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We report a characteristic function to determine whether repetitive static plate load test (RSPLT) moduli are within an acceptable
quality range, based on a comparison between the initial loading values and reloadingmoduli.The results of RSPLTs depend on the
experience and expertise of the engineer carrying out the test, as well as the loading device, hydraulic jack assembly, and bearing
plates. To identify outlier data points, well-tested data were used to develop a characteristic functionmodel using a harmony search
algorithm error minimization technique. This measure was applied to determine the reliability of RSPLT data.

1. Introduction

Compacting multilayered soil structures is of particular
importance. A repetitive static plate load test (RSPLT) can be
carried out to obtain moduli of the soil based on the loading
and deformation and evaluate whether sufficient compaction
has occurred. The moduli of soil can be practically evaluated
using a conventional in situ test method; however, the de-
formation-modulus curves obtained fromRSPLT evaluations
are typically nonlinear, resulting in secant, tangent, unload-
ing, reloading, and cyclic moduli [1–3]. Because of variations
in the experience of the engineer who may be carrying out
the test, as well as variations in the RSPLT experimental
equipment, the results of these tests may lead to spurious
differences from measurement to measurement.

For these reasons, we have developed a quality evaluation
process for the RSPLT process, with a focus on railway appli-
cations. To determine the quality of RSPLT measurements,
we usedwell-tested data from an expert in RSPLT evaluations
following the compaction of soil or granular material. Using
these RSPLT data, we developed a characteristic function
defined by a series of log-sigmoidal functions. The param-
eters of these functions were determined by minimizing

a predefined error term expressing the difference between
measurement of the RSPLT data and the predicted values
from the characteristic function, where a harmony search
(HS) algorithm was used to minimize the error. The primary
goal of this work was to assess whether an RSPLT has been
carried out properly.

2. RSPLT

The RSPLT apparatus consists of a circular load plate made
of steel with a radius of 150mm, which is placed on the
compacted soil to be tested. A thin layer of fine sand
may be placed between the two to provide a flat surface,
which ensures proper load transmission across the entire
plate. Incremental loading steps are applied to the plate and
the vertical displacements are recorded. Subsequently, the
loading is incrementally reduced until the applied load is
zero, while the displacement continues to be monitored.This
procedure is then repeated up to a peak load of 0.5MN/m2.
An example two-step set of load-deformation curves is shown
in Figure 1; these load and deformation data typically exhibit
hysteresis.
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Figure 1: Example load-deformation curves for soil.

The moduli can be obtained from the initial loading and
reloading cases using the following equation:

𝐸 = (1 − 𝜇
2
)
𝜋𝐷𝑝

4𝛿
, (1)

where 𝜇 is Poisson’s ratio, 𝐷 is the diameter of the plate, 𝑝 is
the applied pressure on the bearing plate, and 𝛿 is the average
settlement of the plate. As shown in Figure 1, two deformation
increments, Δ𝑠

1
and Δ𝑠

2
, can be defined, which correspond

to the first and second loadings, where Δ𝑝 is the difference
in pressure due to these incremental loadings.Therefore, two
moduli are obtained: an initial modulus, 𝐸ini, and a reloading
modulus, 𝐸re; that is,

𝐸ini = (1 − 𝜇
2
)
𝜋𝐷Δ𝑝

4Δ𝑠
1

, (2a)

𝐸re = (1 − 𝜇
2
)
𝜋𝐷Δ𝑝

4Δ𝑠
2

. (2b)

The stiffness ratio𝐸re/𝐸ini is used to evaluate the elasticity
and plasticity of the soil. A higher stiffness ratio corresponds
tomore plastic deformation during the initial loading test and
is related to a soft initial modulus. Further soil compaction is
required if the stiffness ratio is too large. A low stiffness ratio
corresponds to more elastic deformation, since similar initial
and reloading moduli were obtained; the soil compaction
may be considered adequate if the stiffness ratio is below
a given threshold. In this study, we focus on developing a
characteristic function to evaluate whether or not an RSPLT
has been satisfied.

3. Harmony Search Algorithm

The HS algorithm is a metaheuristic optimization tool that
is inspired by the musical improvisation process and has
been widely used to solve optimization problems consist-
ing of discrete and continuous objective functions. Unlike
conventional derivative-based optimization algorithms,HS is

based on a random stochastic search with no gradient data.
For this reason, the HS algorithm can be easily implemented
using a harmony memory consideration rate (HMCR), pitch
adjustment rate (PAR), and harmony memory (HM) [4–9].

The HS algorithm may be formulated as an optimization
problem with𝑁 variables as follows:

Minimize 𝑓 (x) ,

subject to 𝑙
𝑖
≤ 𝑥
𝑖
≤ 𝑢
𝑖
, 𝑖 = 1, . . . , 𝑁,

(3)

where 𝑓(x) is the objective function, x = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑁
)

is a possible solution vector, 𝑙
𝑖
and 𝑢

𝑖
are the lower and

upper bounds of the search domain, respectively, and𝑁 is the
number of decision variables. To implement anHS algorithm,
the optimization procedure is as follows.

Step 1 (initialize the HS parameters). The HS algorithm
parameters, which consist of the harmony memory size
(HMS), HMCR, PAR, and maximum number of improvisa-
tions (MNI), are initialized.

Step 2 (generate the harmony memory (HM)). The HM is
randomly initialized from a uniform distribution in the range
between 𝑙

𝑖
and 𝑢

𝑖
; that is,

HM =

[
[
[
[

[

𝑥
1

1
𝑥
1

2
⋅ ⋅ ⋅ 𝑥

1

𝑁

𝑥
2

1
𝑥
2

2
⋅ ⋅ ⋅ 𝑥

2

𝑁

...
... ⋅ ⋅ ⋅

...
𝑥
HMS
1

𝑥
HMS
2

⋅ ⋅ ⋅ 𝑥
HMS
𝑁

]
]
]
]

]

, (4)

where the superscripts and subscripts of the elements repre-
sent each random trial row vector and the decision variables
used to evaluate the objective function given in (3), respec-
tively.

Step 3 (improvise new harmonies). The new harmony is
denoted by xnew = (𝑥new

1
, 𝑥

new
2
, . . . , 𝑥

new
𝑁
) and is implemented

using the HMCR, PAR, and stochastic variables. The HMCR
is the probability of selecting an element of the HM matrix;
therefore, it is in the range 0-1, and (1 − HMCR) is the
probability of randomly selecting a value within the feasible
domain. For example, HMCR = 0.85 means that the HS
algorithm chooses values of the solution vector from the HM
with an 85% probability and from stochastic processes with
a 15% probability. In addition, the PAR parameter, which is
analogous to the pitch adjustment of each instrument during
tuning of an ensemble, is used to improve the solutions and
escape local optima. If the stochastic variable is less than
PAR, 𝑥new

𝑖
is replaced by 𝑥new

𝑖
± bw × rand(), where bw is

the bandwidth and rand() is a randomly generated number
in the range 0-1. Thus, pitch adjustment occurs only once a
value has been chosen by the HM matrix, and (1 – PAR) is
the probability of doing nothing. If PAR = 0.5, the algorithm
chooses a neighboring value with a probability of 50%.

Step 4 (update the harmonymemory). If the newly generated
harmony vector, xnew, represents an improvement over the
least satisfactory harmony vector in the HM in terms of
the objective function, then the least satisfactory vector is
replaced by xnew.
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Figure 2: Determination of 𝛿
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and 𝛿
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Figure 3: Error in each iteration of the HS algorithm.

Step 5 (check the termination criterion). If the convergence
criteria are satisfied, the HS algorithm is terminated. Other-
wise, go to Step 3.

4. Characteristic Function Model
Describing the RSPLT Quality

In order to develop a characteristic function model to
determine the quality of the RSPLT, well-tested data obtained
from an expert operator of RSPLTswere used. In addition, the
RSPLT data were separated into training data and testing data
to develop and evaluate the characteristic function model,
respectively. Using the training RSPLT data, the reloading
modulus, which describes the relationship of the initial
modulus and characteristic deformations, can be defined by
a series of log-sigmoidal functions as follows:

𝐸re = 𝑥1𝐸ini +
2

∑

𝑖=1

1

{1 + 𝑥
𝑖+1

exp (𝑥
𝑖+2
𝛿
𝑖
)}
, (5)

where 𝑥
1
, 𝑥
2
, . . . , 𝑥

5
are the parameters, and 𝛿

1
and 𝛿
2
are the

deformations shown in Figure 2. These deformations were
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Figure 4: Comparison between training data and predicted data.
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Figure 5: Comparison between test data and predicted data.

determined at a load of 0.15MN/m2 and at the end of the
initial loading, respectively. The log-sigmoidal function has
been widely used in applications including artificial neural
networks [10]. The reloading modulus can be defined using
(5). If some anomalousRSPLTdatawere used to calculate 𝐸re,
this can then be detected as an outlier.

The parameters of (5) were determined by minimizing a
predefined error function expressing the difference between
the training data and the predicted results of the characteristic
function; that is,

𝑀

∑

𝑗=1
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, (6)

where | ⋅ | denotes the absolute value, TD is the training
data, and 𝑀 is the total number data points in the training
data. Two datasets consisting of 53 and 23 data were used for
training data and testing data, respectively.TheHS algorithm
was used to minimize the error of (6).

The HS algorithm parameters were HMS = 10, HMCR
= 0.95, PAR = 0.35, and MNI = 50 000. Figure 3 shows the
procedure used to minimize the HS error. The parameters of
the characteristic function model were 𝑥

1
= 1.96515, 𝑥

2
=

−2, 𝑥
3
= 0.04542, 𝑥

4
= 0.001, and 𝑥

5
= 4.631.
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Figure 6: Histogram showing the frequency of the relative errors.
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Figure 7: Range of 98% probability, based on the characteristic
function model.

The training dataset, which was not used for the error
minimization, was used to evaluate the characteristic func-
tion model. As shown in Figures 4 and 5, the predicted data
of the training and testing sets were in good agreement.
Based on the characteristic function model, outliers could be
determined by introducing a relative error function; that is,

RE
𝑗
=

TD
𝑗
− [𝑥
1
𝐸ini + ∑

2

𝑖=1
(1/ {1 + 𝑥

𝑖+1
exp (𝑥

𝑖+2
𝛿
𝑖
)})]
𝑗

TD
𝑗

,

(7)

whereRE
𝑗
is the 𝑗th relative error in a sequence of the training

data.
The average and standard deviation of the relative error

were calculated in order to determine a 98%probability of the
characteristic function model, where a uniform distribution
of the relative error was assumed.Themean and the standard
deviation of the relative error were −0.11019 and 0.11644,
respectively. A histogram showing the relative errors is shown
in Figure 6. Using themean and standard deviation, the range
of 98% probability can be provided as shown in Figure 7.The
outliers (i.e., those points in the remaining 2% probability
window) can be identified and used to check whether

the RSPLT setup or data acquisition process is satisfactory. In
this way, the quality of the RSPLT may be evaluated.

5. Conclusions

The objective of this study was to develop a characteristic
function describing the initial data from the first RSPLT
hysteresis curves using the HS error minimization technique.
Reloading moduli data from the RSPLT were compared with
predicted moduli obtained from the characteristic function
to assess whether the predicted value was an outlier, that is,
whether it was in the 98% probability range. If a reloading
modulus was out of this range, it was assumed to be an outlier.
In this way, RSPLT data can be monitored, including load
transmission across the entire plate, testing surface, hydraulic
jack assembly, and bearing plate.
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