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Themain purpose of this paper is using the properties of Gauss sums and the estimate for character sums to study the hybrid mean
value problem involving the two-term exponential sums and two-term character sums and give an interesting asymptotic formula
for it.

1. Introduction

Let 𝑞 ≥ 3 be an integer and 𝜒 denotes a Dirichlet character
mod𝑞. For any integers 𝑚 and 𝑛 with (𝑚𝑛, 𝑞) = 1, we define
the two-term exponential sum 𝐶(𝑚, 𝑛, 𝑘; 𝑞) and two-term
character sum𝑁(𝑚, 𝑛, 𝜒; 𝑞) as follows:

𝐶 (𝑚, 𝑛, 𝑘; 𝑞) =

𝑞

∑

𝑎=1

𝑒 (
𝑚𝑎
𝑘
+ 𝑛𝑎

𝑞
) ,

𝑁 (𝑚, 𝑛, 𝑘, 𝜒; 𝑞) =

𝑞

∑

𝑎=1

𝜒 (𝑚𝑎
𝑘
+ 𝑛𝑎) ,

(1)

where 𝑒(𝑥) = 𝑒
2𝜋𝑖𝑥, 𝜒 denotes a nonprincipal Dirichlet

character mod𝑞, and 𝑘 is a fixed positive integer.
These sums play a very important role in the study of ana-

lytic number theory, so they caused many number theorists’
interest and favor. Some works related to 𝐶(𝑚, 𝑛, 𝑘; 𝑞) can be
found in [1–5]. For example, Cochrane and Zheng [1] show
that

𝐶 (𝑚, 𝑛, 𝑘; 𝑞)
 ≤ 𝑘
𝜔(𝑞)

𝑞
1/2
, (2)

where 𝜔(𝑞) denotes the number of all distinct prime divisors
of 𝑞.

On the other hand, the sums𝑁(𝑚, 𝑛, 𝑘, 𝜒; 𝑞) are a special
case of the general character sums of the polynomials

𝑁+𝑀

∑

𝑎=𝑁+1

𝜒 (𝑓 (𝑎)) , (3)

where 𝑀 and 𝑁 are any positive integers and 𝑓(𝑥) is a
polynomial. If 𝑞 = 𝑝 is an odd prime, then Weil (see [6])
obtained the following important conclusion.

Let 𝜒 be a 𝑞th-order character mod𝑝; if 𝑓(𝑥) is not a
perfect 𝑞th power mod𝑝, then we have the estimate

𝑁+𝑀

∑

𝑥=𝑁+1

𝜒 (𝑓 (𝑥)) ≪ 𝑝
1/2 ln𝑝, (4)

where “≪” constant depends only on the degree of 𝑓(𝑥).
Some related results can also be found in [7–10].

Now we are concerned about whether there exists an
asymptotic formula for the hybrid mean value

𝑞−1

∑

𝑚=1



𝑞−1

∑

𝑎=1

𝜒 (𝑚𝑎
𝑘
+ 𝑎)



2

⋅



𝑞−1

∑

𝑏=1

𝑒 (
𝑚𝑏
𝑘
+ 𝑏

𝑞
)



2

. (5)

In this paper, we will use the analytic method and the
properties of character sums to study this problem and give a
sharp asymptotic formula for (5) with 𝑞 = 𝑝, an odd prime.
That is, we will prove the following.
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Theorem 1. Let 𝑝 be an odd prime, let 𝜒 be any nonprincipal
even character mod𝑝, and let 𝜒3 ̸= 𝜒0 be the principal charac-
ter mod𝑝. Then we have the asymptotic formula

𝑝−1

∑

𝑚=1



𝑝−1

∑

𝑎=1

𝜒 (𝑚𝑎
3
+ 𝑎)



2

⋅



𝑝−1

∑

𝑏=1

𝑒 (
𝑚𝑏
3
+ 𝑏

𝑝
)



2

= 2𝑝
3
+ 𝐸 (𝑝) ,

(6)

where 𝐸(𝑝) satisfies the inequalities −12𝑝2 − 2𝑝 ≤ 𝐸(𝑝) ≤

4𝑝
2
− 2𝑝.

From this theorem we may immediately deduce the
following.

Corollary 2. For any odd prime 𝑝 and any nonprincipal even
character 𝜒 mod 𝑝 with 𝜒3 ̸= 𝜒0, one has

𝑝−1

∑

𝑚=1



𝑝−1

∑

𝑎=1

𝜒 (𝑚𝑎
3
+ 𝑎)



2

⋅



𝑝−1

∑

𝑏=1

𝑒 (
𝑚𝑏
3
+ 𝑏

𝑝
)



2

= 2𝑝
3
+ 𝑂 (𝑝

2
) .

(7)

In the theorem, we only consider the polynomial 𝑓(𝑥) =

𝑚𝑥
3
+ 𝑥. For general polynomial 𝑓(𝑥) = 𝑚𝑥

𝑘
+ 𝑥
ℎ with 𝑘 ≥ 4

and 1 ≤ ℎ < 𝑘, whether there exists an asymptotic formula is
complex problem for (5), it needs us to further study.

For general positive integer 𝑞 ≥ 4, whether there exists an
asymptotic formula for (5) is also an interesting open problem.

2. Several Lemmas

To complete the proof of our theorem, we need the following
several lemmas.

Lemma 1. Let𝑝 be an odd prime and let𝜒 be any nonprincipal
even character mod 𝑝.Then for any integer𝑚with (𝑚, 𝑝) = 1,
the identity

𝑝−1

∑

𝑎=1

𝜒 (𝑚𝑎
3
+ 𝑎) =

𝜏 (𝜒1) 𝜏 (𝜒1
3
) 𝜒1 (𝑚)

𝜏 (𝜒)

× (1 + (
𝑚

𝑝
)
𝜏 (𝜒1𝜒2) 𝜏 (𝜒1

3
𝜒2)

𝜏 (𝜒1) 𝜏 (𝜒1
3
)

) ,

(8)

where (∗/𝑝) = 𝜒2 denotes the Legendre symbol and 𝜒 = 𝜒
2

1
.

Proof. Since 𝜒(−1) = 1, there exists one and only one
character 𝜒1 mod 𝑝 such that 𝜒 = 𝜒

2

1
. Thus, from the

properties of Gauss sums we have

𝑝−1

∑

𝑎=1

𝜒 (𝑚𝑎
3
+ 𝑎) =

1

𝜏 (𝜒)

𝑝−1

∑

𝑎=1

𝑝−1

∑

𝑏=1

𝜒 (𝑏) 𝑒(
𝑏 (𝑚𝑎

3
+ 𝑎)

𝑝
)

=
1

𝜏 (𝜒)

𝑝−1

∑

𝑎=1

𝑝−1

∑

𝑏=1

𝜒 (𝑏𝑎) 𝑒(
𝑏𝑎 (𝑚𝑎

3
+ 𝑎)

𝑝
)

=
1

𝜏 (𝜒)

𝑝−1

∑

𝑏=1

𝜒 (𝑏) 𝑒 (
𝑏

𝑝
)

𝑝−1

∑

𝑎=1

𝜒 (𝑎) 𝑒 (
𝑏𝑚𝑎
2

𝑝
)

=
1

𝜏 (𝜒)

𝑝−1

∑

𝑏=1

𝜒 (𝑏) 𝑒 (
𝑏

𝑝
)

𝑝−1

∑

𝑎=1

𝜒
2

1
(𝑎) 𝑒 (

𝑏𝑚𝑎
2

𝑝
)

=
1

𝜏 (𝜒)

𝑝−1

∑

𝑏=1

𝜒 (𝑏) 𝑒 (
𝑏

𝑝
)

×

𝑝−1

∑

𝑎=1

𝜒1 (𝑎) (1 + (
𝑎

𝑝
)) 𝑒(

𝑏𝑚𝑎

𝑝
)

=
1

𝜏 (𝜒)

𝑝−1

∑

𝑏=1

𝜒 (𝑏) 𝑒 (
𝑏

𝑝
)

× (𝜒1 (𝑏𝑚) 𝜏 (𝜒1)

+𝜒1 (𝑏𝑚) 𝜒2 (𝑏𝑚) 𝜏 (𝜒1𝜒2))

=
𝜒1 (𝑚)

𝜏 (𝜒)
(𝜏 (𝜒1) 𝜏 (𝜒1

3
)

+(
𝑚

𝑝
) 𝜏 (𝜒1𝜒2) 𝜏 (𝜒1

3
𝜒2))

=
𝜏 (𝜒1) 𝜏 (𝜒1

3
) 𝜒1 (𝑚)

𝜏 (𝜒)

× (1 + (
𝑚

𝑝
)
𝜏 (𝜒1𝜒2) 𝜏 (𝜒1

3
𝜒2)

𝜏 (𝜒1) 𝜏 (𝜒1
3
)

) .

(9)

This proves Lemma 1.

Lemma 2. Let 𝑝 be an odd prime, let 𝜒 be any nonprincipal
even character mod𝑝, 𝜒 = 𝜒

2

1
, and 𝜒

3
̸= 𝜒0, the principal

character mod𝑝. Then for any integer 𝑚 and any quadratic
nonresidue 𝑟 mod 𝑝 with (𝑚, 𝑝) = 1, we have the identity



𝑝−1

∑

𝑎=1

𝜒 (𝑚𝑎
3
+ 𝑎)



2

= 2𝑝 + (
𝑚

𝑝
)
𝜏
2
(𝜒2)

2𝑝

𝑝−1

∑

𝑎=1

(𝜒 (𝑎) + 𝜒 (𝑎))

×

𝑝−1

∑

𝑏=1

(
1 − 𝑎
2
𝑏
3

𝑝
)(

1 − 𝑏

𝑝
)

+ (
𝑚

𝑝
)
𝜏
2
(𝜒2)

2𝑝

×

𝑝−1

∑

𝑎=1

(𝜒1 (𝑟) 𝜒 (𝑎) + 𝜒1 (𝑟) 𝜒 (𝑎))

×

𝑝−1

∑

𝑏=1

(
1 − 𝑟𝑎

2
𝑏
3

𝑝
)(

1 − 𝑏

𝑝
) .

(10)
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Proof. From the properties of Gauss sums we have

𝜏 (𝜒1)𝜏 (𝜒1𝜒2) =

𝑝−1

∑

𝑎=1

𝜒
1
(𝑎)

𝑝−1

∑

𝑏=1

𝜒1 (𝑏) 𝜒2 (𝑏) 𝑒 (
𝑏 − 𝑎

𝑝
)

=

𝑝−1

∑

𝑎=1

𝜒
1
(𝑎)

𝑝−1

∑

𝑏=1

𝜒2 (𝑏) 𝑒 (
𝑏 (1 − 𝑎)

𝑝
)

= 𝜏 (𝜒2)

𝑝−1

∑

𝑎=1

𝜒
1
(𝑎) (

1 − 𝑎

𝑝
) .

(11)

So from (11) we have

𝜏 (𝜒1𝜒2) 𝜏 (𝜒1
3
𝜒2)

𝜏 (𝜒1) 𝜏 (𝜒1
3
)

=
1

𝑝2
𝜏 (𝜒1) 𝜏 (𝜒1

3
)𝜏 (𝜒1𝜒2) 𝜏 (𝜒1

3
𝜒2)

=
𝜏
2
(𝜒2)

𝑝2

𝑝−1

∑

𝑎=1

𝜒
1
(𝑎) (

1 − 𝑎

𝑝
)

𝑝−1

∑

𝑏=1

𝜒
3

1
(𝑏) (

1 − 𝑏

𝑝
)

=
𝜏
2
(𝜒2)

𝑝2

𝑝−1

∑

𝑎=1

𝜒
1
(𝑎)

𝑝−1

∑

𝑏=1

(
1 − 𝑎𝑏

3

𝑝
)(

1 − 𝑏

𝑝
)

=
𝜏
2
(𝜒2)

2𝑝2

𝑝−1

∑

𝑎=1

𝜒 (𝑎)

𝑝−1

∑

𝑏=1

(
1 − 𝑎
2
𝑏
3

𝑝
)(

1 − 𝑏

𝑝
)

+ 𝜒
1
(𝑟)

𝜏
2
(𝜒2)

2𝑝2

𝑝−1

∑

𝑎=1

𝜒 (𝑎)

𝑝−1

∑

𝑏=1

(
1 − 𝑟𝑎

2
𝑏
3

𝑝
)(

1 − 𝑏

𝑝
) .

(12)

Note that |𝜏(𝜒)| = |𝜏(𝜒1)| = |𝜏(𝜒
3

1
)| = √𝑝 and 𝜏

2
(𝜒2) =

±𝑝; from (12) and Lemma 1 we may immediately deduce the
identity



𝑝−1

∑

𝑎=1

𝜒 (𝑚𝑎
3
+ 𝑎)



2

= 𝑝 ⋅



1 + (
𝑚

𝑝
)
𝜏 (𝜒1𝜒2) 𝜏 (𝜒1

3
𝜒2)

𝜏 (𝜒1) 𝜏 (𝜒1
3
)



2

= 2𝑝 + (
𝑚

𝑝
)
𝜏
2
(𝜒2)

2𝑝

𝑝−1

∑

𝑎=1

(𝜒 (𝑎) + 𝜒 (𝑎))

×

𝑝−1

∑

𝑏=1

(
1 − 𝑎
2
𝑏
3

𝑝
)(

1 − 𝑏

𝑝
) + (

𝑚

𝑝
)
𝜏
2
(𝜒2)

2𝑝

×

𝑝−1

∑

𝑎=1

(𝜒1 (𝑟) 𝜒 (𝑎) + 𝜒1 (𝑟) 𝜒 (𝑎))

×

𝑝−1

∑

𝑏=1

(
1 − 𝑟𝑎

2
𝑏
3

𝑝
)(

1 − 𝑏

𝑝
) .

(13)

This proves Lemma 2.

Lemma 3. Let 𝑝 be an odd prime, let 𝜒 be any nonprincipal
even character mod𝑝, 𝜒 = 𝜒

2

1
, and 𝜒

3
̸= 𝜒0, the principal

character mod𝑝. Then for any integer 𝑚 and any quadratic
nonresidue 𝑟 mod 𝑝 with (𝑚, 𝑝) = 1, one has the estimate



𝑝−1

∑

𝑎=1

(𝜒1 (𝑟) 𝜒 (𝑎) + 𝜒1 (𝑟) 𝜒 (𝑎))

𝑝−1

∑

𝑏=1

(
1 − 𝑟𝑎

2
𝑏
3

𝑝
)(

1 − 𝑏

𝑝
)

+

𝑝−1

∑

𝑎=1

(𝜒 (𝑎) + 𝜒 (𝑎))

𝑝−1

∑

𝑏=1

(
1 − 𝑎
2
𝑏
3

𝑝
)(

1 − 𝑏

𝑝
)



≤ 4𝑝.

(14)

Proof. Let 𝑛 be any integer such that (𝑚𝑛/𝑝) = −1 or (𝑚/𝑝)+

(𝑛/𝑝) = 0. Then from Lemma 2 we have



𝑝−1

∑

𝑎=1

𝜒 (𝑚𝑎
3
+ 𝑎)



2

+



𝑝−1

∑

𝑎=1

𝜒 (𝑛𝑎
3
+ 𝑎)



2

= 4𝑝. (15)

Note that |(𝑚/𝑝)(𝜏
2
(𝜒2)/𝑝)| = 1; applying (15) and Lemma 2

we have the estimate



𝑝−1

∑

𝑎=1

(𝜒1 (𝑟) 𝜒 (𝑎) + 𝜒1 (𝑟) 𝜒 (𝑎))

𝑝−1

∑

𝑏=1

(
1 − 𝑟𝑎

2
𝑏
3

𝑝
)(

1 − 𝑏

𝑝
)

+

𝑝−1

∑

𝑎=1

(𝜒 (𝑎) + 𝜒 (𝑎))

𝑝−1

∑

𝑏=1

(
1 − 𝑎
2
𝑏
3

𝑝
)(

1 − 𝑏

𝑝
)



=





𝑝−1

∑

𝑎=1

𝜒 (𝑚𝑎
3
+ 𝑎)



2

−



𝑝−1

∑

𝑎=1

𝜒 (𝑛𝑎
3
+ 𝑎)



2

≤



𝑝−1

∑

𝑎=1

𝜒 (𝑚𝑎
3
+ 𝑎)



2

+



𝑝−1

∑

𝑎=1

𝜒 (𝑛𝑎
3
+ 𝑎)



2

≤ 4𝑝.

(16)

This proves Lemma 3.

Lemma 4. Let 𝑝 > 3 be a prime. Then we have the identity

𝑝−1

∑

𝑚=1

(
𝑚

𝑝
)



𝑝−1

∑

𝑎=1

𝑒 (
𝑚𝑎
3
+ 𝑎

𝑝
)



2

= −𝜏
2
(𝜒2) (2 + (

3

𝑝
)) , (17)

where (∗/𝑝) = 𝜒2 denotes the Legendre symbol.

Proof. For any odd prime 𝑝 and integer 𝑛 with (𝑛, 𝑝) = 1,
fromHua’s book [11] (Section 7.8,Theorem 8.2) we know that

𝑝

∑

𝑎=1

(
𝑎
2
+ 𝑛

𝑝
) = −1. (18)



4 Journal of Applied Mathematics

From this identity and the definition and properties of Gauss
sums we have
𝑝−1

∑

𝑚=1

(
𝑚

𝑝
)



𝑝−1

∑

𝑎=1

𝑒 (
𝑚𝑎
3
+ 𝑎

𝑝
)



2

=

𝑝−1

∑

𝑎=1

𝑝−1

∑

𝑏=1

𝑝−1

∑

𝑚=1

(
𝑚

𝑝
) 𝑒(

𝑚(𝑎
3
− 𝑏
3
) + 𝑎 − 𝑏

𝑝
)

=

𝑝−1

∑

𝑎=1

𝑝−1

∑

𝑏=1

𝑝−1

∑

𝑚=1

(
𝑚

𝑝
) 𝑒(

𝑚𝑏
3
(𝑎
3
− 1) + 𝑏 (𝑎 − 1)

𝑝
)

= 𝜏 (𝜒2)

𝑝−1

∑

𝑎=1

𝑝−1

∑

𝑏=1

(
𝑏
3
(𝑎
3
− 1)

𝑝
) 𝑒(

𝑏 (𝑎 − 1)

𝑝
)

= 𝜏 (𝜒2)

𝑝−1

∑

𝑎=1

(
𝑎
3
− 1

𝑝
)

𝑝−1

∑

𝑏=1

(
𝑏

𝑝
) 𝑒(

𝑏 (𝑎 − 1)

𝑝
)

= 𝜏
2
(𝜒2)

𝑝−1

∑

𝑎=1

(
(𝑎
3
− 1) (𝑎 − 1)

𝑝
)

= 𝜏
2
(𝜒2)(

𝑝

∑

𝑎=1

(
4𝑎
2
+ 4𝑎 + 4

𝑝
) − 1 − (

3

𝑝
))

= 𝜏
2
(𝜒2)(

𝑝

∑

𝑎=1

(
(2𝑎 + 1)

2
+ 3

𝑝
) − 1 − (

3

𝑝
))

= 𝜏
2
(𝜒2)(

𝑝

∑

𝑎=1

(
𝑎
2
+ 3

𝑝
) − 1 − (

3

𝑝
))

= −𝜏
2
(𝜒2) (2 + (

3

𝑝
)) .

(19)

This proves Lemma 4.

3. Proof of the Theorem

In this section, we will complete the proof of our theorem.
Note that the identities |𝜏(𝜒2)|

2
= 𝑝 and

𝑝−1

∑

𝑚=1



𝑝−1

∑

𝑎=1

𝑒 (
𝑚𝑎
3
+ 𝑎

𝑝
)



2

=

𝑝

∑

𝑚=1



𝑝−1

∑

𝑎=1

𝑒 (
𝑚𝑎
3
+ 𝑎

𝑝
)



2

− 1

=

𝑝−1

∑

𝑎=1

𝑝−1

∑

𝑏=1

𝑝

∑

𝑚=1

𝑒(
𝑚(𝑎
3
− 𝑏
3
) + 𝑎 − 𝑏

𝑝
) − 1

=

𝑝−1

∑

𝑎=1

𝑝−1

∑

𝑏=1

𝑝

∑

𝑚=1

𝑒(
𝑚(𝑎
3
− 1) + 𝑏 (𝑎 − 1)

𝑝
) − 1

= {
𝑝
2
− 𝑝 − 1, if 3†𝑝 − 1,

𝑝
2
− 3𝑝 − 1, if 3 | 𝑝 − 1.

(20)

So from (20), Lemmas 2, 3, and 4, and noting that |𝜏(𝜒2)|
2
= 𝑝

we have

𝑝−1

∑

𝑚=1



𝑝−1

∑

𝑎=1

𝜒 (𝑚𝑎
3
+ 𝑎)



2

⋅



𝑝−1

∑

𝑏=1

𝑒 (
𝑚𝑏
3
+ 𝑏

𝑝
)



2

= 2𝑝 ⋅

𝑝−1

∑

𝑚=1



𝑝−1

∑

𝑐=1

𝑒 (
𝑚𝑐
3
+ 𝑐

𝑝
)



2

+
𝜏
2
(𝜒2)

2𝑝

𝑝−1

∑

𝑎=1

(𝜒 (𝑎) + 𝜒 (𝑎))

×

𝑝−1

∑

𝑏=1

(
1 − 𝑎
2
𝑏
3

𝑝
)(

1 − 𝑏

𝑝
)

×

𝑝−1

∑

𝑚=1

(
𝑚

𝑝
)



𝑝−1

∑

𝑐=1

𝑒 (
𝑚𝑐
3
+ 𝑐

𝑝
)



2

+
𝜏
2
(𝜒2)

2𝑝

×

𝑝−1

∑

𝑎=1

(𝜒1 (𝑟) 𝜒 (𝑎) + 𝜒
1
(𝑟) 𝜒 (𝑎))

×

𝑝−1

∑

𝑏=1

(
1 − 𝑎
2
𝑏
3

𝑝
)(

1 − 𝑏

𝑝
)

×

𝑝−1

∑

𝑚=1

(
𝑚

𝑝
)



𝑝−1

∑

𝑐=1

𝑒 (
𝑚𝑐
3
+ 𝑐

𝑝
)



2

= 2𝑝
3
+ 𝐸 (𝑝) ,

(21)

where 𝐸(𝑝) satisfies the inequalities −12𝑝2 − 2𝑝 ≤ 𝐸(𝑝) ≤

4𝑝
2
− 2𝑝.
This completes the proof of our theorem.
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