. Let 𝐺 = (𝑉, 𝐴) be
a directed network where 𝑉 is the set of nodes and 𝐴 the set
of links. Each link 𝑎 ∈ 𝐴 has an associated flow-dependent
travel time 𝑡

𝑎
(V
𝑎
) which is assumed to be differentiable,

convex, andmonotonically increasing subject to the link flow
V
𝑎
. Let 𝑊 be the set of all OD pairs, 𝑅

𝑤
the set of all paths

connecting OD pair 𝑤 ∈ 𝑊, and |𝑅
𝑤
| the number of paths

between each OD pair. Let 𝑆𝑟
𝑤
be the set of drivers (users)

on path 𝑟 ∈ 𝑅
𝑤
and 𝑓

𝑟

𝑤
the number of these drivers; f =

(. . . , 𝑓
𝑟

𝑤
, . . .). We have V
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, 𝑎 ∈ 𝐴, where

𝛿
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𝑤
equals 1 if path 𝑟 between OD pair 𝑤 contains link 𝑎,

and 0 otherwise. All users on link 𝑎 ∈ 𝐴 are charged by an
exogenously given toll 𝜏

𝑎
≥ 0. Each path 𝑟 between each OD

pair 𝑤 is associated with a travel time 𝑡𝑟
𝑤
(f) and a travel cost

(dollar) 𝜏𝑟
𝑤
≥ 0, 𝑡𝑟
𝑤
(f) = ∑
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Let 𝑑
𝑤
be the travel demand between each OD pair 𝑤.

Instead of assuming a unified VOT for the whole popula-
tion, in this paper we set a unique, specific VOT for each
trip-maker. Let the distribution of VOTs across individuals
between each OD pair 𝑤 be characterized by a continuous
function 𝛽

𝑤
(𝑥) > 0. Furthermore, let the population between

each OD pair be ordered in decreasing order of their VOTs;
that is, 𝑑𝛽

𝑤
(𝑥)/𝑑𝑥 ≤ 0, where 𝑥 is the 𝑥th user between each

OD pair 𝑤, as demonstrated in Figure 1. Note that here the
VOT distribution is given. In fact, there exist many studies
which address estimation of VOTs. By observing choices
among alternative combinations of cost and travel time, based
on stated preference (SP) analysis, due to the ability to control
time and cost variables [31], information about the relative
weighting of cost and time can be inferred, and from this the
distribution of VOT can be derived. In general, literature on
estimation of VOTs refers to two main models: multinomial
logit model [32, 33] and mixed logit model [34, 35]. Recently,
the mixed logit approach is popular because it does not have
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to assume the irrelevance of independent alternatives (IIA)
property.

Let 𝑗 = 1, 2, . . . , |𝑅
𝑤
| denote the paths between each

OD pair 𝑤, satisfying 𝑡
1

𝑤
(f) ≥ 𝑡

2

𝑤
(f) ≥ ⋅ ⋅ ⋅ ≥ 𝑡

|𝑅
𝑤
|

𝑤
(f). The

system optimum naturally requires that the users with higher
VOTs should choose faster paths and those with lower VOTs
choose slower paths. Otherwise, the total travel cost can be
reduced by switching a higher VOTuser on a slower path into
a faster path. For the sake of notational consistency, we define
∑
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cost units can be formulated as the following minimization
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Recall that the users between each OD pair are arranged in
decreasing order of their VOTs. This determines the integral
formulation appearing in (1).

The first-order optimality conditions of the above mini-
mization problem are as follows:

𝑡
𝑟

𝑤
(f) 𝛽
𝑤
(

|𝑅
𝑤
|

∑

𝑘=𝑟

𝑓
𝑘

𝑤
) + ∑

𝑤∈𝑊

|𝑅
𝑤
|

∑

ℎ=1

∑

𝑎∈𝐴

𝑑𝑡
𝑎
(V
𝑎
)

𝑑V
𝑎

𝛿
𝑤

𝑎𝑟
𝛿
𝑤

𝑎ℎ

× ∫

𝑓
ℎ

𝑤

0

𝛽
𝑤
(

|𝑅
𝑤
|

∑

𝑘=ℎ+1

𝑓
𝑘

𝑤
+ 𝑥)𝑑𝑥

+

𝑟−1

∑

𝑘=1

𝑡
𝑘

𝑤
(f) ∫
𝑓
𝑘

𝑤

0

𝜕𝛽
𝑤
(∑
|𝑅
𝑤
|

ℎ=𝑘+1
𝑓
ℎ

𝑤
+ 𝑥)

𝜕𝑓
𝑟

𝑤

𝑑𝑥 = 𝑔
so
𝑤,cost

if 𝑓𝑟
𝑤
> 0, 𝑟 = 1, 2, . . . ,





𝑅
𝑤





, 𝑤 ∈ 𝑊,

(4)

𝑡
𝑟

𝑤
(f) 𝛽
𝑤
(

|𝑅
𝑤
|

∑

𝑘=𝑟

𝑓
𝑘

𝑤
) + ∑

𝑤∈𝑊

|𝑅
𝑤
|

∑

ℎ=1

∑

𝑎∈𝐴

𝑑𝑡
𝑎
(V
𝑎
)

𝑑V
𝑎

𝛿
𝑤

𝑎𝑟
𝛿
𝑤

𝑎ℎ

× ∫

𝑓
ℎ

𝑤

0

𝛽
𝑤
(

|𝑅
𝑤
|

∑

𝑘=ℎ+1

𝑓
𝑘

𝑤
+ 𝑥)𝑑𝑥

+

𝑟−1

∑

𝑘=1

𝑡
𝑘

𝑤
(f) ∫
𝑓
𝑘

𝑤

0

𝜕𝛽
𝑤
(∑
|𝑅
𝑤
|

ℎ=𝑘+1
𝑓
ℎ

𝑤
+ 𝑥)

𝜕𝑓
𝑟

𝑤

𝑑𝑥 ≥ 𝑔
so
𝑤,cost

if 𝑓𝑟
𝑤
= 0, 𝑟 = 1, 2, . . . ,





𝑅
𝑤





, 𝑤 ∈ 𝑊,

(5)

where 𝑔so
𝑤,cost is the minimal travel cost between each OD pair

𝑤.

Note that the sum of the second and third terms on the
left hand side of (4) is the total externality caused by the
𝑥th user of OD pair 𝑤, 𝑥 = ∑
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of path 𝑟. The second term states that this new trip-maker
imposes additional costs on all users who may belong to
other OD pairs and other paths and have their own VOTs but
traverse the links of path 𝑟. This is the traditional congestion
externality reported in the literature. The third term states
that the costs of paths 1 to 𝑟 − 1 are reduced since the 𝑓

𝑟

𝑤
th

user’s path choice changes the VOTs of the users on these
paths (this user chooses path 𝑟 rather than other longer
paths). This is another kind of externality attributed to the
VOT distribution of OD trips. Let
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(6)
Also, for the remainder of the paper when we refer to the

first derivative lengths we mean the first derivatives of the
objective function, which can also be regarded as marginal
social travel cost corresponding to path flow on path 𝑟.

Equations (4) and (5) can then be rewritten as
𝑐
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(7)
Therefore, in a network where each user has a unique

VOT, (7) state that, at optimality, the marginal social travel
costs on all the used paths connecting a given OD pair are
equal and less than or equal to those on all the unused paths.
This is similar to a standard system optimum, in which, at
optimality, the marginal social travel times on all the used
paths between each given OD pair are equal and less than or
equal to those on all the unused paths.

Clearly, the proposed model is more complicated than
a standard system optimum. According to the extreme
value theorem that a continuous function in the closed and
bounded space attains itsmaximumandminimum, the above
minimization program must attain its minimum value. The
most common algorithm used to solve traffic assignment
problems is link-based Frank-Wolfe algorithm introduced by
LeBlanc et al. [36]. However, the objective function is, in
general, not convex since the path travel costs depending not
only on its own path but also on other paths are inseparable
and asymmetric in terms of the path flows. Fortunately, for



4 Journal of Applied Mathematics

the differentiable and bounded objective, the convexity of the
constraints allows the development of a gradient projection
algorithm.

3. Path-Based Traffic Assignment Algorithm

In this section, we adopt the Goldstein-Levitin-Polyak algo-
rithm to the traffic assignment problem. In each iteration, the
travel demand constraints (2) are eliminated by reformulating
the path-flow variables in terms of nonshortest path flows
in terms of the first derivative lengths to make projection
operation simpler. This is implemented by partitioning 𝑓
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into the shortest path flow 𝑓
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It should be noted that 𝑟 is the shortest path in terms of
the first derivative lengths but |𝑅
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| is the shortest path in

terms of path travel times. Putting constraints (8) into the
objective function, we obtain a new formulation with just the
nonnegativity constraints on the nonshortest path flows as
the decision variables. Consider
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Putting (13) into (12) yields
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, 𝑟 ̸= 𝑟, 𝑤 ∈ 𝑊.

(14)

Note that the second derivative is, in general, not positive.
This is different from the transformed objective function
of the standard system optimum model [25]. Thus, in each
iteration, the scaled GLP algorithm updates the path flows
according to the following iteration equations:

𝑓
𝑟

𝑤
(𝑛 + 1) = [𝑓

𝑟

𝑤
(𝑛) −
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+

,
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𝑤
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𝑤
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𝑤
(𝑛) , 𝑤 ∈ 𝑊,
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Figure 2: Continuously distributed VOTs of users.

𝑓
𝑟

𝑤
(𝑛 + 1) = 𝑓

𝑟

𝑤
(𝑛) , if 𝑠𝑟

𝑤
(𝑛) ≤ 0, ∀𝑟 ∈ 𝑅

𝑤
, 𝑟 ̸= 𝑘

𝑤
(𝑛) ,

𝑤 ∈ 𝑊,
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𝑤
(𝑛)

𝑤
(𝑛 + 1) = 𝑑

𝑤
−
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𝑤
|

∑

𝑟=1,𝑟 ̸= 𝑘
𝑤
(𝑛)

𝑓
𝑟

𝑤
(𝑛 + 1) ,

(15)

where 𝑛 is the iteration number, 𝛼(𝑛) is the step size,
𝑘
𝑤
(𝑛) is the shortest path in terms of the first derivative

lengths between each OD pair 𝑤, 𝑠𝑟
𝑤
(𝑛) is a diagonal scaling,

equivalent to the second derivative regarding path 𝑟, that is,
𝑠
𝑟

𝑤
(𝑛) = 𝜕

2

𝑍(
̃f)/(𝜕𝑓𝑟

𝑤
)
2, 𝑐𝑟
𝑤
(f(𝑛)) and 𝑐

𝑘
𝑤
(𝑛)

𝑤
(f(𝑛)) are the first

derivative lengths along path 𝑟 and path 𝑘
𝑤
(𝑛) between each

OD pair 𝑤, and []
+ denotes the projection operation.

Note that 𝑐𝑟
𝑤
(f(𝑛)) − 𝑐

𝑘
𝑤
(𝑛)

𝑤
(f(𝑛)) can be explained by (11),

and (15) certainly satisfies the flow conservation constraints
in (2) and nonnegativity conditions in (3).

With the above flow update equations, the complete
algorithmic steps can be summarized as follows.

Step 1 (initialization). Set 𝑡
𝑎
(0), for all 𝑎, and perform all-or-

nothing assignments. This yields path flows f𝑤(1), for all𝑤 ∈

𝑊, and link flows 𝑥
𝑎
(1), for all 𝑎. Set iteration counter 𝑛 = 𝑙.

Initialize the path-set 𝑅
𝑤
with the shortest path for each OD

pair 𝑤.

Step 2 (update). Set 𝑡
𝑎
(𝑛) = 𝑡

𝑎
(𝑥
𝑎
(𝑛)), for all 𝑎. Sort path

travel time in decreasing order; that is, 𝑡1
𝑤
(𝑛) ≥ 𝑡

2

𝑤
(𝑛) ≥ ⋅ ⋅ ⋅ ≥

𝑡
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𝑎𝑘
, 𝑘 = 1, 2, . . . , |𝑅

𝑤
|.

Step 3. Update the first derivative lengths 𝑐𝑘
𝑤
(𝑛)of all the paths

𝑘 in 𝑅
𝑤
, for all𝑤 ∈ 𝑊.

Step 4 (direction finding). Find the shortest paths 𝑘
𝑤
(𝑛) in

terms of marginal social travel cost between each OD pair 𝑤,
based on {𝑐

𝑘

𝑤
(𝑛)}. If 𝑘

𝑤
(𝑛) ∉ 𝑅

𝑤
, then add it to 𝑅

𝑤
and record
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Figure 3: The Sioux Falls test network.

𝑐
𝑘

𝑛

𝑤

𝑤
(𝑛). Otherwise, tag the shortest among the paths in 𝑅

𝑤
as

𝑘
𝑤
(𝑛).

Step 5 (move). Set the new path flows as follows:

𝑓
𝑘

𝑤
(𝑛 + 1) = max{0, 𝑓𝑘
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(𝑛) −
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𝑘
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(𝑛)
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(𝑛))} ,

if 𝑠𝑟
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(𝑛) > 0, ∀𝑘 ∈ 𝑅

𝑤
, 𝑘 ̸= 𝑘

𝑤
(𝑛) , 𝑤 ∈ 𝑊,
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𝑤
, 𝑘 ̸= 𝑘

𝑤
(𝑛) ,

𝑤 ∈ 𝑊,

(16)

where 𝑠
𝑘

𝑤
(𝑛) = 𝜕

2

𝑍(
̃
𝑓)/(𝜕𝑓

𝑘

𝑤
)

2

, for all 𝑘 ∈ 𝑅
𝑤
, and 𝛼(𝑛) is a

scalar step-size modifier.
Also, 𝑓𝑘𝑤(𝑛)

𝑤
(𝑛 + 1) = 𝑑

𝑤
− ∑
|𝑅
𝑤
|

𝑟=1,𝑟 ̸= 𝑘
𝑤
(𝑛)

𝑓
𝑟

𝑤
(𝑛 + 1), for all

𝑘 ∈ 𝑅
𝑤
, 𝑘 ̸= 𝑘

𝑤
(𝑛).

Update link flows 𝑥
𝑎
(𝑛 + 1) = ∑

𝑤∈𝑊
∑
𝑘∈𝑅
𝑤

𝑓
𝑘

𝑤
(𝑛 + 1)𝛿

𝑤

𝑘𝑎
.

Step 6 (convergence test). Determine the total deviation of
marginal social travel costs between all OD pairs 𝐸 =

∑
𝑤∈𝑊

∑
𝑘∈𝑅
𝑤

(𝑓
𝑘

𝑤
(𝑛)/𝑑
𝑤
) ⋅ |(𝑐
𝑘

𝑤
(𝑛) − 𝑐

𝑘
𝑤
(𝑛)

𝑤
(𝑛))/𝑐

𝑘

𝑤
(𝑛)|. If 𝐸 ≤ 𝜀,

then stop. Otherwise, set 𝑛 = 𝑛 + 𝑙 and go to Step 2.

For convenience, it is better to keep 𝛼(𝑛) constant (i.e.,
𝛼(𝑛) = 𝛼) since 𝑠

𝑘

𝑤
(𝑛) is used for scaling [26]. Given any

starting set of path flows, there exists 𝛼 such that if 𝛼 ∈ [0, 𝛼]

the sequence generated by this algorithm converges to the
objective function (1) [37].

4. Numerical Example

In the section, a numerical example is presented to illustrate
the effectiveness of the proposed model and algorithm. The
test network is the Sioux Falls network, which is a medium
sized network with 24 nodes and 76 links, as shown in
Figure 3. This paper considers only one origin-destination
pair fromnode 1 to node 20 for conveniently providing a com-
plete picture of the travel pattern which demonstrates all used
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Table 1: Generated paths, path costs, and VOTs.

Paths Link set Path flow Path cost VOT
Path 1 1-2-6-5-4-11-14-23-22-21-20 2.9481 166.7692 [1.0000, 1.1179]
Path 2 1-2-6-8-7-18-20 12.8851 163.4423 [1.1179, 1.9039]
Path 3 1-2-6-8-16-17-19-20 6.7645 151.2485 [1.6333, 1.9039]
Path 4 1-3-4-11-14-23-22-21-20 0.9821 124.8157 [1.9039, 1.9432]
Path 5 1-3-4-5-9-8-16-17-19-20 1.6310 122.9879 [1.9432, 2.0084]
Path 6 1-3-4-11-10-17-19-20 2.6448 122.7562 [2.0084, 2.1142]
Path 7 1-3-12-11-14-23-22-21-20 1.3288 121.6256 [2.1142, 2.1674]
Path 8 1-3-4-5-9-10-15-22-20 5.0010 121.1957 [2.1674, 2.3674]
Path 9 1-3-12-11-14-15-19-20 1.6379 120.9318 [2.3674, 2.4329]
Path 10 1-3-12-11-10-16-17-19-20 2.1797 120.5415 [2.4329, 2.5201]
Path 11 1-3-12-11-10-17-19-20 0.4598 119.5662 [2.5201, 2.5385]
Path 12 1-3-12-11-10-15-22-21-20 0.5293 119.2367 [2.5385, 2.5597]
Path 13 1-3-12-13-24-21-20 11.0078 117.8441 [2.5597, 3.0000]

path flows, all used link flows, and path choice behaviors.
We here use the standard Bureau of Public Road (BPR) link
cost function for our numerical study.The functional form is
given by

𝑡
𝑎
(𝑥
𝑎
) = 𝑡
𝑓
(1 + 0.15(

𝑥
𝑎

𝐶
𝑎

)

4

) , (17)

where 𝑡
𝑓
is the free-flow cost, 𝑥

𝑎
is the flow, and𝐶

𝑎
is the link

capacity.
Assume that the total demand 𝑑

12
is 50, and all network

users which are differed by a continuously distributed VOT
are given in Figure 2 as follows:

𝛽 (𝑥) = 3 −

𝑥

25

, 𝑥 ∈ [0, 50] . (18)

Note that, in the numerical example, we show that 𝛼 = 1

achieves very good convergence rate.
The GP algorithm provides a complete picture of the

travel pattern and keeps track of the distribution of the OD
flows among the different routes, as shown in Table 1 and
Figure 3. In the Sioux Falls network, there are many paths
between OD pair 1–20. However, the number of the used
paths to define the system optimum keeps small; that is, there
are only thirteen used paths which are given in a decreasing
order in terms of path travel times. It can be seen that,
at optimality, people with high VOTs would choose faster
paths, whereas people with low VOTs would choose slower
paths.This is consistent with the requirements for the system
optimum in Section 2.

Figure 3 shows the optimal link-flow distribution. Note
that the real lines refer to the used links and the dotted
lines refer to the unused paths. The link flows equal the
values beside the corresponding links and are also graphically
demonstrated by the widths of the corresponding lines. It can
be easily seen that in the network most links in the forward
directions are used, butmost links in the backward directions
are unused.

Table 2 compares the total travel times and total travel
costs under different types of traffic assignment, respectively.

Table 2: Total travel times and total travel costs under different types
of traffic assignment.

Type of traffic assignment Total travel
time

Total travel
cost

User equilibrium 6827 13655
Time-based system optimum 6723 13343
Cost-based system optimum 6912 13281

At the cost-based system optimum, the total travel cost is the
lowest whereas the total travel time is the highest. At the time-
based system optimum, the total travel time is the lowest,
and the total travel cost is more than the cost-based system
optimum but less than the user equilibrium.

Figure 4 depicts the pattern of convergence toward the
minimum. This convergence pattern is demonstrated in
terms of the reduction in the value of the objective function
from iteration to iteration. After the 21st iteration, the
marginal contribution of each successive iteration becomes
smaller and smaller as the algorithm proceeds (this property
is the basis for the convergence criterion used in the example).
After the 40th iteration, the value of the objective function
almost keeps unchanged and is approximately equal to the
minimum value 13281, verifying the effectiveness of the
proposed GP algorithm.

5. Conclusions

The VOT varies significantly across individuals because of
the different socioeconomic characteristics, trip purposes,
attitudes, and inherent preferences. Furthermore, the VOT of
each user is assumed to be deterministic and constant because
the factors influencing VOT keep unchanged within a certain
time period. We provide a theoretical investigation of the
system optimum problem in fixed demand networks with
continuous VOT distribution.This system optimumproblem
is formulated as a minimization program in cost units, which
is more complicated than standard system optimum. This is
because its objective function is, in general, nonconvex since
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Figure 4: The objective function values versus the iterations of the
GP algorithm.

path travel costs depending not only on its own path but also
on other paths are inseparable and asymmetric in terms of the
path flows. Considering the convexity of the constraints, we
have developed a path-based GLP algorithm for solving this
model. The test results in the Sioux Falls network show the
effectiveness of the algorithm.

This study lays a solid foundation for road pricing to real-
ize the cost-based system optimum in fixed demand general
networks with heterogeneous users. For future research, this
framework can be extended to the case of elastic demand
and further investigate how to determine anonymous tolls to
realize the system optimum in cost units.
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