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The Particle Swarm Optimization (PSO) Algorithm is a popular optimization method that is widely used in various applications,
due to its simplicity and capability in obtaining optimal results. However, ordinary PSOsmay be trapped in the local optimal point,
especially in high dimensional problems. To overcome this problem, an efficient Global Particle Swarm Optimization (GPSO)
algorithm is proposed in this paper, based on a new updated strategy of the particle position. This is done through sharing
information of particle position between the dimensions (variables) at any iteration. The strategy can enhance the exploration
capability of the GPSO algorithm to determine the optimum global solution and avoid traps at the local optimum. The proposed
GPSO algorithm is validated on a 12-benchmarkmathematical function and comparedwith three different types of PSO techniques.
The performance of this algorithm is measured based on the solutions’ quality, convergence characteristics, and their robustness
after 50 trials. The simulation results showed that the new updated strategy in GPSO assists in realizing a better optimum solution
with the smallest standard deviation value compared to other techniques. It can be concluded that the proposed GPSO method is
a superior technique for solving high dimensional numerical function optimization problems.

1. Introduction

Nowadays, there are various types of modern optimiza-
tion techniques, such as Evolutionary Programming (EP),
Artificial Immune System (AIS), Ant Colony Optimization
(ACO), and Artificial Bees Colony (ABC). All of them can be
regarded as heuristic optimization methods, due to the ran-
domization involved in their respective initial steps. Despite
the usage of randomized values, the mutation process and
other steps in the algorithm render the optimization method
capable of solving both linear and nonlinear problems. From
the literature, it can be seen that optimization techniques are
applicable in many fields. However, among the optimization
methods, PSO has become very popular, due to its simplicity
and its affinity towards manufacturing and robotics [1–3],
electrical power systems [4–8], and engineering [9–11] and
in other areas [12–18].

There is no specific optimization algorithm that can
reach a global solution for every optimization problem.

Some algorithms can only provide the best solution to a
particular problem, but not to others [19]. In classical PSO
cases, PSO sometimes fails to find a global optimum solution
when dealing with high dimensional problems.This problem
occurs due to the fact that the particles are trapped at a local
optimum (premature) solution.

In order to address such problems, several variants of
PSO have been proposed to enhance the exploration and
exploitation capability and convergence speed and to avoid
being trapped at the local optimum [20–26]. The modifica-
tion is made on the PSO algorithm itself or by hybridizing
the PSO with other optimization techniques. A new adaptive
weight technique that was proposed by Nickabadi et al. [27]
was among the recent works involving the modification of
the PSO algorithm. There are 3 main constant parameters
that will affect the performance of the PSO, which are
inertia weight (𝑤), cognitive constant (𝑐

1
), and social constant

(𝑐
2
); the changes of these parameters will result in different

performances of the algorithm. In a traditional PSO, these
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parameters are unspecified and need to be adjusted several
times in order to obtain a suitable value [28, 29]. This implies
that there are possibilities for the user to obtain inaccurate
settings on the initial values (𝑐

1
, 𝑐
2
, and𝑤), whichwill result in

the PSO not converging. Therefore, the tool on time varying
inertia weight technique in PSO has been introduced in [30–
34] and also the adaptive inertia weight methods in [35–
38]. In [27], the authors have used a new adaptive inertia
weight approach, which uses the success rate of the swarm
as a feedback parameter to determine the particles’ situation
in the search space to enhance the performance of PSO. The
results showed that the proposed method produced superior
results compared to other weight adjustment techniques.
Although the results in the study were better, it requires a
large number of iterations (×105) before achieving the global
optimal value compared to other techniques. Thus, for larger
dimensions, the adjustment on inertia weight parameter
alone might not be sufficient for the algorithm to realize the
global optimal value.

In this paper, a novel Global Particle SwarmOptimization
(GPSO) is proposed to improve and enhance the convergence
speed of classical PSO.Theworking principle of the proposed
algorithm is based on a new proposed updated parameter
(𝐸best) in order to enrich the capability of the algorithm in
finding a global solution. This new updating strategy can
explore more possible solutions in searching space. The per-
formance ofGPSO is comparedwith three other optimization
methods, which are traditional PSO, Iteration Particle Swarm
Optimization (IPSO) method [39], and Evolutionary Particle
SwarmOptimization (EPSO) method [40].The performance
for all these PSO types will be tested on 12 common mathe-
matical test functions in the dimensions of 20, 30, 50, and 100.
The maximum number of iterations for the algorithms was
set to 1000. The remainder of this paper is organized in the
following fashion. In Section 2, the basic operation of PSO,
IPSO, and EPSO and their respective updated strategy in
obtaining optimal solutions are briefly explained. The details
of the proposed GPSO algorithm and the new updating
strategy are described in Section 3. The simulation results
between GPSO performance with the other PSO algorithms
and the influence of parameter setting onGPSOare presented
in Section 4, respectively. Finally, Section 5 concludes this
paper.

2. Review of Particle Swarm
Optimization and Its Variants

2.1. Particle SwarmOptimization (PSO) Algorithm. Theorigi-
nal Particle Swarm Optimization (PSO) Algorithm proposed
by Kennedy and Eberhart [28] in 1995 is adapted from
the food searching behavior of birds and fish (particles).
All these particles will move within the searching space
towards the location of food (optimal location) in a specific
speed and continuously change their respective positions
to arrive at the destination. The position and velocity of
ith particle in 𝑑-dimensional search space are represented
as 𝑥
𝑖

= (𝑥
𝑖1
, 𝑥
𝑖2
, . . . , 𝑥

𝑖𝑑
) and V

𝑖
= (V

𝑖1
, V
𝑖2
, . . . , V

𝑖𝑑
),

respectively. Their movement is guided by their own expe-
rience (𝑃𝑘best−𝑖) and the experience of the other particles in
a group (𝐺𝑘best). The best position which has been visited
by the 𝑖th particle, until 𝑘 iteration is recorded as 𝑃

𝑘

best−𝑖 =

(𝑃
𝑘

best−𝑖1, 𝑃
𝑘

best−𝑖2, . . . , 𝑃
𝑘

best−𝑖𝑑), while the best position among
the 𝑃

𝑘

best−𝑖 in a group is defined as 𝐺
𝑘

best. Each particle will
update its velocity (V𝑘+𝑡

𝑖
) and position (𝑥𝑘+1

𝑖
) in the following

manner:

V𝑘+1
𝑖

= 𝑤V𝑘+1
𝑖

+ 𝑐
1
𝑟
1𝑖
(𝑃
𝑘

best−𝑖 − 𝑥
𝑘

𝑖
) + 𝑐
2
𝑟
2𝑖
(𝐺
𝑘

best − 𝑥
𝑘

𝑖
) ,

𝑥
𝑘+1

𝑖
= V𝑘+1
𝑖

+ 𝑥
𝑘

𝑖
,

(1)

where 𝑘 is the number of iterations, 𝑤 is the inertia weight,
V
𝑖
is the velocity of 𝑖th particle, 𝑐

1
and 𝑐
2
are the acceleration

coefficients for cognitive and social components, respectively,
and 𝑟
1
and 𝑟
2
are independently uniform distributed random

numbers between 0 and 1.

2.2. Iteration Particle Swarm Optimization (IPSO) Algorithm.
Iteration Particle Swarm Optimization (IPSO) is a modifica-
tion PSOmethod proposed by Lee and Chen [39] to improve
the solution quality and computing time of the algorithm. In
the IPSO, three best values were used to update the velocity
and the position of the particles, which are known as 𝐺best,
𝑃best, and 𝐼best. The definition and the method to determine
the 𝑃best and 𝐺best values in the IPSO are similar to the
traditional PSO (discussed in Section 2.1). Meanwhile, the
new parameter 𝐼best is defined as the best value of the fitness
function that has been achieved by any particle in the present
iteration. In other words, 𝐼best value is the 𝑃best value that
is randomly selected among the existing particles from the
current population. In addition, the authors also introduced
a dynamic acceleration constant parameter, 𝑐

3
value for 𝐼best

in IPSO. Therefore, the new velocity formula for the IPSO
algorithm is [39]

V𝑘+1
𝑖

= 𝑤V𝑘+1
𝑖

+ 𝑐
1
𝑟
1𝑖
(𝑃
𝑘

best−𝑖 − 𝑥
𝑘

𝑖
) + 𝑐
2
𝑟
2𝑖
(𝐺
𝑘

best − 𝑥
𝑘

𝑖
)

+ 𝑐
3
(𝐼
𝑘

best − 𝑥
𝑘

𝑖
) ,

𝑐
3
= 𝑐
1
(1 − 𝑒

−𝑐
1
𝑘
) ,

(2)

where 𝑐
3
is the acceleration constant that pulls each particle

towards 𝐼best. The value of 𝑐
3
will change according to 𝑐

1
and

the number of iterations (𝑘).

2.3. Evolutionary Particle Swarm Optimization (EPSO)
Algorithm. The Evolutionary Particle Swarm Optimization
(EPSO) Algorithm introduced by Angeline [40] utilizes
the hybridization concept by combining the Evolutionary
Programming (EP) with the traditional PSO. There are few
methods in EP optimization methods, and one of them
utilized the competition, sorting, and selection processes
to select the survival particles and render the process in
determining the optimum value quicker. By implementing
this concept in PSO algorithm, it causes the particles in EPSO
tomove faster than its counterpart towards the optimal point.
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Table 1: High dimensional benchmark functions used in experiments.

Test function Range
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𝑛
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Furthermore, the implementation of EP in PSO will also
cause the process of finding the 𝑃best and 𝐺best for each
iteration to become different and simpler [41]. The EPSO
algorithm can get the 𝑃best and 𝐺best values just after the
selection process based on the survival particle. Thus, the
𝑃best and 𝐺best values can be easily determined, and the new
velocity and position are updated using (1).

3. A Novel Global Particle Swarm
Optimization Algorithm

In this study, a novel Global Particle Swarm Optimization
(GPSO) Algorithm is introduced. Certain modifications are
made on the velocity formula of the traditional PSO algo-
rithm, so that it would reach and obtain the best solution
(global solution) quicker than the traditional PSO.

In the traditional PSO, the 𝐺best having a better result is
used in the updating process, while the remaining 𝐺best is
terminated (replaced). This means that all the 𝐺best values
that have been achieved at the previous iteration will not
be referring back. In other words, there is no information
sharing between the best values that are achieved at the
previous iteration with the current results. By using the
“Experience” concept, the knowledge and information about
what had previously happened can be used as guides for accu-
rate decisions. Therefore, the 𝐺best value at any dimension
(variable) and at any iteration will be randomly selected and

used to update the velocity value, and this variable is called
𝐸best.

Furthermore, the acceleration coefficient for the 𝐸best
parameter (𝑐

3
) is obtained from the average of cognitive (𝑐

1
)

and social (𝑐
2
) constant parameter values. Thus, the new

velocity formula that updates the next position of particles
in GPSO is

V𝑘+1
𝑖

= 𝜔
𝑘V𝑘
𝑖
+ 𝑐
1
𝑟
1𝑖
(𝑃
𝑘

best−𝑖 − 𝑥
𝑘

𝑖
) + 𝑐
2
𝑟
2𝑖
(𝐺
𝑘

best − 𝑥
𝑘

𝑖
)

+ 𝑐
3
𝑟
3𝑖
(𝐸
𝑘

best − 𝑥
𝑘

𝑖
) ,

(3)

where the 4th term in the GPSO velocity equation
|𝑐
3
𝑟
3𝑖
(𝐸
𝑘

best − 𝑥
𝑘

𝑖
)| is referred to as the Improvement Factor

(IF).
Figure 1 illustrates an example of the GPSO process

to determine the 𝐸
𝑘

best value. The optimization problem
supposedly consists of 3 variables (𝑋

1
, 𝑋
2
, and 𝑋

3
); the

number of particles is 6 (the positions of the particles are
represented by different colours) and has reached the 𝑘th
iteration (current iteration). Similar to the PSO algorithm,
the 𝐺best value for the population at each iteration will be
obtained in order to update the next particles’ position. In
this example, the population at 𝑚th iteration has the 𝐺best
value that is achieved by the “blue” particle. Therefore, the
𝐺best values for each dimension (variable) at the𝑚th iteration
are 𝑋

𝑚-blue
1

, 𝑋
𝑚-blue
2

, and 𝑋
𝑚-blue
3

. For the current iteration,
the 𝐺best value is achieved by the “light purple” particle; thus,
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Table 2: Best, worst, mean, and standard deviation values obtained by PSO, IPSO, EPSO, and GPSO through 50 independent runs on
functions from 𝑓

1
to 𝑓
3
.

Function Dim. Min. Best Worst Mean SD

𝑓
1

20

PSO 4.09𝐸 + 01 1.19𝐸 + 03 3.15𝐸 + 02 2.68𝐸 + 02

IPSO 2.81𝐸 + 01 5.13𝐸 + 02 1.99𝐸 + 02 1.33𝐸 + 02

EPSO 1.55𝐸 + 03 2.17𝐸 + 04 5.30𝐸 + 03 3.53𝐸 + 03

GPSO 8.18𝐸 − 09 1.31𝐸 − 05 2.22𝐸 − 06 2.58𝐸 − 06

30

PSO 1.22𝐸 + 03 8.23𝐸 + 03 3.70𝐸 + 03 1.53𝐸 + 03

IPSO 8.71𝐸 + 02 4.34𝐸 + 03 2.25𝐸 + 03 8.05𝐸 + 02

EPSO 5.40𝐸 + 03 2.02𝐸 + 04 1.14𝐸 + 04 3.85𝐸 + 03

0 GPSO 1.47𝐸 − 10 2.47𝐸 − 05 4.51𝐸 − 06 6.10𝐸 − 06

50

PSO 4.37𝐸 + 03 1.77𝐸 + 04 9.67𝐸 + 03 3.29𝐸 + 03

IPSO 3.36𝐸 + 03 9.31𝐸 + 03 6.08𝐸 + 03 1.46𝐸 + 03

EPSO 9.70𝐸 + 03 3.99𝐸 + 04 2.35𝐸 + 04 7.05𝐸 + 03

GPSO 3.90𝐸 − 07 1.73𝐸 − 05 5.45𝐸 − 06 4.68𝐸 − 06

100

PSO 5.80𝐸 + 03 2.73𝐸 + 04 1.55𝐸 + 04 5.62𝐸 + 03

IPSO 4.48𝐸 + 03 1.67𝐸 + 04 1.12𝐸 + 04 3.17𝐸 + 03

EPSO 2.84𝐸 + 04 6.85𝐸 + 04 4.74𝐸 + 04 1.06𝐸 + 04

GPSO 5.07𝐸 − 07 8.33𝐸 − 05 1.26𝐸 − 05 1.62𝐸 − 05

𝑓
2

20

PSO 2.09𝐸 + 06 1.33𝐸 + 08 1.77𝐸 + 07 2.14𝐸 + 07

IPSO 2.17𝐸 + 05 1.27𝐸 + 07 2.90𝐸 + 06 2.79𝐸 + 06

EPSO 1.36𝐸 + 06 1.56𝐸 + 08 4.23𝐸 + 07 3.83𝐸 + 07

GPSO 5.11𝐸 − 03 3.09𝐸 + 00 3.87𝐸 − 01 5.18𝐸 − 01

30

PSO 5.67𝐸 + 06 1.07𝐸 + 08 2.97𝐸 + 07 2.07𝐸 + 07

IPSO 2.36𝐸 + 06 3.69𝐸 + 07 1.33𝐸 + 07 8.51𝐸 + 06

EPSO 1.37𝐸 + 08 1.86𝐸 + 09 6.70𝐸 + 08 3.65𝐸 + 08

0 GPSO 5.01𝐸 − 04 3.26𝐸 + 00 4.23𝐸 − 01 6.44𝐸 − 01

50

PSO 2.50𝐸 + 07 4.77𝐸 + 08 1.46𝐸 + 08 9.27𝐸 + 07

IPSO 1.69𝐸 + 07 2.92𝐸 + 08 7.23𝐸 + 07 4.24𝐸 + 07

EPSO 2.14𝐸 + 07 5.28𝐸 + 08 1.82𝐸 + 08 1.16𝐸 + 08

GPSO 6.09𝐸 − 03 5.35𝐸 + 00 5.34𝐸 − 01 8.52𝐸 − 01

100

PSO 2.69𝐸 + 08 1.37𝐸 + 09 6.64𝐸 + 08 2.64𝐸 + 08

IPSO 1.58𝐸 + 08 6.74𝐸 + 08 3.60𝐸 + 08 1.19𝐸 + 08

EPSO 1.02𝐸 + 09 6.44𝐸 + 09 2.25𝐸 + 09 1.10𝐸 + 09

GPSO 1.38𝐸 − 02 7.61𝐸 + 00 9.31𝐸 − 01 1.22𝐸 + 00

𝑓
3

20

PSO 1.21𝐸 + 01 3.07𝐸 + 02 1.09𝐸 + 02 6.45𝐸 + 01

IPSO 3.50𝐸 + 00 1.29𝐸 + 02 4.74𝐸 + 01 2.94𝐸 + 01

EPSO 6.62𝐸 + 01 7.40𝐸 + 02 3.80𝐸 + 02 1.52𝐸 + 02

GPSO 7.51𝐸 − 09 6.53𝐸 − 06 3.66𝐸 − 07 9.41𝐸 − 07

30

PSO 1.55𝐸 + 02 1.08𝐸 + 03 4.86𝐸 + 02 2.34𝐸 + 02

IPSO 1.12𝐸 + 02 5.77𝐸 + 02 2.98𝐸 + 02 1.12𝐸 + 02

EPSO 5.41𝐸 + 02 3.68𝐸 + 03 1.60𝐸 + 03 6.61𝐸 + 02

0 GPSO 1.53𝐸 − 09 4.54𝐸 − 06 6.32𝐸 − 07 9.40𝐸 − 07

50

PSO 1.11𝐸 + 03 3.77𝐸 + 03 2.05𝐸 + 03 6.45𝐸 + 02

IPSO 8.07𝐸 + 02 2.11𝐸 + 03 1.39𝐸 + 03 3.72𝐸 + 02

EPSO 2.90𝐸 + 03 1.08𝐸 + 04 5.95𝐸 + 03 1.75𝐸 + 03

GPSO 4.35𝐸 − 08 5.21𝐸 − 06 1.48𝐸 − 06 1.40𝐸 − 06

100

PSO 5.15𝐸 + 03 2.34𝐸 + 04 1.49𝐸 + 04 3.92𝐸 + 03

IPSO 3.94𝐸 + 03 1.27𝐸 + 04 8.27𝐸 + 03 2.24𝐸 + 03

EPSO 1.69𝐸 + 04 4.02𝐸 + 04 2.74𝐸 + 04 5.43𝐸 + 03

GPSO 2.65𝐸 − 07 4.21𝐸 − 05 8.48𝐸 − 06 9.90𝐸 − 06
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Table 3: Best, worst, mean, and standard deviation values obtained by PSO, IPSO, EPSO, and GPSO through 50 independent runs on
functions from 𝑓

4
to 𝑓
6
.

Function Dim. Min. Best Worst Mean SD

𝑓
4

20

PSO 8.46𝐸 + 00 5.17𝐸 + 05 1.25𝐸 + 04 7.29𝐸 + 04

IPSO 1.11𝐸 − 03 5.41𝐸 + 03 3.32𝐸 + 02 9.93𝐸 + 02

EPSO 3.69𝐸 + 02 2.70𝐸 + 08 1.15𝐸 + 07 4.24𝐸 + 07

GPSO 5.60𝐸 − 13 7.61𝐸 − 09 4.98𝐸 − 10 1.16𝐸 − 09

30

PSO 1.54𝐸 + 02 9.45𝐸 + 10 2.40𝐸 + 09 1.35𝐸 + 10

IPSO 3.80𝐸 + 01 4.13𝐸 + 05 5.36𝐸 + 04 1.00𝐸 + 05

EPSO 5.51𝐸 + 04 3.65𝐸 + 15 1.43𝐸 + 14 5.92𝐸 + 14

0 GPSO 2.69𝐸 − 14 4.96𝐸 − 09 3.54𝐸 − 10 7.68𝐸 − 10

50

PSO 1.16𝐸 + 10 1.00𝐸 + 23 2.01𝐸 + 21 1.41𝐸 + 22

IPSO 1.34𝐸 + 05 3.02𝐸 + 14 1.72𝐸 + 13 5.91𝐸 + 13

EPSO 1.56𝐸 + 13 1.00𝐸 + 29 2.01𝐸 + 27 1.41𝐸 + 28

GPSO 1.60𝐸 − 12 2.07𝐸 − 09 3.33𝐸 − 10 4.83𝐸 − 10

100

PSO 1.06𝐸 + 26 1.02𝐸 + 54 2.04𝐸 + 52 1.44𝐸 + 53

IPSO 9.77𝐸 + 15 4.13𝐸 + 36 9.76𝐸 + 34 5.86𝐸 + 35

EPSO 1.05𝐸 + 39 7.97𝐸 + 62 1.67𝐸 + 61 1.13𝐸 + 62

GPSO 1.97𝐸 − 12 3.48𝐸 − 09 3.89𝐸 − 10 5.45𝐸 − 10

𝑓
5

20

PSO 2.06𝐸 + 02 3.05𝐸 + 03 1.12𝐸 + 03 6.33𝐸 + 02

IPSO 1.25𝐸 + 02 2.23𝐸 + 03 6.55𝐸 + 02 4.50𝐸 + 02

EPSO 2.17𝐸 + 03 1.17𝐸 + 04 5.78𝐸 + 03 2.26𝐸 + 03

GPSO 6.47𝐸 − 09 3.65𝐸 − 05 2.91𝐸 − 06 5.62𝐸 − 06

30

PSO 1.85𝐸 + 03 1.17𝐸 + 04 3.78𝐸 + 03 1.76𝐸 + 03

IPSO 7.13𝐸 + 02 4.11𝐸 + 03 2.04𝐸 + 03 7.82𝐸 + 02

EPSO 3.71𝐸 + 03 1.91𝐸 + 04 1.06𝐸 + 04 3.34𝐸 + 03

0 GPSO 5.22𝐸 − 08 2.20𝐸 − 05 3.63𝐸 − 06 4.91𝐸 − 06

50

PSO 4.47𝐸 + 03 1.63𝐸 + 04 9.70𝐸 + 03 2.91𝐸 + 03

IPSO 2.88𝐸 + 03 1.02𝐸 + 04 6.11𝐸 + 03 1.70𝐸 + 03

EPSO 1.11𝐸 + 04 4.71𝐸 + 04 2.45𝐸 + 04 7.81𝐸 + 03

GPSO 7.60𝐸 − 08 5.50𝐸 − 05 7.55𝐸 − 06 9.15𝐸 − 06

100

PSO 1.19𝐸 + 04 4.48𝐸 + 04 2.70𝐸 + 04 7.65𝐸 + 03

IPSO 9.05𝐸 + 03 2.36𝐸 + 04 1.57𝐸 + 04 2.74𝐸 + 03

EPSO 2.36𝐸 + 04 9.09𝐸 + 04 5.08𝐸 + 04 1.58𝐸 + 04

GPSO 3.02𝐸 − 08 1.17𝐸 − 04 1.20𝐸 − 05 1.95𝐸 − 05

𝑓
6

20

PSO 7.34𝐸 + 00 1.57𝐸 + 01 1.08𝐸 + 01 1.88𝐸 + 00

IPSO 4.68𝐸 + 00 1.08𝐸 + 01 7.95𝐸 + 00 1.57𝐸 + 00

EPSO 1.25𝐸 + 01 1.84𝐸 + 01 1.53𝐸 + 01 1.55𝐸 + 00

GPSO 4.20𝐸 − 05 1.80𝐸 − 03 4.45𝐸 − 04 3.77𝐸 − 04

30

PSO 9.48𝐸 + 00 1.69𝐸 + 01 1.27𝐸 + 01 1.45𝐸 + 00

IPSO 7.48𝐸 + 00 1.27𝐸 + 01 1.00𝐸 + 01 1.16𝐸 + 00

EPSO 1.30𝐸 + 01 1.80𝐸 + 01 1.63𝐸 + 01 1.14𝐸 + 00

0 GPSO 5.59𝐸 − 05 1.38𝐸 − 03 4.23𝐸 − 04 2.83𝐸 − 04

50

PSO 1.13𝐸 + 01 1.59𝐸 + 01 1.39𝐸 + 01 1.02𝐸 + 00

IPSO 1.02𝐸 + 01 1.35𝐸 + 01 1.19𝐸 + 01 8.40𝐸 − 01

EPSO 1.47𝐸 + 01 1.88𝐸 + 01 1.73𝐸 + 01 9.16𝐸 − 01

GPSO 6.53𝐸 − 05 1.28𝐸 − 03 4.25𝐸 − 04 2.91𝐸 − 04

100

PSO 1.34𝐸 + 01 1.75𝐸 + 01 1.52𝐸 + 01 9.02𝐸 − 01

IPSO 1.08𝐸 + 01 1.48𝐸 + 01 1.28𝐸 + 01 7.88𝐸 − 01

EPSO 1.52𝐸 + 01 1.95𝐸 + 01 1.76𝐸 + 01 9.96𝐸 − 01

GPSO 2.62𝐸 − 05 1.85𝐸 − 03 3.48𝐸 − 04 3.05𝐸 − 04
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Table 4: Best, worst, mean, and standard deviation values obtained by PSO, IPSO, EPSO, and GPSO through 50 independent runs on
functions from 𝑓

7
to 𝑓
9
.

Function Dim. Min. Best Worst Mean SD

𝑓
7

20

PSO 4.64𝐸 + 02 9.78𝐸 + 03 2.51𝐸 + 03 2.23𝐸 + 03

IPSO 1.44𝐸 + 02 7.65𝐸 + 03 1.21𝐸 + 03 1.22𝐸 + 03

EPSO 4.33𝐸 + 03 2.37𝐸 + 05 4.14𝐸 + 04 4.54𝐸 + 04

GPSO 1.10𝐸 − 07 1.35𝐸 − 04 2.60𝐸 − 05 3.20𝐸 − 05

30

PSO 1.79𝐸 + 03 3.22𝐸 + 04 1.17𝐸 + 04 7.31𝐸 + 03

IPSO 7.16𝐸 + 02 3.34𝐸 + 04 5.47𝐸 + 03 5.08𝐸 + 03

EPSO 1.62𝐸 + 04 4.05𝐸 + 05 9.36𝐸 + 04 7.21𝐸 + 04

0 GPSO 5.36𝐸 − 07 3.67𝐸 − 04 3.26𝐸 − 05 5.57𝐸 − 05

50

PSO 6.72𝐸 + 03 1.44𝐸 + 05 4.39𝐸 + 04 2.78𝐸 + 04

IPSO 5.71𝐸 + 03 8.60𝐸 + 04 2.27𝐸 + 04 1.46𝐸 + 04

EPSO 7.24𝐸 + 04 1.01𝐸 + 06 3.07𝐸 + 05 1.95𝐸 + 05

GPSO 1.23𝐸 − 07 1.15𝐸 − 04 3.97𝐸 − 05 3.53𝐸 − 05

100

PSO 7.49𝐸 + 04 6.85𝐸 + 05 2.18𝐸 + 05 1.47𝐸 + 05

IPSO 2.28𝐸 + 04 2.43𝐸 + 05 9.55𝐸 + 04 4.66𝐸 + 04

EPSO 2.52𝐸 + 05 2.37𝐸 + 06 8.59𝐸 + 05 4.58𝐸 + 05

GPSO 1.97𝐸 − 07 6.07𝐸 − 04 8.64𝐸 − 05 1.34𝐸 − 04

𝑓
8

20

PSO 3.93𝐸 + 01 1.15𝐸 + 02 7.70𝐸 + 01 1.55𝐸 + 01

IPSO 2.74𝐸 + 01 8.14𝐸 + 01 4.95𝐸 + 01 1.20𝐸 + 01

EPSO 9.37𝐸 + 01 2.02𝐸 + 02 1.38𝐸 + 02 2.58𝐸 + 01

GPSO 1.17𝐸 − 07 1.78𝐸 − 04 2.56𝐸 − 05 3.74𝐸 − 05

30

PSO 9.38𝐸 + 01 2.24𝐸 + 02 1.48𝐸 + 02 2.63𝐸 + 01

IPSO 6.06𝐸 + 01 1.89𝐸 + 02 1.19𝐸 + 02 2.41𝐸 + 01

EPSO 1.36𝐸 + 02 3.05𝐸 + 02 2.35𝐸 + 02 3.69𝐸 + 01

0 GPSO 4.77𝐸 − 07 2.41𝐸 − 04 2.96𝐸 − 05 4.28𝐸 − 05

50

PSO 1.90𝐸 + 02 3.99𝐸 + 02 3.19𝐸 + 02 4.43𝐸 + 01

IPSO 1.87𝐸 + 02 3.09𝐸 + 02 2.70𝐸 + 02 2.87𝐸 + 01

EPSO 3.17𝐸 + 02 5.58𝐸 + 02 4.54𝐸 + 02 4.93𝐸 + 01

GPSO 8.72𝐸 − 08 2.75𝐸 − 04 4.82𝐸 − 05 6.43𝐸 − 05

100

PSO 6.41𝐸 + 02 9.16𝐸 + 02 7.97𝐸 + 02 5.75𝐸 + 01

IPSO 5.85𝐸 + 02 7.71𝐸 + 02 7.01𝐸 + 02 4.23𝐸 + 01

EPSO 9.00𝐸 + 02 1.16𝐸 + 03 1.03𝐸 + 03 5.83𝐸 + 01

GPSO 2.36𝐸 − 07 5.13𝐸 − 04 8.11𝐸 − 05 1.11𝐸 − 04

𝑓
9

20

PSO 3.06𝐸 + 01 1.18𝐸 + 02 6.57𝐸 + 01 1.79𝐸 + 01

IPSO 1.39𝐸 + 01 8.43𝐸 + 01 3.99𝐸 + 01 1.79𝐸 + 01

EPSO 6.05𝐸 + 01 1.70𝐸 + 02 1.15𝐸 + 02 2.41𝐸 + 01

GPSO 1.01𝐸 − 06 5.34𝐸 − 04 9.27𝐸 − 05 9.80𝐸 − 05

30

PSO 8.00𝐸 + 01 2.08𝐸 + 02 1.36𝐸 + 02 3.46𝐸 + 01

IPSO 3.96𝐸 + 01 1.58𝐸 + 02 8.35𝐸 + 01 2.78𝐸 + 01

EPSO 1.40𝐸 + 02 3.17𝐸 + 02 2.16𝐸 + 02 3.72𝐸 + 01

0 GPSO 7.94𝐸 − 06 7.71𝐸 − 04 1.42𝐸 − 04 1.59𝐸 − 04

50

PSO 2.08𝐸 + 02 3.96𝐸 + 02 3.11𝐸 + 02 4.19𝐸 + 01

IPSO 1.09𝐸 + 02 3.34𝐸 + 02 2.04𝐸 + 02 3.91𝐸 + 01

EPSO 3.12𝐸 + 02 5.76𝐸 + 02 4.22𝐸 + 02 6.29𝐸 + 01

GPSO 2.81𝐸 − 07 1.07𝐸 − 03 1.85𝐸 − 04 2.08𝐸 − 04

100

PSO 6.32𝐸 + 02 1.03𝐸 + 03 8.08𝐸 + 02 8.19𝐸 + 01

IPSO 4.91𝐸 + 02 7.10𝐸 + 02 5.94𝐸 + 02 5.05𝐸 + 01

EPSO 7.23𝐸 + 02 1.20𝐸 + 03 9.73𝐸 + 02 9.09𝐸 + 01

GPSO 8.56𝐸 − 06 1.48𝐸 − 03 3.24𝐸 − 04 3.52𝐸 − 04
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Figure 1: Illustration for Global Particle Swarm Optimization concept.

the 𝐺best value can be presented as 𝑋
𝑘-light purple
𝑗

, where 𝑗 = 1,
2, and 3 (number of dimensions).

However, in the GPSO, an additional parameter is needed
for the updating process, which is the 𝐸best value. From
the previous definition, the 𝐸best value is obtained from
the 𝐺best value that is randomly selected at any iteration
and dimension. By using the Gaussian distributed random
function, the 𝐺best value from 2nd dimension (2nd variable)
at the 𝑚th iteration is selected to be the 𝐸

𝑘

best value for the
current iteration.Thus, in this example, the IF for the current
iteration population is

IF𝑘 = 𝑐
3
𝑟
3𝑖
(𝐺
𝑚

best−𝑋2 − 𝑥
𝑘

𝑖
)

= [

𝑐
2
+ 𝑐
2

2

] 𝑟
3𝑖
(𝐺
𝑚

best−𝑋2 − 𝑥
𝑘

𝑖
) .

(4)

From the above description, it can be noticed that the
𝐸best value for each iteration will be different for each time.
Unlike the 𝐺best concept, where the comparison process is
needed to determine the surviving 𝐺best value for the current
iteration, the 𝐸best parameter will not require any compar-
ison, and the possibility of having similar 𝐸best values in a
next iteration is minuscule, especially for high dimensional
problems. Therefore, the particles will learn and know about
different “Experience” for each process. Furthermore, the
Improvement Factor (IF) will also help the algorithm have

the suitable velocity value for updating the next particles’
positions. All these factors made the GPSO superior to
its original counterpart. Figure 2 and Algorithm 1 show the
flow chart for the GPSO algorithm in solving the high
dimensional optimization problem and the corresponding
MATLAB codes for the IF parameter.

4. Result and Discussion

Twelve (12) well-known classical benchmark functions
that consist of unimodal, multimodal, separable, and non-
separable types are used to evaluate the performance of the
CPSO, IWPSO, IPSO and GPSO algorithms, respectively, as
shown in Table 1.

In order to have a fair comparison, all of the PSOmethods
in the analysis utilized the same parametric values. The
population size for the particles is set to 20 (𝑁 = 20), with
the cognitive and social components (𝑐

1
and 𝑐
2
) values set

to 0.5. The algorithm will run until the maximum iteration
(max. iter. = 1000). Furthermore, the performance of these
PSOs will also be tested in 4 different dimensions, which are
20, 30, 50, and 100, and each test set is executed 50 times with
the new random population values.

4.1. Results from Benchmark Simulation. Tables 2, 3, 4, and
5 show the results of the best, worst, mean, and standard
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Figure 2: The process of Global Particle Swarm Optimization (GPSO) Algorithm.

deviation (SD) values that are achieved by the PSO, IPSO,
EPSO, and GPSO for all 12 benchmark functions in four
different dimensional sizes, respectively. The standard opti-
mal value for all functions in this analysis is zero except for
function 10 (𝑓

10
), where the standard optimal value for 𝑓

10
is

−78.33. Since the dimension of each test function is very high
(20, 30, 50, and 100 dimensions), the PSO, EPSO, and IPSO
algorithms could not provide the global optimal value in the
same manner that the GPSO could.

Figure 3 shows the example of the best results that are
achieved by all PSO methods in different functions and
dimensions. From the results, it can be seen that the concept
of “Experience” in GPSO has helped the algorithm obtain the
lowest convergence value compared to other PSOs. Not only

that, but the GPSO has also reached the global value faster
than others, either when the global minimum value is zero
(Figures 3(a) and 3(b)) or not (Figure 3(c)). For example, in
Figure 3(c), the EPSO is the slowest algorithm that makes
the high dimensional problem arrive near its convergence
solution (nearly 200 iterations) compared to PSO and IPSO,
whilst GPSO only required a small number of iteration (12
iterations) to do the same. This makes GPSO the fastest
algorithm in terms of obtaining convergence solution in high
dimensional problems and the lowest optimal results when
compared to other PSOs methods.

On top of that, the limitation on 1000 iterations is not the
cause for the PSO, EPSO, and IPSOmethods for not realizing
the best optimal value. Although the numbers of iterations
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Table 5: Best, worst, mean, and standard deviation values obtained by PSO, IPSO, EPSO, and GPSO through 50 independent runs on
functions from 𝑓

10
to 𝑓
12
.

Function Dim. Min. Best Worst Mean SD

𝑓
10

20

PSO −70.2000 −52.8000 −61.2000 3.5700

IPSO −68.3000 −57.7000 −62.0000 2.5100

EPSO −60.6000 −40.3000 −51.7000 4.8822

GPSO −78.3000 −75.1000 −77.9000 0.6716

30

PSO −63.2295 −49.5756 −56.2019 3.0588

IPSO −64.0370 −51.9089 −57.1815 2.7452

EPSO −56.0959 −39.0376 −47.4010 3.6965

−78.3324 GPSO −78.3323 −78.3323 −78.3323 0.0000

50

PSO −60.4579 −44.9971 −51.2624 3.1199

IPSO −56.2791 −46.6235 −51.8837 2.3331

EPSO −50.3900 −35.8658 −43.2473 3.2610

GPSO −78.3323 −78.3323 −78.3323 0.0000

100

PSO −51.1000 −40.1000 −45.0000 2.5976

IPSO −53.2000 −43.0000 −47.4000 2.0405

EPSO −38.7000 −31.9000 −35.4000 1.7196

GPSO −78.3000 −76.1000 −78.0000 0.3840

𝑓
11

20

PSO 3.06𝐸 + 00 1.29𝐸 + 01 7.89𝐸 + 00 2.31𝐸 + 00

IPSO 1.50𝐸 + 00 8.32𝐸 + 00 3.51𝐸 + 00 1.33𝐸 + 00

EPSO 9.03𝐸 + 00 2.56𝐸 + 01 1.45𝐸 + 01 3.76𝐸 + 00

GPSO 1.27𝐸 − 05 1.46𝐸 − 04 5.62𝐸 − 05 3.10𝐸 − 05

30

PSO 6.60𝐸 + 00 2.74𝐸 + 01 1.67𝐸 + 01 3.87𝐸 + 00

IPSO 4.28𝐸 + 00 1.44𝐸 + 01 9.31𝐸 + 00 2.13𝐸 + 00

EPSO 1.38𝐸 + 01 4.03𝐸 + 01 2.58𝐸 + 01 6.66𝐸 + 00

0 GPSO 1.80𝐸 − 05 1.64𝐸 − 04 7.93𝐸 − 05 4.18𝐸 − 05

50

PSO 2.32𝐸 + 01 5.53𝐸 + 01 3.60𝐸 + 01 7.14𝐸 + 00

IPSO 1.58𝐸 + 01 3.40𝐸 + 01 2.31𝐸 + 01 3.56𝐸 + 00

EPSO 3.10𝐸 + 01 7.10𝐸 + 01 5.45𝐸 + 01 7.73𝐸 + 00

GPSO 2.48𝐸 − 05 3.85𝐸 − 04 1.26𝐸 − 04 8.52𝐸 − 05

100

PSO 5.91𝐸 + 01 1.32𝐸 + 02 8.94𝐸 + 01 1.35𝐸 + 01

IPSO 4.66𝐸 + 01 7.38𝐸 + 01 5.98𝐸 + 01 5.72𝐸 + 00

EPSO 8.55𝐸 + 01 1.54𝐸 + 02 1.17𝐸 + 02 1.66𝐸 + 01

GPSO 3.97𝐸 − 05 7.27𝐸 − 04 2.68𝐸 − 04 1.58𝐸 − 04

𝑓
12

20

PSO 1.23𝐸 + 01 1.03𝐸 + 02 4.55𝐸 + 01 2.02𝐸 + 01

IPSO 4.72𝐸 + 00 4.97𝐸 + 01 2.22𝐸 + 01 9.20𝐸 + 00

EPSO 3.10𝐸 + 01 2.09𝐸 + 02 1.17𝐸 + 02 3.92𝐸 + 01

GPSO 1.41𝐸 − 07 2.29𝐸 − 05 5.91𝐸 − 06 6.27𝐸 − 06

30

PSO 5.68𝐸 + 01 2.56𝐸 + 02 1.15𝐸 + 02 4.38𝐸 + 01

IPSO 1.72𝐸 + 01 1.05𝐸 + 02 5.24𝐸 + 01 1.76𝐸 + 01

EPSO 9.89𝐸 + 01 3.54𝐸 + 02 2.11𝐸 + 02 6.05𝐸 + 01

0 GPSO 8.08𝐸 − 08 6.49𝐸 − 05 1.14𝐸 − 05 1.34𝐸 − 05

50

PSO 1.14𝐸 + 02 3.91𝐸 + 02 2.14𝐸 + 02 5.72𝐸 + 01

IPSO 7.01𝐸 + 01 1.98𝐸 + 02 1.30𝐸 + 02 2.79𝐸 + 01

EPSO 1.89𝐸 + 02 6.68𝐸 + 02 4.38𝐸 + 02 1.23𝐸 + 02

GPSO 5.00𝐸 − 07 1.50𝐸 − 04 2.25𝐸 − 05 2.59𝐸 − 05

100

PSO 3.55𝐸 + 02 9.73𝐸 + 02 5.96𝐸 + 02 1.40𝐸 + 02

IPSO 2.47𝐸 + 02 4.99𝐸 + 02 3.57𝐸 + 02 5.63𝐸 + 01

EPSO 5.21𝐸 + 02 1.38𝐸 + 03 1.03𝐸 + 03 1.70𝐸 + 02

GPSO 4.74𝐸 − 07 4.71𝐸 − 04 4.28𝐸 − 05 7.74𝐸 − 05
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Figure 3: The performance of PSO, EPSO, IPSO, and GPSO in solving high dimension problems.

increase to 20000, the results of optimization problem is
still give the same optimal value given by 1000 iterations.
It means that, for the high dimensional problems, these
three algorithms tend to be trapped at the local optimal
solution.Therefore, the 𝐸best parameter not only gives a faster
convergence solution, it also helped the algorithm to avoid
being trapped at the local optimal solution. Thus, from the

“best” results that are archived by all PSO methods in Tables
2 to 5, the GPSO can provide the optimal results very close to
or similar to the standard minimum value regardless of the
dimension size of the problems.

Furthermore, the GPSO can provide consistent results
for all 50-sample tests. This can be seen from the standard
deviation (SD) value where the SD values for GPSO are
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Table 6: The average (mean) and standard deviation values of GPSO with various acceleration coefficients for all functions.

Function
Performance of GPSO for different 𝑐

1
, 𝑐
2
, and 𝑐

3
values in 50 trials for Dim. = 50 cases

𝑐
1
= 𝑐
2
= 𝑐
3
= 0.2 𝑐

1
= 𝑐
2
= 𝑐
3
= 0.5 𝑐

1
= 𝑐
2
= 𝑐
3
= 1.0 𝑐

1
= 𝑐
2
= 𝑐
3
= 1.5 𝑐

1
= 𝑐
2
= 𝑐
3
= 2.0

Average Std Dev. Average Std Dev. Average Std Dev. Average Std Dev. Average Std Dev.
𝑓
1

1.02𝐸 − 06 1.40𝐸 − 06 5.45𝐸 − 06 4.68𝐸 − 06 7.37𝐸 − 04 8.00𝐸 − 04 4.69𝐸 − 01 5.46𝐸 − 01 3.42𝐸 + 01 3.24𝐸 + 01

𝑓
2

2.32𝐸 − 07 2.41𝐸 − 07 1.48𝐸 − 06 1.40𝐸 − 06 1.60𝐸 − 04 2.16𝐸 − 04 2.27𝐸 − 01 3.10𝐸 − 01 9.45𝐸 + 00 7.47𝐸 + 00

𝑓
3

7.75𝐸 − 11 1.44𝐸 − 10 3.33𝐸 − 10 4.83𝐸 − 10 3.79𝐸 − 08 5.18𝐸 − 08 1.12𝐸 − 05 1.35𝐸 − 05 1.13𝐸 − 03 1.19𝐸 − 03

𝑓
4

9.39𝐸 − 07 8.96𝐸 − 07 7.55𝐸 − 06 9.15𝐸 − 06 5.83𝐸 − 04 6.42𝐸 − 04 5.56𝐸 − 01 6.05𝐸 − 01 3.23𝐸 + 01 3.16𝐸 + 01

𝑓
5

1.84𝐸 − 04 9.71𝐸 − 05 4.25𝐸 − 04 2.91𝐸 − 04 3.57𝐸 − 03 1.97𝐸 − 03 2.22𝐸 − 01 1.86𝐸 − 01 2.39𝐸 + 00 7.81𝐸 − 01

𝑓
6

8.81𝐸 − 06 1.30𝐸 − 05 3.97𝐸 − 05 3.53𝐸 − 05 2.97𝐸 − 03 2.63𝐸 − 03 3.30𝐸 − 01 4.93𝐸 − 01 2.80𝐸 + 01 2.76𝐸 + 01

𝑓
7

1.79𝐸 − 06 3.42𝐸 − 06 4.82𝐸 − 05 6.43𝐸 − 05 3.63𝐸 − 03 4.23𝐸 − 03 1.30𝐸 − 01 3.87𝐸 − 01 1.26𝐸 + 01 1.46𝐸 + 01

𝑓
8

1.05𝐸 − 05 2.04𝐸 − 05 1.85𝐸 − 04 2.08𝐸 − 04 2.92𝐸 − 03 3.61𝐸 − 03 5.42𝐸 − 02 7.07𝐸 − 02 6.27𝐸 + 00 6.51𝐸 + 00

𝑓
9

−7.83𝐸 + 1 2.85𝐸 − 09 −7.83𝐸 + 1 2.21𝐸 − 08 −7.83𝐸 + 1 7.68𝐸 − 07 −7.83𝐸 + 1 8.78𝐸 − 04 −7.77𝐸 + 1 4.01𝐸 + 00

𝑓
10

8.02𝐸 − 05 4.92𝐸 − 05 1.26𝐸 − 04 8.52𝐸 − 05 9.97𝐸 − 04 7.55𝐸 − 04 1.68𝐸 − 02 9.63𝐸 − 03 3.15𝐸 − 01 3.05𝐸 − 01

𝑓
11

2.01𝐸 − 06 2.66𝐸 − 06 2.25𝐸 − 05 2.59𝐸 − 05 1.43𝐸 − 03 1.75𝐸 − 03 9.45𝐸 − 01 9.93𝐸 − 01 1.10𝐸 + 01 5.69𝐸 + 00

𝑓
12

8.81𝐸 − 06 1.30𝐸 − 05 3.97𝐸 − 05 3.53𝐸 − 05 2.97𝐸 − 03 2.63𝐸 − 03 3.30𝐸 − 01 4.93𝐸 − 01 2.80𝐸 + 01 2.76𝐸 + 01
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Figure 4: Comparison of standard deviation between GPSO and
other PSOs for all functions with Dim. = 50.

the lowest compared to the results from the other three PSOs
(Tables 2–5: column “SD”). Since the SD value indicates how
close the results that are obtained from the 50 different trials
to its average value (mean value), the largest of the SD value
shows that the algorithm could not provide a consistent result
in the analysis. This occurred due to the algorithms that
are always trapped in the local results, especially for high
dimensional problem. Figure 4 shows the SD values for all
functions when the dimension is 50.

It can be clearly seen that the SD values for 𝑓
2
, 𝑓
4
, and

𝑓
7
for PSO, EPSO, and IPSO, respectively, are very high

compared to GPSO results. From Table 3, the “best” values
that is achieved by PSO, EPSO, and IPSO in 𝑓

4
for dimension

50 are 1.16×10
10, 1.34×10

5, and 1.56×10
13, while the “worst”

value that were achieved by the algorithms are 1.00 × 10
23,

3.02 × 10
14, and 1.00 × 10

29, respectively. The large difference
between the “best” and the “worst” values influences the
SD values. However, for functions 𝑓

6
, 𝑓
10
, and 𝑓

11
, the SD

results for all the PSO methods are smaller than the other
functions results. Therefore, the PSO, EPSO, and IPSO can
still give consistent results in some of the high dimensional
problems, but not as well as the GPSO’s results. Overall, since
the SD value for GPSO in all of the test functions and in
all of the dimensions is very small (≈0), it can be concluded
that the GPSO can provide consistent results in any high
dimensional problem, as shown inTables 2–5 (columns “best”
and “worst”).

In summary, the GPSO algorithm can reach the global
optimal value within 1000 iterations for all cases on high
dimensional test functions. Not only that, but the GPSO also
has a very low standard deviation value compared to the
PSO, EPSO, and IPSO. Therefore, the GPSO has shown very
high efficiency in solving any high dimensional numerical
optimization problem.

4.2. Impacts of Acceleration Coefficient Selection for GPSO
Algorithm. From the previous sections, the GPSO algo-
rithm demonstrated the best performance in solving the
high dimension numerical optimization problems. However,
based on the velocity formula in (3), the settings of the
acceleration value will also influence GPSO’s performance,
albeit in a different manner. Thus, the investigation on the
suitable range for coefficient acceleration in solving high
dimensional problems is needed. The dimension for all the
benchmark functions that are used in this analysis is 50. The
maximum iteration number still remains the same, which
is 1000 iterations, and the average results and the standard
deviation values from 50 runs are presented in Table 6.

From Table 6, the GPSO algorithm can provide the aver-
age results near the optimal solution when the acceleration
(𝑐
𝑖
) value is between 0.2 and 1.5, where 𝑖 = 1, 2, and 3. For

case 𝑐
𝑖
= 0.2, 𝑐

𝑖
= 0.5, and 𝑐

𝑖
= 1.0, all the average results for
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for 𝑖 = 1 : 𝑁

Ch iter = fix(rand∗𝑡) + 1;
Ch part = fix(rand∗𝐷) + 1;

while (Ch part= =𝑖)
Ch part = fix(rand∗𝐷) + 1;

end;
IF (𝑖, :, 𝑡) = 𝑐

3
∗rand∗(𝐺best(1, Ch part, Ch iter) − X(𝑖, :, 𝑡));

End
V(:, :, 𝑡 + 1) =W(t)∗V(:, :, 𝑡) + 𝑐

1
∗rand∗(𝑃best (:, :, 𝑡) − X(:, :, 𝑡))

+ 𝑐
2
∗rand∗(G(:, :, 𝑡) − X(:, :, 𝑡)) + IF(:, :, 𝑡);

Where N: number of iteration, t: current iteration, D: Dimension,
i: particle’s number, X: variable, G: the current gbest result

Algorithm 1: The coding for determined IF and updated position in GPSO.
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Figure 5: Standard deviation results for GPSO in varying the
acceleration values.

𝑓
1
to 𝑓
8
and 𝑓

10
to 𝑓
12
are between 10−11 and 10−3. Since the

standard optimal value for these functions is zero, the GPSO
gave the average results that are very close to the standard
optimal value. For the acceleration coefficient 𝑐

𝑖
= 1.5, the

𝑓
1
to 𝑓
8
and 𝑓
10
to 𝑓
12
functions gave the optimal value from

10−5 to 10−1. For the 𝑓
8
function, the average results given

by 𝑐
𝑖
= 0.2 until 𝑐

𝑖
= 1.5 are similar, which is −7.83 × 10

1,
and equal to the standard optimal results (−78.33). However,
when the acceleration coefficients are set to 2.0, the results of
the GPSO are not as good as the results when the acceleration
values are less than 1.5, where some of the average value that
is obtained by GPSO are in the tens, despite the fact that the
optimal results should be zero.

Thus, in order to optimize the GPSO’s performance in
solving high dimensional problems, the acceleration coeffi-
cient that had been set by the user must be less than 1.5.

Figure 5 shows the standard deviation value for all of the
functionswhen the acceleration varies from0.2 and 2.0. From
the results, when the acceleration coefficient values for GPSO
are between 0.2 to 1.0 (𝑐

𝑖
= 0.2, 𝑐

𝑖
= 0.5, and 𝑐

𝑖
= 1.0), the SD

value for the algorithm is equal to zero for all functions.
In other words, GPSO is capable of providing consistent

results, when the acceleration coefficient values are within
range. However, when 𝑐

𝑖
= 1.5, some of the functions will

have higher SD values, such as 𝑓
11
, where the SD value is

near to 1.0. The worst condition occurred when 𝑐
𝑖

= 2.0,
where almost all functions have SD values higher than 0,
except for functions 3 and 10. Therefore, by considering the
average value in 50-test sets’ performance and the SD results,
it can be concluded that the suitable value on acceleration
coefficient for the GPSO algorithm must be less than 1.0 in
order to realize the best performance for GPSO in solving
high dimensional problems.

5. Conclusion

This paper proposed a new algorithm for Particle Swarm
Optimization, which is known as Global Particle Swarm
Optimization (GPSO), to determine the global optimal value
for high dimensional optimization problems. The perfor-
mance of GPSO is tested on 12 classical benchmark high
dimensional test functions and compared with 3 other PSO
methods, which are Original Particle Swarm Optimization
(PSO), Evolutionary Particle Swarm Optimization (EPSO),
and Iteration Particle Swarm Optimization (IPSO).

The simulation results showed that the GPSO method
performed well in solving high dimensional problems. The
implementation of 𝐸best in the GPSO did not only help the
algorithm reach the global optimal results in a few iterations,
but it also prevented the GPSO from being trapped in local
optimal results. Furthermore, the GPSO algorithm also gave
consistent results, even with different initial values based on
the smallest standard deviation obtained in 50-test sets. From
the acceleration coefficient varying analysis, the suitable value
for the GPSO algorithm must be less than 1.0 in order to
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realize the best performance in solving high dimensional
problems.

Therefore, from all the results shown by the GPSO
algorithm, it can be concluded that GPSO is the superior
method in solving high dimensional numerical optimization
problems compared to PSO, EPSO, and IPSO algorithms.
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