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Two kinds of homomorphisms of fuzzy approximation spaces based on complete residuated lattice are proposed. The homomor-
phisms are structure-preserving maps in some sense. We also introduce the fuzzy approximation subspaces and investigate their
correspondence with the homomorphisms. Given a fuzzy equivalence relation, the factor set of the fuzzy approximation space is
discussed.

1. Introduction

The rough set theory proposed by Pawlak [1, 2] is a mathe-
matical tool to deal with intelligent systems characterized by
insufficient and incomplete information. Its key concept is a
pair of lower and upper approximation operators based on
an equivalence relation. Through the pair of operators, the
hidden information may be unraveled. Rough set theory has
received much attention in the past decades. The successful
applications of rough set theory in a variety of problems have
fully demonstrated the usefulness of rough set theory.

In Pawlak’s rough set theory, equivalence relation is an
important concept. The lower and upper approximation
operators are built from the equivalence classes. By replacing
equivalence relations with arbitrary binary relations, general-
izations of Pawlak’s rough set have been obtained. Fuzzy sets
provide a convenient tool for representing vague concepts
by allowing partial memberships. So by replacing the binary
relations with fuzzy ones, various kinds of fuzzy rough sets
could be obtained [3–10]. As in classical rough set theory,
there are two approaches [11] to deal with the fuzzy case,
named the constructive and axiomatic ones. Fuzzy rough sets
based on residuated lattice were proposed by Radzikowska
and Kerre in [12]. She and Wang discussed the axiomatic
approach of the fuzzy rough sets based on residuated lattice
in [13].

Sometimes it is necessary to construct the connection of
two approximation spaces, in order to transmit information

hidden in them. And also we want to deal with a small
database rather than a large one, so building the communica-
tion between them is very important. The homomorphisms
between rough sets are proposed by Graymala-Busse in [14],
in order to deal with the correspondence between two infor-
mation systems. It is very useful in dealingwith data compres-
sion in information systems and approximation spaces. In
[15, 16], Wang et al. proposed the type 1 and type 2 consistent
functions, then introduced the homomorphisms in terms of
the consistent function of information systems and the fuzzy
information systems, respectively. Then Zhu and Wen revis-
ited the homomorphisms between information systems (clas-
sical and fuzzy case, resp.) in [17, 18]. And the predecessor-
consistent function and successor-consistent function have
been introduced, they are just the type 1 and type 2 consistent
functions in [17, 18]. The researchers explored more about
invariant properties under the homomorphisms in the liter-
ature.

In this paper, we discuss the homomorphisms between
fuzzy rough approximation spaces based on complete residu-
ated lattice. We propose the homomorphisms between them
as structure preserving maps and discuss their properties.
The fuzzy approximation subspaces and the factor sets of
fuzzy approximation spaces are introduced. The relationship
between the factor sets and the homomorphisms is also
investigated.

We focus on the homomorphism between fuzzy approx-
imation spaces in this paper. It is organized as follows. In
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Section 2, we recall some fundamental properties of residu-
ated lattice, 𝐿-fuzzy sets and 𝐿-fuzzy relations. Some basic
properties of 𝐿-fuzzy rough sets are also given in Section 2.
In Section 3, we introduce the Z-homomorphisms induced
by Zadeh’s forward operators and discuss their properties.
The fuzzy approximation subspaces are proposed in Section 4
and the correspondence with the homomorphisms is also
discussed. In Section 5, we propose another kind of homo-
morphisms that relies more heavily on the relations of the
two fuzzy approximation spaces. The factor set of fuzzy
approximation spaces is also introduced in this section.
Section 6 carries the conclusions.

2. Preliminaries

A residuated lattice [19, 20] (𝐿, ∗, → , ∨, ∧, 0, 1) is an algebra
with two binary operations ∗, → on 𝐿 such that

(1) (𝐿, ∨, ∧, 0, 1) is a bounded lattice with the greatest
element 1 and the least element 0;

(2) (𝐿, ∗, 1) is a commutative monoid and ∗ is isotonic at
both arguments;

(3) (∗, → ) are adjoint pairs; that is, 𝑥 ∗ 𝑦 ≤ 𝑧 if and only
if 𝑥 ≤ 𝑦 → 𝑧 for all 𝑥, 𝑦, 𝑧 ∈ 𝐿.

A residuated lattice is said to be complete if the underlying
lattice is complete.

In what follows, ∗ is sometimes called a generalized tri-
angular norm and the implicator → is called the residuum of
∗. An implicator 𝐼 is called leftmonotonic (resp., rightmono-
tonic) if 𝐼(⋅, 𝑎) is decreasing for every 𝑎 ∈ 𝐿 (resp., 𝐼(𝑎, ⋅) is
increasing). If 𝐼 is both left and right monotonic, it is called
hybrid monotonic.

In the paper, 𝐿 always denotes a complete residuated
lattice if not otherwise specified. The precomplement on 𝐿 is
the map ¬ : 𝐿 → 𝐿 defined by ¬𝑎 = 𝑎 → 0 for every 𝑎 ∈ 𝐿.
Some basic properties of complete residuated lattices are as
follows (more properties about complete residuated lattices
can be referred to in [19, 20]):

(1) 1 → 𝑎 = 𝑎, 𝑎 ≤ 𝑏 ⇔ 𝑎 → 𝑏 = 1;

(2) (𝑎 → 𝑏) ∗ (𝑏 → 𝑐) ≤ 𝑎 → 𝑐, (𝑎 → 𝑏) ∗ (𝑐 → 𝑑) ≤

(𝑎 ∗ 𝑐) → (𝑏 ∗ 𝑑);

(3) 𝑎 → (𝑏 → 𝑐) = 𝑏 → (𝑎 → 𝑐) = (𝑎 ∗ 𝑏) → 𝑐;

(4) 𝑎 ≤ (𝑏 → 𝑎 ∗ 𝑏), 𝑎 ∗ (𝑎 → 𝑏) ≤ 𝑏;

(5) 𝑎 ∗ (⋁
𝑖∈𝐼
𝑏
𝑖
) = ⋁

𝑖∈𝐼
(𝑎 ∗ 𝑏

𝑖
);

(6) 𝑎 → (⋀
𝑖∈𝐼
𝑏
𝑖
) = ⋀

𝑖∈𝐼
(𝑎 → 𝑏

𝑖
), (⋁
𝑖∈𝐼
𝑎
𝑖
) → 𝑏 =

⋀
𝑖∈𝐼
(𝑎 → 𝑏);

(7) 𝑎 → (𝑏 → 𝑎) = 1, 𝑎 → (𝑏 → 𝑎 ∗ 𝑏) = 1;

(8) 𝑏 → 𝑐 ≤ (𝑎 → 𝑏) → (𝑎 → 𝑐), 𝑐 → 𝑏 ≤ (𝑏 →

𝑎) → (𝑐 → 𝑎);

(9) 𝑎 ≤ ¬¬𝑎;

(10) 𝑎 → ¬𝑏 = ¬(𝑎 ∗ 𝑏); ¬(⋁
𝑖∈𝐼
𝑎
𝑖
) = ⋀

𝑖∈𝐼
(¬𝑎
𝑖
).

If ¬¬𝑎 = 𝑎 holds for every 𝑎 ∈ 𝐿, then 𝐿 is called
involutive. In this case, the following conditions hold:

(11) 𝑎 → 𝑏 = (¬𝑏) → (¬𝑎) = ¬(𝑎∗(¬𝑏)); 𝑎∗𝑏 = ¬(𝑎 →
(¬𝑏));

(12) ¬(⋀
𝑖∈𝐼
𝑎
𝑖
) = ⋁

𝑖∈𝐼
(¬𝑎
𝑖
).

When the ∗ operator is exactly the operator ∧ of the
residuated lattice, it is called Heyting algebra. A complete
Heyting algebra is a special case of complete residuated
lattice, it is also called frame.

In [21], Goguen first introduced 𝐿-fuzzy set as a general-
ization of Zadeh’s-fuzzy set, where 𝐿 is a complete residuated
lattice. An 𝐿-fuzzy set 𝐴 on 𝑋 is a map 𝐴 : 𝑋 → 𝐿 and all
the 𝐿-fuzzy sets on 𝑈 are denoted by 𝐿𝑋. For every 𝑎 ∈ 𝐿, we
use 𝑎 to denote the constant 𝐿-fuzzy set on𝑋. For 𝐴, 𝐵 ∈ 𝐿𝑋,
we denote 𝐴 ⊆ 𝐵 if 𝐴(𝑥) ≤ 𝐵(𝑥) for every 𝑥 ∈ 𝑋.

Given two 𝐿-fuzzy sets 𝐴 and 𝐵, new 𝐿-fuzzy sets can be
induced as follows:

(𝐴 ∗ 𝐵)(𝑥) = 𝐴(𝑥) ∗ 𝐵(𝑥);
(𝐴 ∧ 𝐵)(𝑥) = 𝐴(𝑥) ∧ 𝐵(𝑥);
(𝐴 ∨ 𝐵)(𝑥) = 𝐴(𝑥) ∨ 𝐵(𝑥);
(𝐴 → 𝐵)(𝑥) = 𝐴(𝑥) → 𝐵(𝑥);
(¬𝐴)(𝑥) = 𝐴(𝑥) → 0.

In [22–27], various types of reflexivities, antisymmetries,
and transitivities are investigated. According to these notions,
proximity and similarity fuzzy relations, fuzzy partitions, and
fuzzy orderings, fuzzy equivalences are introduced. Proper-
ties of these fuzzy binary relations and operations on them
are also studied.

An 𝐿-fuzzy relation [21] 𝑅 on𝑋 is a map 𝑅 : 𝑋×𝑋 → 𝐿,
where 𝑅(𝑥, 𝑦) denotes the degree between 𝑥 and 𝑦, (𝑥, 𝑦) ∈
𝑈 × 𝑈.

𝑅 is serial if for every 𝑥 ∈ 𝑋, ⋁
𝑦∈𝑋

𝑅(𝑥, 𝑦) = 1; 𝑅
is reflexive if 1 ≤ 𝑅(𝑥, 𝑥) for all 𝑥 ∈ 𝑋; 𝑅 is transitive
if ⋁
𝑦∈𝑋

𝑅(𝑥, 𝑦) ∗ 𝑅(𝑦, 𝑧) ≤ 𝑅(𝑥, 𝑧) for all 𝑥, 𝑧 ∈ 𝑋; 𝑅
is symmetric if 𝑅(𝑥, 𝑦) = 𝑅(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋; 𝑅 is
antisymmetric if for all 𝑥, 𝑦 ∈ 𝑋, 𝑅(𝑥, 𝑦) = 𝑅(𝑦, 𝑥) = 1

implies that 𝑥 = 𝑦.
A reflexive, symmetric, and transitive 𝐿-fuzzy relation 𝑅

on a set 𝑋 is called a fuzzy equivalence relation [28]. The
antisymmetric fuzzy equivalence relation is called a fuzzy
equality. The set of fuzzy equivalence relations on 𝑋 forms a
complete lattice. The meet coincides with the intersection of
the 𝐿-fuzzy relations, but the join does not coincide with the
ordinary union.

Let 𝑅 be a fuzzy equivalence relation on a set𝑋. For every
𝑎 ∈ 𝑋, 𝑅

𝑎
is called a fuzzy equivalence class determined by

𝑅, where 𝑅
𝑎
(𝑦) = 𝑅(𝑎, 𝑦) for every 𝑦 ∈ 𝑋. The set 𝑋/𝑅 =

{𝑅
𝑎
, 𝑎 ∈ 𝑋} is called the factor set of𝑋 with respect to 𝑅.

Lemma 1 (see [28]). Let𝑅 be a fuzzy equivalence relation on a
set 𝑋. Then, for every 𝑥, 𝑦 ∈ 𝑋, the following is true:

(1) 𝑅(𝑥, 𝑦) = ⋁
𝑧∈𝑋

𝑅(𝑥, 𝑧) ∗ 𝑅(𝑦, 𝑧);
(2) 𝑅(𝑥, 𝑦) = 1 ⇔ 𝑅

𝑥
= 𝑅
𝑦
.
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The notion of fuzzy rough sets based on residuated lattice
was proposed by Radzikowska and Kerre in [12]. By taking
complete residuated lattices instead of [0, 1] as the truth value
structures, it differs from the concept of fuzzy rough sets that
are investigated in [4–10].

Definition 2 (see [12, 13]). Let (𝐿, ∗, → , ∨, ∧, 0, 1) be a com-
plete residuated lattice,𝑈 a nonempty set, and𝑅 an 𝐿-relation
on 𝑈. (𝑈, 𝑅) is called an 𝐿-fuzzy approximation space. For
every 𝐴 ∈ 𝐿

𝑈 and every 𝑥 ∈ 𝑈, 𝑅(𝐴) and 𝑅(𝐴) are defined as

𝑅 (𝐴) (𝑥) = ⋁

𝑦∈𝑈

(𝑅 (𝑥, 𝑦) ∗ 𝐴 (𝑦)) ,

𝑅 (𝐴) (𝑥) = ⋀

𝑦∈𝑈

(𝑅 (𝑥, 𝑦) → 𝐴 (𝑦)) .

(1)

𝑅(𝐴) and 𝑅(𝐴) are called an upper and lower 𝐿-
fuzzy rough approximation of 𝐴, respectively. The pair
(𝑅(𝐴), 𝑅(𝐴)) is called the fuzzy rough set of𝐴; if 𝑅(𝐴) = 𝐴 =

𝑅(𝐴), then 𝐴 is called 𝑅-definable fuzzy set.
It is easy to check that fuzzy rough set defined above is a

wide generalization of (𝐼, 𝑇)-fuzzy rough sets [10], where 𝑇
is a 𝑡-norm and 𝐼 is the residual implicator based on 𝑇. In
the case when 𝐿 = {0, 1}, 𝐴 and 𝑅 can be reduced to crisp
subsets of 𝑈 and 𝑈 × 𝑈, respectively, and 𝑅(𝐴) and 𝑅(𝐴)
are precisely the corresponding concepts in classical rough
set theory. Nevertheless, 𝑅(𝐴) ⊆ 𝑅(𝐴), which is true in the
classical case, is not true in the fuzzy setting.

The following proposition provides basic properties of the
lower and upper 𝐿-fuzzy rough approximation operators.

Proposition 3 (see [12, 13]). Let (𝐿, ∗, → , ∨, ∧, 0, 1) be a com-
plete residuated lattice and (𝑈, 𝑅) an 𝐿-fuzzy approximation
space. Then for all 𝐴, 𝐵 ∈ 𝐿𝑈 and 𝐴

𝑖
∈ 𝐿
𝑈 (for all 𝑖 ∈ 𝐼),

(1) 𝑅(0) = 0, 𝑅(𝑈) = 𝑈;
(2) If 𝐴 ⊆ 𝐵, then 𝑅(𝐴) ⊆ 𝑅(𝐵), 𝑅(𝐴) ⊆ 𝑅(𝐵);
(3) 𝑅(𝐴) ⊆ ¬𝑅(¬𝐴), 𝑅(𝐴) ⊆ ¬𝑅(¬𝐴), ¬𝑅(𝐴) = 𝑅(¬𝐴);
(4) 𝑅(⋁

𝑖∈𝐼
𝐴
𝑖
) = ⋁

𝑖∈𝐼
𝑅(𝐴
𝑖
), 𝑅(⋀

𝑖∈𝐼
(𝐴
𝑖
)) = ⋀

𝑖∈𝐼
𝑅(𝐴
𝑖
);

(5) 𝑅(𝑎 ∗ 𝐴) = 𝑎 ∗ 𝑅(𝐴), 𝑅(𝑎 → 𝐴) = 𝑎 → 𝑅(𝐴);
(6) 𝑅(𝑎) ⊆ 𝑎, 𝑎 ⊆ 𝑅(𝑎);
(7) 𝑅(𝑎) = 𝑎 ⇔ 𝑅(𝑈) = 𝑈, 𝑎 = 𝑅(𝑎) ⇒ 𝑅(0) = 0;
(8) 𝑅(1

𝑦
∗ 𝑎)(𝑥) = 𝑅(𝑥, 𝑦) ∗ 𝑎, 𝑅(1

𝑦
→ 𝑎) = 𝑅(𝑥, 𝑦) →

𝑎, where 1
𝑦
∈ 𝐿
𝑈, defined by

1
𝑦 (𝑥) = {

1, if 𝑥 = 𝑦;
0, otherwise.

(2)

It is necessary to mention that when 𝐿 is not involutive,
𝑅(𝐴) and 𝑅(𝐴) are not dual to each other. So many results
of 𝑅(𝐴) based on complete residuated lattice are not dual to
𝑅(𝐴) as in many other kinds of fuzzy rough sets. However,
the following proposition shows that 𝑅(𝐴) and 𝑅(𝐴) are dual
to each other when the truth value is an involutive complete
residuated lattice.

Proposition 4 (see [13]). Let (𝐿, ∗, → , ∨, ∧, 0, 1) be an invo-
lutive complete residuated lattice and (𝑈, 𝑅) an𝐿-fuzzy approx-
imation space. Then for every 𝐴 ∈ 𝐿

𝑈, 𝑅(𝐴) = ¬𝑅(¬𝐴),
𝑅(𝐴) = ¬𝑅(¬𝐴).

For more details about fuzzy rough sets based on residu-
ated lattices, please refer to [12, 13]. In the following, we use
fuzzy instead of 𝐿-fuzzy for the consistency of the context.

3. Homomorphism Determined by Zadeh’s
Fuzzy Forward Operators

In this section, we always assume that 𝐿 is a complete
residuated lattice. Let 𝑓 : 𝑋 → 𝑌 be a map, the Zadeh’s
fuzzy forward operators𝑓→

𝐿
: 𝐿
𝑋
→ 𝐿
𝑌 and fuzzy backward

operators 𝑓←
𝐿
: 𝐿
𝑌
→ 𝐿
𝑋 are defined as follows:

𝑓
→

𝐿
(𝐴) (𝑎) = ⋁

𝑓(𝑥)=𝑎

𝐴 (𝑥) , ∀𝐴 ∈ 𝐿
𝑋
, ∀𝑎 ∈ 𝑌;

𝑓
←

𝐿
(𝐵) (𝑥) = 𝐵 (𝑓 (𝑥)) , ∀𝐵 ∈ 𝐿

𝑌
, ∀𝑥 ∈ 𝑋.

(3)

In this section, we proposed the Z-homomorphisms
determined by Zadeh’s forward operators between fuzzy
approximation spaces based on complete residuated lattice.
Some of their properties are discussed.

Definition 5. Let (𝑋, 𝑅
1
), (𝑌, 𝑅

2
) be fuzzy approximation

spaces and 𝑓 : 𝑋 → 𝑌 a map. Then 𝑓 is called an upper
Z-homomorphism if it satisfies 𝑓→ (𝑅

1
(𝐴)) ⊆ 𝑅

2
(𝑓
→
(𝐴)),

for every 𝐴 ∈ 𝐿
𝑋; 𝑓 is called a lower Z-homomorphism if it

satisfies 𝑓→ (𝑅
1
(𝐴)) ⊆ 𝑅

2
(𝑓
→
(𝐴)), for every 𝐴 ∈ 𝐿

𝑋; 𝑓 is
called a Z-homomorphism if it is both fuzzy upper and fuzzy
lower Z-homomorphism.

We call a map 𝑓 : (𝑋, 𝑅
1
) → (𝑌, 𝑅

2
) relation-preserving

if and only if 𝑅
1
(𝑥, 𝑦) ≤ 𝑅

2
(𝑓(𝑥), 𝑓(𝑦)); 𝑓 is called relation-

embedding if 𝑅
1
(𝑥, 𝑦) = 𝑅

2
(𝑓(𝑥), 𝑓(𝑦)); 𝑓 is called relation-

isomorphism if 𝑓 is bijective and relation-embedding. For
every 𝑦 ∈ 𝑋, 1

𝑦
denotes the fuzzy subset of𝑋, where

1
𝑦 (𝑥) = {

1, if 𝑦 = 𝑥,
0, otherwise.

(4)

Theorem 6. Let (𝑋, 𝑅
1
), (𝑌, 𝑅

2
) be fuzzy approximation

spaces and 𝑓 : 𝑋 → 𝑌 a map. Then 𝑓 is an upper Z-
homomorphism if and only if 𝑓 is relation-preserving.

Proof. For every 𝑥, 𝑦 ∈ 𝑋,

𝑓
→
(𝑅
1
(1
𝑦
)) (𝑓 (𝑥)) = ⋁

𝑓(𝑧)=𝑓(𝑥)

𝑅
1
(1
𝑦
) (𝑧)

= ⋁

𝑓(𝑧)=𝑓(𝑥)

⋁

𝑢∈𝑋

𝑅
1 (𝑧, 𝑢) ∗ 1𝑦 (𝑢)

= ⋁

𝑓(𝑧)=𝑓(𝑥)

𝑅
1
(𝑧, 𝑦) ;
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𝑅
2
(𝑓
→
) (1
𝑦
) (𝑓 (𝑥)) = ⋁

𝑎∈𝑌

𝑅
2
(𝑓 (𝑥) , 𝑎) ∗ ( ⋁

𝑓(𝑧)=𝑎

1
𝑦 (𝑧)) ,

= ⋁

𝑎∈𝑌

⋁

𝑓(𝑧)=𝑎

𝑅
2
(𝑓 (𝑥) , 𝑎) ∗ 1𝑦 (𝑧)

= 𝑅
2
(𝑓 (𝑥) , 𝑓 (𝑦)) .

(5)

Since 𝑓 is an upper Z-homomorphism, we have 𝑅
1
(𝑥, 𝑦) ≤

𝑅
2
(𝑓(𝑥), 𝑓(𝑦)); that is, 𝑓 is relation-preserving.
On the other hand, for every 𝐴 ∈ 𝐿

𝑋, 𝑎 ∈ 𝑌,

𝑓
→
(𝑅
1 (𝐴)) (𝑎) = ⋁

𝑓(𝑧)=𝑎

(⋁

𝑢∈𝑋

𝑅
1 (𝑧, 𝑢) ∗ 𝐴 (𝑢))

𝑅
2
(𝑓
→
(𝐴)) (𝑎) = ⋁

𝑏∈𝑌

𝑅
2 (𝑎, 𝑏) ∗ ( ⋁

𝑓(𝑧)=𝑎

𝐴 (𝑧)) .

(6)

Since 𝑓 : (𝑋, 𝑅
1
) → (𝑌, 𝑅

2
) is a relation-preserving map,

we have 𝑅
1
(𝑧, 𝑢) ≤ 𝑅

2
(𝑓(𝑧), 𝑓(𝑢)) = 𝑅

2
(𝑎, 𝑓(𝑢)), for 𝑧 ∈ 𝑋

such that 𝑓(𝑧) = 𝑎. So 𝑅
1
(𝑧, 𝑢) ∗ 𝐴(𝑢) ≤ 𝑅

2
(𝑎, 𝑓(𝑢)) ∗

(⋁
𝑓(V)=𝑓(𝑢)𝐴(V)). Hence,

⋁

𝑢∈𝑋

𝑅
1 (𝑧, 𝑢) ∗ 𝐴 (𝑢) ≤ ⋁

𝑢∈𝑋

𝑅
2
(𝑎, 𝑓 (𝑢)) ∗ ( ⋁

𝑓(V)=𝑓(𝑢)

𝐴 (V))

≤ ⋁

𝑏∈𝑌

𝑅
2 (𝑎, 𝑏) ∗ ( ⋁

𝑓(V)=𝑏
𝐴 (V)) .

(7)

Therefore, 𝑓→ (𝑅
1
(𝐴)) ⊆ 𝑅

2
(𝑓
→
)(𝐴).

Corollary 7. Let (𝑋, 𝑅
1
), (𝑌, 𝑅

2
) be fuzzy approximation

spaces and 𝑓 : 𝑋 → 𝑌 a map. Then 𝑓 is an upper Z-
homomorphism if and only if 𝑓→ (𝑅

1
(1
𝑥
)) ⊆ 𝑅

2
(𝑓
→
)(1
𝑥
) for

every 𝑥 ∈ 𝑋.

Proof. The claim is easily derived fromTheorem 6.

Corollary 8. Let (𝑋, 𝑅
1
), (𝑌, 𝑅

2
) be fuzzy approximation

spaces and 𝑓 : 𝑋 → 𝑌 a surjective upper Z-homomorphism.
Then the following assertions hold:

(1) If 𝑅
1
is serial, then 𝑅

2
is serial;

(2) If 𝑅
1
is reflexive, then 𝑅

2
is reflexive.

Proof. Since 𝑓 is surjective, for every 𝑎 ∈ 𝑌, there exists a
𝑥 ∈ 𝑋, such that 𝑓(𝑥) = 𝑎.

(1) Assume that 𝑅
1
is serial, we have

1 = ⋁

𝑦∈𝑋

𝑅
1
(𝑥, 𝑦) ≤ ⋁

𝑦∈𝑋

𝑅
2
(𝑎, 𝑓 (𝑦)) ≤ ⋁

𝑏∈𝑌

𝑅
2 (𝑎, 𝑏) . (8)

Hence, 𝑅
2
is serial.

(2) 𝑅
2
(𝑎, 𝑎) ≥ 𝑅

1
(𝑥, 𝑥) = 1, so we have𝑅

2
that is reflexive.

Proposition 9. Let (𝑋, 𝑅
1
), (𝑌, 𝑅

2
) be fuzzy approximation

spaces and𝑓 : 𝑋 → 𝑌 a lower Z-homomorphism. If𝑅
1
,𝑅
2
are

reflexive and transitive, then 𝑓→ (𝑅
1
(𝑅
1𝑥
)) = 𝑅

2
(𝑓
→
(𝑅
1𝑥
)).

Proof. For every 𝑥 ∈ 𝑋, 𝑎 ∈ 𝑌, 𝑅
1
, 𝑅
2
is reflexive and transi-

tive as follows:

𝑓
→
(𝑅
1
(𝑅
1𝑥
)) (𝑎) = ⋁

𝑓(𝑧)=𝑎

(⋀

𝑢∈𝑋

𝑅
1 (𝑧, 𝑢) → 𝑅

1𝑥 (𝑢))

= ⋁

𝑓(𝑧)=𝑎

𝑅
1 (𝑥, 𝑧) ,

𝑅
2
(𝑓
→
(𝑅
1𝑥
)) (𝑎) = ⋀

𝑏∈𝑌

𝑅
2 (𝑎, 𝑏) → ( ⋁

𝑓(𝑧)=𝑏

𝑅
1 (𝑥, 𝑧)) .

(9)

Since 𝑓 is a lower Z-homomorphism, we have ⋁
𝑓(𝑧)=𝑎

𝑅
1
(𝑥,

𝑧) ≤ ⋀
𝑏∈𝑌
𝑅
2
(𝑎, 𝑏) → (⋁

𝑓(𝑧)=𝑏
𝑅
1
(𝑥, 𝑧)) ≤ ⋁

𝑓(𝑧)=𝑎
𝑅
1
(𝑥, 𝑧).

Therefore, 𝑓→ (𝑅
1
(𝑅
1𝑥
)) = 𝑅

2
(𝑓
→
(𝑅
1𝑥
)).

Theorem10. Let𝐿 be an involutive complete residuated lattice,
(𝑋, 𝑅
1
), (𝑌, 𝑅

2
) be fuzzy approximation spaces, and 𝑓 : 𝑋 →

𝑌 be bijective. Then the following assertions hold:

(1) 𝑓 is an upper Z-homomorphism if and only if
𝑓
→
(𝑅
1
(𝐴)) ⊇ 𝑅

2
(𝑓
→
(𝐴));

(2) 𝑓 is a lower Z-homomorphism if and only if
𝑓
→
(𝑅
1
(𝐴)) ⊇ 𝑅

2
(𝑓
→
(𝐴));

(3) 𝑓 is a Z-homomorphism if and only if 𝑓→ (𝑅
1
(𝐴)) =

𝑅
2
(𝑓
→
(𝐴)) and 𝑓→ (𝑅

1
(𝐴)) = 𝑅

2
(𝑓
→
(𝐴)). More-

over, 𝑅
1
(𝑥, 𝑦) = 𝑅

2
(𝑓(𝑥), 𝑓(𝑦)).

Proof. (1) Since 𝑓 is bijective, there exists a unique 𝑥 ∈ 𝑋

such that 𝑓(𝑥) = 𝑎 for every 𝑎 ∈ 𝑌. So for every 𝐴 ∈ 𝐿
𝑋, we

have 𝑓→ (¬𝐴) = ¬𝑓
→
(𝐴). Therefore, 𝑓 is an upper Z-

homomorphism⇔ 𝑓
→
(𝑅
1
(𝐴)) ⊆ 𝑅

2
(𝑓
→
(𝐴)) ⇔

𝑓
→
(𝑅
1 (¬𝐴)) ⊆ 𝑅2 (𝑓

→
(¬𝐴))

⇐⇒ 𝑓
→
(¬𝑅
1 (𝐴)) ⊆ ¬ (𝑅2 (𝑓

→
(𝐴)))

⇐⇒ ¬(𝑓
→
(𝑅
1 (𝐴))) ⊆ ¬ (𝑅2 (𝑓

→
(𝐴)))

⇐⇒ 𝑓
→
(𝑅
1 (𝐴)) ⊇ 𝑅2 (𝑓

→
(𝐴)) .

(10)

The duality of 𝑅 and 𝑅 is guaranteed when 𝐿 is involutive.
(2) It could be proved similarly as (1).
(3) It follows (1), (2), and Definition 5. FromTheorem 6,

we have 𝑅
1
(𝑥, 𝑦) = 𝑅

2
(𝑓(𝑥), 𝑓(𝑦)).

Proposition 11. If 𝐿 is not involutive,𝑓 : (𝑋, 𝑅
1
) → (𝑌, 𝑅

2
) is

a bijective Z-homomorphism, we also have 𝑓→ (𝑅
1
(𝐴)) =

𝑅
2
(𝑓
→
(𝐴)).
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Proof. Since 𝑓 is bijective, for every 𝑎 ∈ 𝑌, there exists a
unique 𝑥 ∈ 𝑋 such that 𝑓(𝑥) = 𝑎. So for every 𝐴 ∈ 𝐿

𝑋,

𝑓
→
(𝑅
1 (𝐴)) (𝑓 (𝑥)) = ⋀

𝑦∈𝑋

𝑅
1
(𝑥, 𝑦) → 𝐴 (𝑦) ,

𝑅
2
(𝑓
→
(𝐴)) (𝑓 (𝑥)) = ⋀

𝑦∈𝑋

𝑅
2
(𝑓 (𝑥) , 𝑓 (𝑦)) → 𝐴 (𝑦) .

(11)

Because 𝑓 is a homomorphism, we have 𝑓→ (𝑅
1
(𝐴)) ⊆

𝑅
2
(𝑓
→
(𝐴)) and 𝑓 is relation-preserving. Therefore, 𝑅

1
(𝑥,

𝑦) → 𝐴(𝑦) ≥ 𝑅
2
(𝑓(𝑥), 𝑓(𝑦)) → 𝐴(𝑦). So 𝑓→ (𝑅

1
(𝐴)) ⊇

𝑅
2
(𝑓
→
(𝐴)).

Proposition 12. Let 𝐿 be an involutive complete residuated
lattice, (𝑋, 𝑅

1
), (𝑌, 𝑅

2
) be fuzzy approximation spaces, and 𝑓 :

𝑋 → 𝑌 be a bijective map. Then 𝑓 is a Z-homomorphism if
and only if 𝑓−1 is a Z-homomorphism.

Proof. Assume that 𝑓 is a bijective Z-homomorphism, for
every 𝐵 ∈ 𝐿𝑌, we have

(𝑓
−1
)
→

(𝑅
2 (𝐵)) (𝑥) = ⋁

𝑦∈𝑋

𝑅
2
(𝑓 (𝑥) , 𝑓 (𝑦)) ∗ 𝐵 (𝑓 (𝑦))

= 𝑅
2
(𝑓
→
(𝐵 ∘ 𝑓)) (𝑓 (𝑥)) ,

(12)

𝑅
1
((𝑓
−1
)
→

(𝐵)) (𝑥) = ⋁

𝑦∈𝑋

𝑅
1
(𝑥, 𝑦) ∗ (𝐵 ∘ 𝑓) (𝑦)

= 𝑓
→
(𝑅
1
(𝐵 ∘ 𝑓)) (𝑓 (𝑥)) .

(13)

FromTheorem 10, (𝑓−1)→ (𝑅
2
(𝐵)) = 𝑅

1
((𝑓
−1
)
→
(𝐵)).We can

also prove that (𝑓−1)→ (𝑅
2
(𝐵)) = 𝑅

1
((𝑓
−1
)
→
(𝐵)) via direct

computing. Therefore, 𝑓−1 is a Z-homomorphism. The con-
verse could be proved similarly.

Remark 13. Assume that 𝐿 is not involutive, and (𝑋, 𝑅
1
),

(𝑌, 𝑅
2
) are fuzzy approximation spaces.

(1) 𝑓 : (𝑋, 𝑅
1
) → (𝑌, 𝑅

2
) is a bijective Z-homomor-

phism, we could not deduce that 𝑓−1 is a bijective Z-
homomorphism in general.

(2) If 𝑓 and 𝑓−1 are both bijective upper Z-homomor-
phisms, then 𝑅

1
(𝑥, 𝑦) = 𝑅

2
(𝑓(𝑥), 𝑓(𝑦)). Certainly, if

𝑓 and 𝑓−1 are both bijective Z-homomorphism, we
also have 𝑅

1
(𝑥, 𝑦) = 𝑅

2
(𝑓(𝑥), 𝑓(𝑦)).

Proposition 14. Let 𝐿 be an involutive complete residuated
lattice, (𝑋, 𝑅

1
), (𝑌, 𝑅

2
) fuzzy approximation spaces, and 𝑓 a

bijective Z-homomorphism, then the following assertions hold:
(1) 𝑅
1
is serial if and only if 𝑅

2
is serial;

(2) 𝑅
1
is reflexive if and only if 𝑅

2
is reflexive;

(3) 𝑅
1
is symmetric if and only if 𝑅

2
is symmetric;

(4) 𝑅
1
is transitive if and only if 𝑅

2
is transitive.

Proof. It is easy to verify fromTheorem 10(3).

4. Approximation Subspaces

In this section, we introduce the fuzzy approximation sub-
spaces. Let (𝑋, 𝑅) be fuzzy approximation space and𝑅 a fuzzy
equivalence relation, we firstly investigate some properties of
𝑅-definable fuzzy sets.

Lemma 15. Let (𝑋, 𝑅) be fuzzy approximation space and 𝑅 a
fuzzy equivalence relation. Then for every 𝐴 ∈ 𝐿

𝑋,

(1) 𝑅(𝐴) = 𝐴 ⇔ 𝑅(𝑥, 𝑦) ≤ 𝐴(𝑦) → 𝐴(𝑥), for every
𝑥, 𝑦 ∈ 𝑋;

(2) 𝑅(𝐴) = 𝐴 ⇔ 𝑅(𝑥, 𝑦) ≤ 𝐴(𝑥) → 𝐴(𝑦), for every
𝑥, 𝑦 ∈ 𝑋;

(3) 𝐴 is a 𝑅-definable fuzzy set if and only if 𝑅(𝑥, 𝑦) ≤
𝐴(𝑥) ↔ 𝐴(𝑦), for every 𝑥, 𝑦 ∈ 𝑋.

Proof. (1) If𝑅(𝐴) = 𝐴, then𝑅(𝐴)(𝑥) = ⋁
𝑦∈𝑋

𝑅(𝑥, 𝑦)∗𝐴(𝑦) =

𝐴(𝑥) for every 𝑥 ∈ 𝑋. So for every 𝑦 ∈ 𝑋, we have 𝑅(𝑥, 𝑦) ∗
𝐴(𝑦) ≤ 𝐴(𝑥). And this is equivalent to 𝑅(𝑥, 𝑦) ≤ 𝐴(𝑦) →

𝐴(𝑥) for every 𝑦 ∈ 𝑋.
Conversely, for every 𝑥, 𝑦 ∈ 𝑋, 𝑅(𝑥, 𝑦) ≤ 𝐴(𝑦) → 𝐴(𝑥)

implies that 𝑅(𝐴)(𝑥) ≤ 𝐴(𝑥) for every 𝑥 ∈ 𝑋. Since 𝑅 is
reflexive, we have 𝐴 ≤ 𝑅(𝐴).

(2) It could be proved similarly as in (1).
(3) It is immediately a deduction of (1) and (2).

Lemma 16. Let (𝑋, 𝑅) be fuzzy approximation space and 𝑅 a
fuzzy equivalence relation. If 𝐴, 𝐵 are 𝑅-definable fuzzy sets,
then 𝐴 ∧ 𝐵, 𝐴 ∨ 𝐵, 𝐴 ∗ 𝐵, ¬𝐴 are 𝑅-definable fuzzy sets. 𝑅-
definable fuzzy sets of𝑋 are closed under arbitrary intersection
and union.

Proof. Assume that𝐴, 𝐵 are 𝑅-definable fuzzy sets as follows:

(𝐴 ∧ 𝐵) (𝑥) ←→ (𝐴 ∧ 𝐵) (𝑦)

= ((𝐴 ∧ 𝐵) (𝑥) → (𝐴 ∧ 𝐵) (𝑦))

∧ ((𝐴 ∧ 𝐵) (𝑦) → (𝐴 ∧ 𝐵) (𝑥))

≥ (𝐴 (𝑥) ←→ 𝐴(𝑦)) ∧ (𝐵 (𝑥) ←→ 𝐵 (𝑦))

≥ 𝑅 (𝑥, 𝑦) .

(14)

According to Lemma 15, we have 𝐴 ∧ 𝐵 which is 𝑅-definable
fuzzy set. The claim that 𝐴 ∨ 𝐵, 𝐴 ∗ 𝐵, ¬𝐴 are 𝑅-definable
fuzzy sets could be proved similarly.

Lemma 17. Let (𝑋, 𝑅) be fuzzy approximation space and 𝑅 a
fuzzy equivalence relation. Then every fuzzy equivalence class
𝑅
𝑧
is 𝑅-definable fuzzy set for 𝑧 ∈ 𝑋. Moreover, 𝑅(𝑥, 𝑦) =

⋀
𝑧∈𝑋

𝑅
𝑧
(𝑥) ↔ 𝑅

𝑧
(𝑦) = ⋀

𝐴∈C𝐴(𝑥) ↔ 𝐴(𝑦), where C is the
set of 𝑅-definable fuzzy sets.

Proof. Since 𝑅 is transitive, for every 𝑥, 𝑦, 𝑧 ∈ 𝑋, we have
𝑅(𝑥, 𝑦)∗𝑅(𝑧, 𝑥) ≤ 𝑅(𝑧, 𝑦) and𝑅(𝑦, 𝑥)∗𝑅(𝑧, 𝑦) ≤ 𝑅(𝑧, 𝑥); that
is, 𝑅(𝑥, 𝑦) ≤ 𝑅(𝑧, 𝑥) → 𝑅(𝑧, 𝑦) and 𝑅(𝑦, 𝑥) ≤ 𝑅(𝑧, 𝑦) →

𝑅(𝑧, 𝑥). Because𝑅 is symmetric, we have𝑅(𝑥, 𝑦) ≤ 𝑅(𝑧, 𝑥) ↔
𝑅(𝑧, 𝑦). Therefore, 𝑅(𝑥, 𝑦) ≤ ⋀

𝑧∈𝑋
𝑅(𝑧, 𝑥) ↔ 𝑅(𝑧, 𝑦).



6 Journal of Applied Mathematics

Obviously, ⋀
𝑧∈𝑋

𝑅(𝑧, 𝑥) ↔ 𝑅(𝑧, 𝑦) ≤ 1 → 𝑅(𝑥, 𝑦) =

𝑅(𝑥, 𝑦). So we have 𝑅(𝑥, 𝑦) = ⋀
𝑧∈𝑋

𝑅
𝑧
(𝑥) ↔ 𝑅

𝑧
(𝑦) ≥

⋀
𝐴∈C𝐴(𝑥) ↔ 𝐴(𝑦) since every fuzzy equivalence is a 𝑅-

definable fuzzy set. For every𝐴 ∈ C,𝑅(𝑥, 𝑦) ≤ 𝐴(𝑥) ↔ 𝐴(𝑦).
Hence, 𝑅(𝑥, 𝑦) = ⋀

𝐴∈C𝐴(𝑥) ↔ 𝐴(𝑦).

We propose the fuzzy approximation subspaces induced
by fuzzy sets and investigate some of their properties. Let
(𝑋, 𝑅) be a fuzzy approximation space, 𝑅 a fuzzy equivalence
relation, and 𝑆 ∈ 𝐿𝑋.We define𝑅|

𝑆
∈ 𝐿
𝑋×𝑋, where𝑅|

𝑆
(𝑥, 𝑦) =

𝑅(𝑥, 𝑦) ∧ (𝑠(𝑥) ↔ 𝑠(𝑦)) for every 𝑥, 𝑦 ∈ 𝑋. Obviously, 𝑅|
𝑆
is

a fuzzy equivalence relation on𝑋.

Definition 18. Let (𝑋, 𝑅) be fuzzy approximation space, 𝑅 an
equivalence relation, and 𝑆 ∈ 𝐿

𝑋. If 𝑅(𝐴) = 𝑅|
𝑆
(𝐴) and

𝑅(𝐴) = 𝑅|
𝑆
(𝐴) for every 𝐴 ∈ 𝐿

𝑋, (𝑋, 𝑅|
𝑆
) is called a fuzzy

approximation subspace of (𝑋, 𝑅).

The next theorem characterizes the correspondence
between 𝑅-definable fuzzy sets and fuzzy approximation
subspaces.

Theorem 19. Let (𝑋, 𝑅) be fuzzy approximation space, 𝑅 a
fuzzy equivalence relation, and 𝑆 ∈ 𝐿𝑋. Then the following is
equivalent:

(1) 𝑆 is a 𝑅-definable fuzzy set;
(2) 𝑅(𝐴) = 𝑅|

𝑆
(𝐴) for every 𝐴 ∈ 𝐿

𝑋;
(3) 𝑅(𝐴) = 𝑅|

𝑆
(𝐴) for every 𝐴 ∈ 𝐿

𝑋;
(4) (𝑋, 𝑅|

𝑆
) is fuzzy approximation subspace of (𝑋, 𝑅).

Proof. (1)⇔(2). Since 𝑆 is a 𝑅-definable fuzzy set, we have
𝑅(𝑥, 𝑦) ≤ 𝑆(𝑥) ↔ 𝑆(𝑦). So 𝑅(𝐴) = 𝑅|

𝑆
(𝐴) for every 𝐴 ∈ 𝐿

𝑋.
Conversely, 𝑅(𝐴) = 𝑅|

𝑆
(𝐴) for every 𝐴 ∈ 𝐿

𝑋. We assume
that 𝐴 = 1

𝑦
, for all 𝑦 ∈ 𝑋, then 𝑅(1

𝑦
)(𝑥) = 𝑅|

𝑆
(1
𝑦
)(𝑥) for

every 𝑥 ∈ 𝑋, that is, 𝑅(𝑥, 𝑦) = 𝑅|
𝑆
(𝑥, 𝑦). Therefore, 𝑅(𝑥, 𝑦) ≤

𝑆(𝑥) ↔ 𝑆(𝑦). That is to say, 𝑆 is a 𝑅-definable fuzzy set.
(1)⇔(3). We only prove that 𝑅(𝐴) = 𝑅|

𝑆
(𝐴) for every𝐴 ∈

𝐿
𝑋 which implies that 𝑆 is a 𝑅-definable fuzzy set. Assume

that 𝐴 = 𝑅
𝑦
, for all 𝑦 ∈ 𝑋, we have 𝑅(𝑅

𝑦
)(𝑥) = 𝑅|

𝑆
(𝑅
𝑦
)(𝑥)

for every 𝑥 ∈ 𝑋; that is, 𝑅(𝑥, 𝑦) = 𝑅|
𝑆
(𝑥, 𝑦). Hence, 𝑆 is a

𝑅-definable fuzzy set.
(1)⇔(4). It is obvious from the verification of (1)⇔(2),

(1)⇔(3), and Definition 18.

We could construct fuzzy approximation subspaces via
given ones. Let (𝑋, 𝑅) be fuzzy approximation space and 𝑅
an equivalence relation. Then the union, intersection, and
negation of the fuzzy approximation subspaces are defined as
follows. Let 𝐴, 𝐵 ∈ 𝐿𝑋,

(𝑋, 𝑅|𝐴) ∩ (𝑋, 𝑅|𝐵) = (𝑋, 𝑅|𝐴 ∩ 𝑅|𝐵) ,

(𝑋, 𝑅|𝐴) ∪ (𝑋, 𝑅|𝐵) = (𝑋, 𝑅|𝐴 ∪ 𝑅|𝐵) ,

¬ (𝑋, 𝑅|𝐴) = (𝑋, ¬𝑅|𝐴) .

(15)

Proposition 20. Let (𝑋, 𝑅) be fuzzy approximation space, 𝑅
an equivalence relation, and 𝐴, 𝐵, 𝐴

𝑖
∈ 𝐿
𝑋, 𝑖 ∈ 𝐼 are 𝑅-defina-

ble fuzzy sets. Then the following assertions hold.

(1) 𝑅|
𝐴
∩ 𝑅|
𝐵
= 𝑅|
𝐴∩𝐵

, 𝑅|
𝐴
∪ 𝑅|
𝐵
= 𝑅|
𝐴∪𝐵

, ¬𝑅|
𝐴
= 𝑅|
¬𝐴
,

⋂
𝑖∈𝐼
𝑅|
𝐴𝑖
= 𝑅|
⋂
𝑖∈𝐼
𝐴𝑖
,⋃
𝑖∈𝐼
𝑅|
𝐴𝑖
= 𝑅|
⋃
𝑖∈𝐼
𝐴𝑖
;

(2) (𝑋, 𝑅|
𝐴
) ∩ (𝑋, 𝑅|

𝐵
), (𝑋, 𝑅|

𝐴
) ∪ (𝑋, 𝑅|

𝐵
), ¬(𝑋, 𝑅|

𝐴
),

(𝑋,⋃
𝑖∈𝐼
𝑅|
𝐴𝑖
), (𝑋,⋂

𝑖∈𝐼
𝑅|
𝐴𝑖
) are fuzzy approximation

subspaces of (𝑋, 𝑅). Moreover, the set of all fuzzy
approximation subspaces of (𝑋, 𝑅) is a complete lattice.

Proof. (1) Since 𝐴, 𝐵 are 𝑅-definable fuzzy sets, 𝐴 ∩ 𝐵 is 𝑅-
definable fuzzy set. So we have 𝑅(𝑥, 𝑦) ≤ 𝐴(𝑥) ↔ 𝐴(𝑦),
𝑅(𝑥, 𝑦) ≤ 𝐵(𝑥) ↔ 𝐵(𝑦), 𝑅(𝑥, 𝑦) ≤ (𝐴 ∩ 𝐵)(𝑥) ↔ (𝐴 ∩ 𝐵)(𝑦).
Hence,𝑅|

𝐴
∩𝑅|
𝐵
= 𝑅|
𝐴∩𝐵

. Similarly, the equations in (1) could
be proved.

(2) According to (1) and Theorem 19, it is easy to verify
that 0 and𝑋 are 𝑅-definable fuzzy set.Therefore, the set of all
fuzzy approximation subspaces of (𝑋, 𝑅) is a complete lattice.

5. Homomorphisms between Fuzzy
Rough Approximation Spaces

In this section, we proposed the homomorphisms between
two fuzzy approximation spaces based onFrames. Let (𝑋, 𝑅

1
),

(𝑌, 𝑅
2
) be fuzzy approximation spaces and 𝑓 : 𝑋 → 𝑌 a

map. We define the fuzzy forward operators 𝑓→
∗
, 𝑓
∗→

, 𝑓
→
:

𝐿
𝑋
→ 𝐿
𝑌 as follows. For every 𝐴 ∈ 𝐿

𝑋, 𝑎 ∈ 𝑌,

𝑓
→

∗
(𝐴) (𝑎) = ⋁

𝑥∈𝑋

𝐴 (𝑥) ∧ 𝑅2 (𝑎, 𝑓 (𝑥)) ,

𝑓
∗→

(𝐴) (𝑎) = ⋁

𝑥∈𝑋

𝐴 (𝑥) ∧ 𝑅2 (𝑓 (𝑥) , 𝑎) ,

𝑓
→
(𝐴) (𝑎) = ⋁

𝑥∈𝑋

𝐴 (𝑥) ∧ 𝑅2 (𝑎, 𝑓 (𝑥)) ∧ 𝑅2 (𝑓 (𝑥) , 𝑎) .

(16)

And we define the fuzzy backward operators 𝑓←
∗
, 𝑓
∗←
, 𝑓
←
:

𝐿
𝑌
→ 𝐿
𝑋 as follows. For every 𝐵 ∈ 𝐿𝑌, 𝑥 ∈ 𝑋,

𝑓
←

∗
(𝐵) (𝑥) = ⋁

𝑦∈𝑋

𝐵 (𝑓 (𝑦)) ∧ 𝑅
1
(𝑥, 𝑦) ,

𝑓
∗←

(𝐵) (𝑥) = ⋁

𝑦∈𝑋

𝐵 (𝑓 (𝑦)) ∧ 𝑅
1
(𝑦, 𝑥) ,

𝑓
←
(𝐵) (𝑥) = ⋁

𝑦∈𝑋

𝐵 (𝑓 (𝑦)) ∧ 𝑅
1
(𝑥, 𝑦) ∧ 𝑅

1
(𝑦, 𝑥) .

(17)

Let 𝑅 be a crisp binary relation on a set 𝑋, for any 𝐴, 𝐵 ⊆ 𝑋;
we use the notation 𝐴𝑅 = {𝑏 | 𝑏 ∈ 𝑋, ∃𝑎 ∈ 𝐴 such that
(𝑎, 𝑏) ∈ 𝑅} and 𝑅𝐵 = {𝑎 | 𝑎 ∈ 𝑋, ∃𝑏 ∈ 𝐵 such that (𝑎, 𝑏) ∈ 𝑅}.

When 𝐿 = {0, 1}, 𝑅
1
, 𝑅
2
are crisp relations on 𝑋, 𝑌,

respectively, and 𝐴 ⊆ 𝑋, 𝐵 ⊆ 𝑌, then

𝑓
→

∗
(𝜒
𝐴
) (𝑎) = 1 ⇐⇒ 𝑎 ∈ 𝑅

2
(𝑓 (𝐴)) ,

𝑓
∗→

(𝜒
𝐴
) (𝑎) = 1 ⇐⇒ 𝑎 ∈ (𝑓 (𝐴)) 𝑅2,

𝑓
→
(𝜒
𝐴
) (𝑎) = 1 ⇐⇒ 𝑎 ∈ 𝑅

2
(𝑓 (𝐴)) ∩ (𝑓 (𝐴)) 𝑅2.

(18)

So 𝑓
→

∗
, 𝑓
∗→

, 𝑓
→ are defined as generalizations of

𝑅
2
(𝑓(𝐴)), (𝑓(𝐴))𝑅

2
, 𝑅
2
(𝑓(𝐴)) ∩ (𝑓(𝐴))𝑅

2
; 𝑓←
∗
, 𝑓
∗←
, 𝑓
←
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are generalizations of preimage operators of 𝑅
1
(𝑓
−1
(𝐵)),

(𝑓
−1
(𝐵))𝑅

1
, 𝑅
1
(𝑓
−1
(𝐵)) ∩ (𝑓

−1
(𝐵))𝑅

1
.

Next, we introduce homomorphisms between fuzzy
approximation spaces according to the fuzzy forward oper-
ators.

Definition 21. Let (𝑋, 𝑅
1
), (𝑌, 𝑅

2
) be fuzzy approximation

spaces and 𝑓 : 𝑋 → 𝑌 a map. Then 𝑓 is called an upper
homomorphism if it satisfies 𝑓→

∗
(𝑅
1
(𝐴)) ⊆ 𝑅

2
(𝑓
→

∗
(𝐴)), for

every𝐴 ∈ 𝐿
𝑋;𝑓 is called a lower homomorphism if it satisfies

𝑓
→

∗
(𝑅
1
(𝐴)) ⊆ 𝑅

2
(𝑓
→

∗
(𝐴)), for every 𝐴 ∈ 𝐿

𝑋; 𝑓 is called a
homomorphism between fuzzy approximation space if it is
both fuzzy upper and fuzzy lower homomorphism.

Remark 22. We can also define homomorphisms between
fuzzy approximation spaces according to 𝑓

∗→
, 𝑓
→ . The

three kinds of homomorphisms are the same when 𝑅
2
is

symmetric. And in the paper, we only discuss the homomor-
phisms in Definition 21. Most of their properties could be
generalized to the other two kinds.

Theorem 23. Let (𝑋, 𝑅
1
), (𝑌, 𝑅

2
) be fuzzy approximation

spaces and 𝑓 : 𝑋 → 𝑌 a map. When 𝑅
2
is reflexive and tran-

sitive, 𝑓 is an upper homomorphism if and only if 𝑓 is relation-
preserving.

Proof. For every 𝑥, 𝑦 ∈ 𝑋,

𝑓
→

∗
(𝑅
1
(1
𝑦
)) (𝑓 (𝑥))

= ⋁

𝑧∈𝑋

𝑅
1
(1
𝑦
) (𝑧) ∧ 𝑅2 (𝑓 (𝑥) , 𝑓 (𝑧))

= ⋁

𝑧∈𝑋

(⋁

𝑢∈𝑋

𝑅
1 (𝑧, 𝑢) ∧ 1𝑦 (𝑢)) ∧ 𝑅

2
(𝑓 (𝑥) , 𝑓 (𝑧))

= ⋁

𝑧∈𝑋

𝑅
1
(𝑧, 𝑦) ∧ 𝑅

2
(𝑓 (𝑥) , 𝑓 (𝑧)) ;

𝑅
2
(𝑓
→

∗
(1
𝑦
)) (𝑓 (𝑥))

= ⋁

𝑎∈𝑌

𝑅
2
(𝑓 (𝑥) , 𝑎) ∧ (⋁

𝑧∈𝑋

1
𝑦 (𝑧) ∧ 𝑅2 (𝑎, 𝑓 (𝑧)))

= ⋁

𝑎∈𝑌

𝑅
2
(𝑓 (𝑥) , 𝑎) ∧ 𝑅2 (𝑎, 𝑓 (𝑦)) .

(19)

Since 𝑓 is an upper homomorphism and 𝑅
2
is reflexive,

transitive, we have 𝑅
1
(𝑥, 𝑦) ≤ 𝑅

2
(𝑓(𝑥), 𝑓(𝑦)); that is, 𝑓 is

relation-preserving.
On the other hand, for every 𝐴 ∈ 𝐿

𝑋, 𝑎 ∈ 𝑌,

𝑓
→

∗
(𝑅
1 (𝐴)) (𝑎)

= ⋁

𝑥∈𝑋

(⋁

𝑦∈𝑋

𝑅
1
(𝑥, 𝑦) ∧ 𝐴 (𝑦)) ∧ 𝑅

2
(𝑎, 𝑓 (𝑥)) ,

(20)

𝑅
2
(𝑓
→

∗
(𝐴)) (𝑎)

= ⋁

𝑏∈𝑌

𝑅
2 (𝑎, 𝑏) ∧ (⋁

𝑧∈𝑋

𝐴 (𝑧) ∧ 𝑅2 (𝑏, 𝑓 (𝑧))) .

(21)

Since 𝑓 : (𝑋, 𝑅
1
) → (𝑌, 𝑅

2
) is a relation-preserving map, we

have 𝑅
1
(𝑥, 𝑦) ≤ 𝑅

2
(𝑓(𝑥), 𝑓(𝑦)), for every 𝑥, 𝑦 ∈ 𝑋. So,

𝑅
1
(𝑥, 𝑦) ∧ 𝐴 (𝑦) ∧ 𝑅

2
(𝑎, 𝑓 (𝑥))

≤ 𝑅
2
(𝑓 (𝑥) , 𝑓 (𝑦)) ∧ 𝐴 (𝑦) ∧ 𝑅2 (𝑎, 𝑓 (𝑥))

≤ ⋁

𝑏∈𝑌

𝑅
2 (𝑎, 𝑏) ∧ (⋁

𝑧∈𝑋

𝐴 (𝑧) ∧ 𝑅2 (𝑏, 𝑓 (𝑧))) .

(22)

Therefore, 𝑓→
∗
(𝑅
1
(𝐴)) ⊆ 𝑅

2
(𝑓
→

∗
(𝐴)).

Corollary 24. Let (𝑋, 𝑅
1
), (𝑌, 𝑅

2
) be fuzzy approximation

spaces and𝑓 : 𝑋 → 𝑌 amap.When𝑅
2
is reflexive and transi-

tive,𝑓 is an upper homomorphism if and only if𝑓→
∗
(𝑅
1
(1
𝑥
)) ⊆

𝑅
2
(𝑓
→

∗
(1
𝑥
)) for every 𝑥 ∈ 𝑋.

Proof. The claim is easily derived fromTheorem 23.

Corollary 25. Let (𝑋, 𝑅
1
), (𝑌, 𝑅

2
) be fuzzy approximation

spaces,𝑅
2
reflexive and transitive, then𝑓 : 𝑋 → 𝑌 is an upper

Z-homomorphism if and only if it is an upper homomorphism.

Proof. The claim is easily derived from Theorems 6 and 23.

Proposition 26. Let (𝑋, 𝑅
1
), (𝑌, 𝑅

2
) be fuzzy approximation

spaces.
(1) If 𝑓 : 𝑋 → 𝑌 is a lower homomorphism, 𝑅

1
,

𝑅
2
are reflexive and transitive, then 𝑓→

∗
(𝑅
1
(𝑅
1𝑥
)) =

𝑅
2
(𝑓
→

∗
(𝑅
1𝑥
)).

(2) If 𝑓 : 𝑋 → 𝑌 is an upper homomorphism and 𝑅
1
,

𝑅
2
are fuzzy equivalence relations on𝑋,𝑌, respectively,

then 𝑓→
∗
(𝑅
1
(𝑅
1𝑥
)) = 𝑅

2
(𝑓
→

∗
(𝑅
1𝑥
)).

Proof. (1) For every 𝑥 ∈ 𝑋, 𝑎 ∈ 𝑌, 𝑅
1
, 𝑅
2
is reflexive and

transitive as follows:
𝑓
→

∗
(𝑅
1
(𝑅
1𝑥
)) (𝑎)

= ⋁

𝑧∈𝑋

(⋀

𝑢∈𝑋

𝑅
1 (𝑧, 𝑢) → 𝑅

1𝑥 (𝑢)) ∧ 𝑅
2
(𝑎, 𝑓 (𝑧))

= ⋁

𝑧∈𝑋

𝑅
1 (𝑥, 𝑧) ∧ 𝑅2 (𝑎, 𝑓 (𝑧)) ,

𝑅
2
(𝑓
→

∗
(𝑅
1𝑥
)) (𝑎)

= ⋀

𝑏∈𝑌

𝑅
2 (𝑎, 𝑏) → (⋁

𝑦∈𝑋

𝑅
1
(𝑥, 𝑦) ∧ 𝑅

2
(𝑏, 𝑓 (𝑦))) .

(23)

Since 𝑓 is a lower homomorphism, we have ⋁
𝑧∈𝑋

𝑅
1
(𝑥, 𝑧) ∧

𝑅
2
(𝑎, 𝑓(𝑧)) ≤ ⋀

𝑏∈𝑌
𝑅
2
(𝑎, 𝑏) → (⋁

𝑦∈𝑋
𝑅
1
(𝑥, 𝑦) ∧ 𝑅

2
(𝑏,

𝑓(𝑦))) ≤ ⋁
𝑧∈𝑋

𝑅
1
(𝑥, 𝑧) ∧ 𝑅

2
(𝑎, 𝑓(𝑧)). Therefore,

𝑓
→

∗
(𝑅
1
(𝑅
1𝑥
)) = 𝑅

2
(𝑓
→

∗
(𝑅
1𝑥
)).
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(2) Since 𝑓 is an upper homomorphism, we have
𝑓
→

∗
(𝑅
1𝑥
) = 𝑅
2𝑓(𝑥)

for every 𝑥 ∈ 𝑋. For every 𝑎 ∈ 𝑌,

𝑓
→

∗
(𝑅
1
(𝑅
1𝑥
)) (𝑎) = ⋁

𝑦∈𝑋

𝑅
1
(𝑥, 𝑦) ∧ 𝑅

2
(𝑎, 𝑓 (𝑦)) ,

𝑅
2
(𝑓
→

∗
(𝑅
1𝑥
))(𝑎) = ⋁

𝑏∈𝑌

𝑅
2(𝑎, 𝑏) ∧ 𝑅2𝑓(𝑥)(𝑏) = 𝑅2 (𝑓 (𝑥) , 𝑎).

(24)

Since 𝑓 is an upper homomorphism, 𝑓→
∗
(𝑅
1
(𝑅
1𝑥
)) ⊆

𝑅
2
(𝑓
→

∗
(𝑅
1𝑥
)). The converse is obvious.

Corollary 27. Let (𝑋, 𝑅
1
), (𝑌, 𝑅

2
) be fuzzy approximation

spaces, 𝑓 : 𝑋 → 𝑌 a bijective map, and 𝑅
1
, 𝑅
2
fuzzy equiva-

lence relations on𝑋,𝑌, respectively. If𝑓 and𝑓−1 are both upper
homomorphisms, then 𝑅

1
(𝑥, 𝑦) = 𝑅

2
(𝑓(𝑥), 𝑓(𝑦)) for every

𝑥, 𝑦 ∈ 𝑋. Moreover, 𝑓→
∗
(𝑅
1
(𝐴)) = 𝑅

2
(𝑓
→

∗
(𝐴)) for every 𝐴 ∈

𝐿
𝑋.

Proof. The claim is followed from Proposition 26. Since 𝑓 is
bijective, for every 𝐴 ∈ 𝐿

𝑋, 𝑓→
∗
(𝑅
1
(𝐴)) = 𝑅

2
(𝑓
→

∗
(𝐴)) in

terms of (20), Theorem 23.

Corollary 28. Let (𝑋, 𝑅
1
), (𝑌, 𝑅

2
) be fuzzy approximation

spaces and 𝑓 : 𝑋 → 𝑌 a map, 𝑅
1
, 𝑅
2
are fuzzy equivalence

relations on 𝑋, 𝑌, respectively. If 𝑓 is a relation isomorphism,
then 𝑓→

∗
(𝐴) is 𝑅

2
-definable set when 𝐴 is 𝑅

1
-definable set, for

every 𝐴 ∈ 𝐿
𝑋.

Proof. Since 𝑓 is relation isomorphism, 𝑓 is bijective and
𝑅
1
(𝑥, 𝑦) = 𝑅

2
(𝑓(𝑥), 𝑓(𝑦)) for every 𝑥, 𝑦 ∈ 𝑋. From a direct

computation, we obtain that 𝑓 is a homomorphism between
(𝑋, 𝑅
1
), (𝑌, 𝑅

2
). So 𝑓→

∗
(𝑅
1
(𝐴)) = 𝑅

2
(𝑓
→

∗
(𝐴)) for every 𝐴 ∈

𝐿
𝑋. Assume that 𝐴 is a 𝑅

1
-definable fuzzy set, then 𝑅

1
(𝐴) =

𝑅
1
(𝐴). Hence 𝑅

2
(𝑓
→

∗
(𝐴)) = 𝑓

→

∗
(𝑅
1
(𝐴)) = 𝑓

→

∗
(𝑅
1
(𝐴)) ⊆

𝑅
2
(𝑓
→

∗
(𝐴)), because 𝑓 is a homomorphism. The converse is

obvious, since 𝑅
2
is a fuzzy equivalence relation.

Let (𝑋, 𝑅
1
) be a fuzzy approximation space and 𝑅 a fuzzy

equivalence relation on 𝑋. We define a fuzzy relationR
1
on

the quotient set𝑋/𝑅 via

R
1
(𝑅
𝑥
, 𝑅
𝑦
) = 𝑅 ∘ 𝑅

1
∘ 𝑅 (𝑥, 𝑦) (25)

for every 𝑥, 𝑦 ∈ 𝑋.
First, we show thatR

1
: 𝑋/𝑅 × 𝑋/𝑅 → 𝐿 is a map. For

every 𝑥
𝑖
, 𝑦
𝑖
∈ 𝑋, 𝑖 = 1, 2 such that 𝑅(𝑥

1
, 𝑥
2
) = 1, 𝑅(𝑦

1
, 𝑦
2
) =

1, we have

R
1
(𝑅
𝑥1
, 𝑅
𝑦1
) = 𝑅 ∘ 𝑅

1
∘ 𝑅 (𝑥

1
, 𝑦
1
)

= ⋁

𝑎∈𝑋

⋁

𝑏∈𝑋

𝑅 (𝑥
1
, 𝑎) ∧ 𝑅

1 (𝑎, 𝑏) ∧ 𝑅 (𝑏, 𝑦1)

= ⋁

𝑎∈𝑋

⋁

𝑏∈𝑋

𝑅 (𝑥
2
, 𝑎) ∧ 𝑅

1 (𝑎, 𝑏) ∧ 𝑅 (𝑏, 𝑦2)

= 𝑅 ∘ 𝑅
1
∘ 𝑅 (𝑥

2
, 𝑦
2
)

=R
1
(𝑅
𝑥2
, 𝑅
𝑦2
) .

(26)

Proposition 29. Let (𝑋, 𝑅
1
) be a fuzzy approximation space

and 𝑅 a fuzzy equivalence relation on 𝑋. R
1
is the fuzzy

relation defined by (25). Then the following assertions hold:

(1) If 𝑅
1
is reflexive, thenR

1
is reflexive;

(2) If 𝑅
1
is symmetric, thenR

1
is symmetric.

Proof. The claim is easy to verify from (25).

If𝑅
1
is transitive, we could not obtain thatR

1
is transitive

in general. Moreover, even 𝑅
1
is a fuzzy equivalence rela-

tion; R
1
is not transitive in general. In the following, our

discussion is limited within the scope of fuzzy equivalence
relations. Let (𝑋, 𝑅

1
), (𝑌, 𝑅

2
) be fuzzy approximation spaces

and 𝑓 : (𝑋, 𝑅
1
) → (𝑌, 𝑅

2
) a surjective homomorphism.

We define a fuzzy equivalence relation 𝑘
𝑓
on 𝑋, for every

𝑥, 𝑦 ∈ 𝑋, by

𝑘
𝑓
(𝑥, 𝑦) = ⋀

𝑎∈𝑌

𝑅
2
(𝑓 (𝑥) , 𝑎) ←→ 𝑅

2
(𝑓 (𝑦) , 𝑎) . (27)

Obviously, 𝑘
𝑓

is a fuzzy equivalence relation on 𝑋 and
𝑘
𝑓
(𝑥, 𝑦) = 𝑅

2
(𝑓(𝑥), 𝑓(𝑦)). For convenience, we let 𝑅 = 𝑘

𝑓
;

thenR
1
(𝑅
𝑥
, 𝑅
𝑦
) = 𝑘
𝑓
(𝑥, 𝑦) is a fuzzy equivalence relation on

𝑋/𝑅.
Since the homomorphisms of fuzzy approximation spaces

play an important role in data compression and information
transmission, so next we introduce the quotient homomor-
phism.

Proposition 30. Let (𝑋, 𝑅
1
), (𝑌, 𝑅

2
) be fuzzy approximation

spaces, where 𝑅
𝑖
, 𝑖 = 1, 2 are fuzzy equivalence relations. If

𝑓 : (𝑋, 𝑅
1
) → (𝑌, 𝑅

2
) is a surjective homomorphism, then the

quotient map 𝜂 : (𝑋, 𝑅
1
) → (𝑋/𝑘

𝑓
,R
1
) is a homomorphism.

Proof. For every 𝐴 ∈ 𝐿
𝑋, 𝑥
0
∈ 𝑋,

𝜂
→

∗
(𝑅
1 (𝐴)) (𝑅𝑥0

)

= ⋁

𝑦∈𝑋

(⋀

𝑧∈𝑋

𝑅
1
(𝑦, 𝑧) → 𝐴 (𝑧)) ∧R

1
(𝑅
𝑥0
, 𝑅
𝑦
)

= 𝑓
→

∗
(𝑅
1 (𝐴)) (𝑓 (𝑥0)) ;

R
1
(𝜂
→

∗
(𝐴)) (𝑅𝑥0

)

= ⋀

𝑦∈𝑋

R
1
(𝑅
𝑥0
, 𝑅
𝑦
) → (⋁

𝑥∈𝑋

𝐴 (𝑥) ∧R
1
(𝑅
𝑦
, 𝑅
𝑥
))

= 𝑅
2
(𝑓
→

∗
(𝐴)) (𝑓 (𝑥0)) .

(28)

Since 𝑓 is a homomorphism, we have 𝜂
→

∗
(𝑅
1
(𝐴)) ⊆

R
1
(𝜂
→

∗
(𝐴)); that is, 𝜂 is a lower homomorphism. Similarly,

we could prove that 𝜂 is an upper homomorphism.

Proposition 31. Let (𝑋, 𝑅
1
), (𝑌, 𝑅

2
) be fuzzy approximation

spaces, where 𝑅
𝑖
, 𝑖 = 1, 2 are fuzzy equivalence relations. If

𝑓 : (𝑋, 𝑅
1
) → (𝑌, 𝑅

2
) is a surjective homomorphism and 𝑅

2
is
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a fuzzy equality, then ℎ : (𝑋/𝑘
𝑓
,R
1
) → (𝑌, 𝑅

2
) is a bijective

homomorphism, where ℎ((𝑘
𝑓
)
𝑥
) = 𝑓(𝑥) for every 𝑥 ∈ 𝑋.

Corollary 32. Let (𝑋, 𝑅
1
) be a fuzzy approximation space and

𝑅
1
, 𝑅 fuzzy equivalence relations on 𝑋. If 𝑅 ≤ 𝑅

1
, then the

quotient map 𝜂 : (𝑋, 𝑅
1
) → (𝑋/𝑅,R

1
) is a homomorphism.

6. Conclusions

We have discussed two kinds of homomorphisms between
fuzzy approximation spaces based on complete residuated lat-
tices in this paper. The notion of homomorphism established
the communication of two universes, so we can deal with
one fuzzy approximation space in terms of information of
another one. We also have investigated fuzzy approximation
subspaces and their correspondencewith definable fuzzy sets.
Under some particular conditions, the factor sets of fuzzy
approximations spaces are also discussed. In the future, we
will intend to study the application of homomorphisms of
fuzzy approximation spaces.Moreover, wewill investigate the
communication between the fuzzy covering rough sets.
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