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We studied the thin film flow for lifting and drainage problems using an incompressible, nonisothermal modified second grade
fluid. We developed nonlinear differential equations frommomentum and energy equations, respectively. Series solutions for both
lifting and drainage problems are obtained. Expressions for the velocity profile, temperature distribution, volume flux, average film
velocity, and shear stress on cylinder for both cases are obtained. Effects of different parameters on the flow problems are presented
graphically.

1. Introduction

Thin film flows of linearly viscous fluids have been the
subject of deep investigation for the last few decades. This
is because of the widespread applications of such flows, both
industrial and natural. The literature on thin film flows for
Newtonian fluids is far-reaching but no proper attention has
been given to these flows concerning non-Newtonian fluids.
Siddiqui et al. [1–4] andHayat et al. [5–7] made their valuable
contributions to the thin film flows of non-Newtonian fluids.
The most common examples of the non-Newtonian fluids
are paints, clay coatings and other suspensions, drilling mud,
blood, shampoo, ketchup, polymer melts, certain oils and
greases, clastomers, and many other emulsions. Because of
the fact that a single constitutive equation cannot exhibit
all properties of non-Newtonian fluids, many constitutive
equations or models have been proposed. Among these,
the differential type fluids [8, 9] have received exceptional
consideration. The modified second grade fluids, a subclass
of the fluids of differential type, have been studied effectively
in various types of flow situations [10–13].

The flow of Newtonian fluids is described by the Navier-
Stokes equations which are nonlinear partial differential
equations and the exact solutions of these equations are very
rare. The importance of exact solutions is not only because
of the fact that they are the solutions of some fundamental
flows but also because they are used as accuracy check
for experimental, asymptotic, and numerical methods. The
governing equations that describe the flowof non-Newtonian
fluids are more complex and nonlinear than the Navier-
Stokes equations and so the exact solutions obtained for these
equations are considered as milestone.

Many researchers have been attracted by the flow and
heat transfer inside thin films [14–16]. This is due to their
vast applications in engineering and industry such as food
stuff processing, fiber and wire coating, reactor fluidization,
transpiration cooling, polymer processing, gaseous diffusion,
heat pipes, and fluidic cells of many biological and chemical
detection systems. Lavrik et al. [17] considered the problem
of chambers for chemical and biological detection systems
such as fluidic cells for biological and chemical microcan-
tilever. In majority of the problems related to flow and heat
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transfer studies, the power-law fluid model is taken as the
non-Newtonian fluid. Only unpretentious interest has been
devoted to the studies where the effects of viscous dissipation
are incorporated, although its importance has been shown in
many cases such as polymer processing.

The aim of the present paper is to discuss two different
flow problems for the modified second grade fluid motion
on a vertically upward moving cylinder and down a station-
ary vertical cylinder. Series solutions subject to appropriate
boundary conditions of the modeled highly nonlinear dif-
ferential equations are obtained in both cases. Because of
their practical significance, expressions for velocity profile,
temperature distribution, volume flux, average film velocity,
and shear stress on cylinder are also calculated. To the best
of our knowledge, these kinds of problems with heat transfer
have not yet been reported. At the end, graphical results
are presented for different physical parameters appearing in
the solution. We observed that modified second grade fluid
shows the power law model results for steady case.

This paper is organized as follows. In Section 2, basic
equations for the modified second grade fluid model are
given. Section 3 provides formulation and solution of the
lifting problem. Section 4 calculates volume flux, average
film velocity, and shear stress on cylinder for lifting prob-
lem. Section 5 consists of equations and their solutions for
drainage problem. Volume flux, average film velocity, and
shear stress on cylinder for drainage problem are calculated
in Section 6. Section 7 contains results and discussion, while
concluding remarks are given in Section 8.

2. Basic Equations

The basic equations governing the flow of an incompressible,
non-Newtonian fluid including thermal effects are [18]

divV = 0, (1)

𝜌

𝐷V
𝐷𝑡

= 𝜌f − grad𝑝 + divT, (2)

𝜌𝐶𝑝

𝐷Θ

𝐷𝑡

= 𝜅∇

2
Θ + T ⋅ L, (3)

where V is velocity vector and 𝐷/𝐷𝑡 is the material time
derivative defined as

𝐷

𝐷𝑡

(∗) = (

𝜕

𝜕𝑡

+ V ⋅ ∇) (∗) , (4)

where 𝜌 is constant density, f is body force, 𝑝 is dynamic
pressure, Θ is temperature, 𝐶𝑝 is specific heat constant, 𝜅 is
thermal conductivity, and T is extra stress tensor which is
defined differently for different fluids. We have chosen the
modified second grade fluid for our study. The extra stress
tensor for such a fluid is given by

T = 𝜇effA1 + 𝛼1A2 + 𝛼2A
2

1
, (5)

where 𝛼1 and 𝛼2 are normal stress coefficients, 𝜇eff is an
effective viscosity for modified second grade fluid as a
function of the shear rate and is defined as

𝜇eff = 𝜂(

1

2

trA2
1
)

𝑚/2

,
(6)

where 𝜂 is flow consistency index and 𝑚 is flow behavior
index. The Rivlin Ericksen tensors, A1 and A2, are defined
as

A1 = L + LT, L = gradV,

A2 =
𝐷A1
𝐷𝑡

+ A1L + LTA1.
(7)

It is worthwhile to mention here that, for 𝑚 < 0, the fluid
is pseudoplastic or shear thinning; for 𝑚 > 0, the fluid is
dilatant or shear thickening; for 𝑚 = 0, we obtain second
grade fluid model. On the other hand, if 𝛼1 = 𝛼2 = 0,
(5) reduces to the power-law model. Furthermore, if 𝑚 =

𝛼1 = 𝛼2 = 0, we obtain the classical Newtonian model. It
is important to note that the flow behavior index 𝑚 has the
limits −1 < 𝑚 < 1 [19].

3. Lifting Problem

Amodified second grade fluid is flowing on the outer surface
of an infinitely long vertical cylinder of radius 𝑅 which
moves vertically upward with constant speed𝑉0 as illustrated
in Figure 1(a). The flow is in the form of a thin uniform
axisymmetric film of thickness 𝛿 in contact with stationary
air. Gravity effects are in downward direction. We choose
𝑧-axis in the middle of the cylinder and 𝑟 is normal to it.
Furthermore, we suppose that motion is steady and there is
no variation with respect to the componentΘ. Thus, velocity
field is chosen as

V = [0, 0, 𝑤 (𝑟)] , Θ = Θ (𝑟) . (8)

Using profile (8), the continuity equation (1) is identically
satisfied and the momentum equation (2) reduces to

0 = −

𝜕𝑝

𝜕𝑟

+ (2𝛼1 + 𝛼2)
1

𝑟

𝑑

𝑑𝑟

[𝑟(

𝑑𝑤

𝑑𝑟

)

2

] , (9)

0 = −

1

𝑟

𝜕𝑝

𝜕𝜃

, (10)

0 = −𝜌𝑔 −

𝜕𝑝

𝜕𝑧

+

𝜂

𝑟

𝑑

𝑑𝑟

[𝑟(

𝑑𝑤

𝑑𝑟

)

𝑚+1

] . (11)

The velocity profile is obtained from (11). If we consider 𝑝
atmospheric pressure and therefore a constant, then we can
take 𝜕𝑝/𝜕𝑧 = 0; therefore, (11) becomes

1

𝑟

𝑑

𝑑𝑟

[𝑟(

𝑑𝑤

𝑑𝑟

)

𝑚+1

] =

𝜌𝑔

𝜂

, (12)

which is highly nonlinear ordinary differential equation.
Using profile (8) in the energy equation (3), we obtain

𝜅 [

𝑑

2
Θ

𝑑𝑟

2
+

1

𝑟

𝑑Θ

𝑑𝑟

] + 𝜂[

𝑑𝑤

𝑑𝑟

]

𝑚+2

= 0. (13)
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Figure 1: Geometry of the problems.

The corresponding boundary conditions are

at 𝑟 = 𝑅 + 𝛿,

𝑑𝑤

𝑑𝑟

= 0,

𝑑Θ

𝑑𝑟

= 0, (14)

at 𝑟 = 𝑅, 𝑤 = 𝑈, Θ = Θ0. (15)

Integrating (12) with respect to 𝑟 and applying the free space
boundary condition (14), we get

𝑑𝑤

𝑑𝑟

= −(

𝜌𝑔

2𝜂

)

1/(𝑚+1)
(𝑅 + 𝛿)

2/(𝑚+1)

𝑟

1/(𝑚+1)
[1 − (

𝑟

𝑅 + 𝛿

)

2

]

1/(𝑚+1)

.

(16)

In this expression, the sign of 𝑑𝑤/𝑑𝑟 is always opposite to that
of 𝑟, since velocity decreases with the increase of 𝑟. The above
equation can also be written as

𝑑𝑤

𝑑𝑟

= − (

𝜌𝑔

2𝜂

)

1/(𝑚+1)

(𝑅 + 𝛿)

2/(𝑚+1)

×

∞

∑

𝑖=0

(

1

𝑚 + 1

𝑖

)

(−1)

𝑖

(𝑅 + 𝛿)

2𝑖
𝑟

2𝑖−1/(𝑚+1)
.

(17)

For 𝑚 ̸= 0, solutions of (17) and (13), when boundary condi-
tions (14) and (15) are applied, are

𝑤 = 𝑈 − (

𝜌𝑔

2𝜂

)

1/(𝑚+1)

×

∞

∑

𝑖=0

(

1

𝑚 + 1

𝑖

)

×

(−1)

𝑖+1
𝑅

(2𝑖+𝑚/(𝑚+1))

(2𝑖 + 𝑚/ (𝑚 + 1)) (𝑅 + 𝛿)

2𝑖−2/(𝑚+1)

× [1 − (

𝑟

𝑅

)

2𝑖+𝑚/(𝑚+1)

] ,

(18)

Θ = Θ0 +

𝜂

𝜅

(

𝜌𝑔

2𝜂

)

(𝑚+2)/(𝑚+1)

×

∞

∑

𝑖=0

(

𝑚 + 2

𝑚 + 1

𝑖

)

(−1)

𝑖

(2𝑖 + 𝑚/ (𝑚 + 1)) (𝑅 + 𝛿)

2𝑖−2((𝑚+2)/(𝑚+1))

× [

𝑅

2𝑖+𝑚/(𝑚+1)

(2𝑖 + 𝑚/ (𝑚 + 1))

{1 − (

𝑟

𝑅

)

2𝑖+𝑚/(𝑚+1)

}

+(𝑅 + 𝛿)

2𝑖+𝑚/(𝑚+1) ln( 𝑟

𝑅

)] .

(19)

Introducing the nondimensional parameters,

𝑟

∗
=

𝑟

𝑅

, 𝑤

∗
=

𝑤

𝑈

, 𝛿

∗
=

𝛿

𝑅

,

Θ

∗
=

Θ − Θ0

Θ1 − Θ0

, 𝑆𝑡 =

𝜌𝑔𝑅

2

𝑈𝜇eff
, 𝐵𝑟 =

𝑈

2
𝜇eff

𝜅 (Θ1 − Θ0)

,

(20)

where Θ1 is reference temperature, 𝑆𝑡 is Stokes number, and
𝐵𝑟 is Brinkman number, (18) and (19), after dropping “∗”,
become

𝑤 = 1 + (

𝑆𝑡

2

)

1/(𝑚+1)

×

∞

∑

𝑖=0

(

1

𝑚 + 1

𝑖

)

(−1)

𝑖

(2𝑖 + 𝑚/ (𝑚 + 1)) (1 + 𝛿)

2𝑖−2/(𝑚+1)

× [1 − 𝑟

2𝑖+𝑚/(𝑚+1)
] ,
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Θ = 𝐵𝑟(
𝑆𝑡

2

)

(𝑚+2)/(𝑚+1)

×

∞

∑

𝑖=0

(

𝑚 + 2

𝑚 + 1

𝑖

)

(−1)

𝑖

(2𝑖 + 𝑚/ (𝑚 + 1)) (1 + 𝛿)

2𝑖

× [

1

(2𝑖 + 𝑚/ (𝑚 + 1))

{1 − 𝑟

2𝑖+𝑚/(𝑚+1)
}

+(1 + 𝛿)

2𝑖+𝑚/(𝑚+1) ln 𝑟] ,

(21)

which are the dimensionless velocity profile and temperature
distribution for modified second grade fluid, respectively.

4. Volume Flux, Average Film
Velocity, and Shear Stress on Cylinder
for Lifting Problem

Volume flux, 𝑄, in cylindrical coordinates is given by

𝑄 = ∫

𝑅+𝛿

𝑅

∫

2𝜋

0

𝑟𝑤 (𝑟) 𝑑𝜃 𝑑𝑟. (22)

Using profile (18), (22) becomes

𝑄 = 𝜋𝑈(𝑅 + 𝛿)

2
[1 − (

𝑅

𝑅 + 𝛿

)

2

]

− 2𝜋(

𝜌𝑔

2𝜂

)

1/(𝑚+1)

×

∞

∑

𝑖=0

(

1

𝑚 + 1

𝑖

)

(−1)

𝑖

(2𝑖 + 𝑚/ (𝑚 + 1)) (𝑅 + 𝛿)

2𝑖−2/(𝑚+1)

× [

(𝑅 + 𝛿)

2𝑖+𝑚/(𝑚+1)+2

(2𝑖 + 𝑚/ (𝑚 + 1) + 2)

× {1 − (

𝑅

𝑅 + 𝛿

)

2𝑖+𝑚/(𝑚+1)+2

}

−

(𝑅 + 𝛿)

2

2

𝑅

2𝑖+𝑚/(𝑚+1)
{1 − (

𝑅

𝑅 + 𝛿

)

2

}] .

(23)

The average film velocity, 𝑉, is defined as

𝑉 =

𝑄

𝜋 [(𝑅 + 𝛿)

2
− 𝑅

2
]

. (24)

Therefore, 𝑉 for the upward moving cylinder is given by

𝑉 = 𝑈 − (

𝜌𝑔

2𝜂

)

1/(𝑚+1)

×

∞

∑

𝑖=0

(

1

𝑚 + 1

𝑖

)

(−1)

𝑖

(2𝑖 + 𝑚/ (𝑚 + 1)) (𝑅 + 𝛿)

2𝑖−2/(𝑚+1)

× [

(𝑅 + 𝛿)

2𝑖+𝑚/(𝑚+1)

(2𝑖 + 𝑚/ (𝑚 + 1) + 2)

× {

1 − (𝑅/ (𝑅 + 𝛿))

2𝑖+𝑚/(𝑚+1)+2

2 [1 − (𝑅/ (𝑅 + 𝛿))

2
]

}

− 𝑅

2𝑖+𝑚/(𝑚+1)
] .

(25)

Shear stress on cylinder is

T𝑟𝑧|𝑟=𝑅 = −

𝜌𝑔(𝑅 + 𝛿)

2

2𝑅

[1 − (

𝑅

𝑅 + 𝛿

)

2

] . (26)

5. Drainage Problem

Again, we consider a modified second grade fluid now
falling on the outer surface of a stationary infinitely long
vertical cylinder of radius 𝑅 (Figure 1(b)). The flow is in the
downward direction due to gravity. The governing equations
(2) and (3) become

1

𝑟

𝑑

𝑑𝑟

[𝑟(

𝑑𝑤

𝑑𝑟

)

𝑚+1

] = −

𝜌𝑔

𝜂

,

𝜅 [

𝑑

2
Θ

𝑑𝑟

2
+

1

𝑟

𝑑Θ

𝑑𝑟

] + 𝜂[

𝑑𝑤

𝑑𝑟

]

𝑚+2

= 0,

(27)

along with the corresponding boundary conditions

at 𝑟 = 𝑅 + 𝛿,

𝑑𝑤

𝑑𝑟

= 0,

𝑑Θ

𝑑𝑟

= 0, (28)

at 𝑟 = 𝑅, 𝑤 = 0, Θ = Θ0. (29)

Solving (27) for 𝑚 ̸= 0, with boundary conditions (28) and
(29), we obtain

𝑤 = (

𝜌𝑔

2𝜂

)

1/(𝑚+1)

×

∞

∑

𝑖=0

(

1

𝑚 + 1

𝑖

)

(−1)

𝑖+1
𝑅

(2𝑖+𝑚/(𝑚+1))

(2𝑖 + 𝑚/ (𝑚 + 1)) (𝑅 + 𝛿)

2𝑖−2/(𝑚+1)

× [1 − (

𝑟

𝑅

)

2𝑖+𝑚/(𝑚+1)

] ,

(30)

Θ = Θ0 +

𝜂

𝜅

(

𝜌𝑔

2𝜂

)

(𝑚+2)/(𝑚+1)

×

∞

∑

𝑖=0

(

𝑚 + 2

𝑚 + 1

𝑖

)

(−1)

𝑖

(2𝑖 + 𝑚/ (𝑚 + 1)) (𝑅 + 𝛿)

2𝑖−2((𝑚+2)/(𝑚+1))
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× [

𝑅

2𝑖+𝑚/(𝑚+1)

(2𝑖 + 𝑚/ (𝑚 + 1))

{1 − (

𝑟

𝑅

)

2𝑖+𝑚/(𝑚+1)

}

+(𝑅 + 𝛿)

2𝑖+𝑚/(𝑚+1) ln( 𝑟

𝑅

)] .

(31)

Using the nondimensional parameters, (20), (30), and (31) in
the dimensionless forms, when the “∗” is dropped, become

𝑤 = (

𝑆𝑡

2

)

1/(𝑚+1)

×

∞

∑

𝑖=0

(

1

𝑚 + 1

𝑖

)

(−1)

𝑖+1

(2𝑖 + 𝑚/ (𝑚 + 1)) (1 + 𝛿)

2𝑖−2/(𝑚+1)

× [1 − 𝑟

2𝑖+𝑚/(𝑚+1)
] ,

Θ = 𝐵𝑟(
𝑆𝑡

2

)

(𝑚+2)/(𝑚+1)

×

∞

∑

𝑖=0

(

𝑚 + 2

𝑚 + 1

𝑖

)

(−1)

𝑖

(2𝑖 + 𝑚/ (𝑚 + 1)) (1 + 𝛿)

2𝑖

× [

1

(2𝑖 + 𝑚/ (𝑚 + 1))

{1 − 𝑟

2𝑖+𝑚/(𝑚+1)
}

+(1 + 𝛿)

2𝑖+𝑚/(𝑚+1) ln 𝑟] .

(32)

6. Volume Flux, Average Film
Velocity, and Shear Stress on Cylinder
for Drainage Problem

Volume flux, 𝑄, is calculated from (22) by using (30), which
is

𝑄 = 2𝜋(

𝜌𝑔

2𝜂

)

1/(𝑚+1)

×

∞

∑

𝑖=0

(

1

𝑚 + 1

𝑖

)

(−1)

𝑖

(2𝑖 + 𝑚/ (𝑚 + 1)) (𝑅 + 𝛿)

2𝑖−2/(𝑚+1)

× [

(𝑅 + 𝛿)

2𝑖+𝑚/(𝑚+1)+2

(2𝑖 + 𝑚/ (𝑚 + 1) + 2)

× {1 − (

𝑅

𝑅 + 𝛿

)

2𝑖+𝑚/(𝑚+1)+2

}

−

(𝑅 + 𝛿)

2

2

𝑅

2𝑖+𝑚/(𝑚+1)
{1 − (

𝑅

𝑅 + 𝛿

)

2

}] .

(33)

The average film velocity, 𝑉, is then given by

𝑉 = (

𝜌𝑔

2𝜂

)

1/(𝑚+1)

×

∞

∑

𝑖=0

(

1

𝑚 + 1

𝑖

)

(−1)

𝑖

(2𝑖 + 𝑚/ (𝑚 + 1)) (𝑅 + 𝛿)

2𝑖−2/(𝑚+1)

× [

(𝑅 + 𝛿)

2𝑖+𝑚/(𝑚+1)

(2𝑖 + 𝑚/ (𝑚 + 1) + 2)

× {

1 − (𝑅/ (𝑅 + 𝛿))

2𝑖+𝑚/(𝑚+1)+2

2 [1 − (𝑅/ (𝑅 + 𝛿))

2
]

}

− 𝑅

2𝑖+𝑚/(𝑚+1)
] .

(34)

Shear stress on cylinder is

T𝑟𝑧|𝑟=𝑅 =
𝜌𝑔(𝑅 + 𝛿)

2

2𝑅

[1 − (

𝑅

𝑅 + 𝛿

)

2

] . (35)

7. Results and Discussion

In this paper, we studied thin film flows for lifting and
drainage problems using vertical cylinders for an incom-
pressible, nonisothermal modified second grade fluid. The
series solutions of differential equations for both cases are
obtained. Dependence of the flow behavior index, 𝑚, Stokes
number, 𝑆𝑡, and Brinkman number, 𝐵𝑟, on velocity profile
and temperature distribution is investigated.The effect of flow
behavior index, 𝑚, on velocity field and temperature distri-
bution for both problems is illustrated graphically through
Figures 2 and 5. Figures 3 and 6 show the effect of 𝑆𝑡 and
𝐵𝑟 numbers on velocity and temperature for dilatant fluids.
Graphs for pseudoplastic fluids are given in Figures 4 and 7.
For the case of lifting, Figure 2(a) shows that as the fluid is
becoming thicker, the magnitude of velocity decreases and
vice versa, while the drainage problem is given in Figure 2(b).
In Figure 5, we see that as the fluid is becoming thicker, the
temperature increases. Figure 3(a) is showing the effect of
Stokes number, 𝑆𝑡, on velocity profile for lifting problem. We
see that as 𝑆𝑡 is increasing, the gradient of velocity decreases,
where as in the case of drainage problem Figure 3(b) shows
that as 𝑆𝑡 increases, velocity also increases.The effect of Stokes
number, 𝑆𝑡, and Brinkman number, 𝐵𝑟, on heat transfer for
both problems can be observed in Figures 6(a) and 6(b),
respectively. It is evident from these figures that increasing 𝑆𝑡
and 𝐵𝑟 numbers results in the rise of temperature. Respective
graphs for shear thinning fluids are shown in Figures 4 and 7.

8. Conclusion

We have considered equations for steady, nonisothermal thin
film flows for lifting and drainage problems in cylindrical
coordinates of modified second grade fluid. In both cases,
series solutions are obtained. Explicit expressions are given,
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Figure 2: Effect of𝑚 on velocity for lifting problem (a) and drainage problem (b).
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Figure 3: Effect on shear thickening fluid of 𝑆𝑡 number on velocity for lifting problem (a) and drainage problem (b).
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Figure 4: Effect on shear thinning fluid of 𝑆𝑡 number on velocity for lifting problem (a) and drainage problem (b).



Journal of Applied Mathematics 7

1.00 1.05 1.10 1.15 1.20 1.25 1.30
0

0.00002

0.00004

0.00006

0.00008

r

Θ
(r
)

m = −0.3
m = −0.8

St = 0.5, Br = 0.4

m = 0.8
m = 0.3

Figure 5: Effect of𝑚 on temperature for both problems.
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Figure 6: Effect on shear thickening fluid of 𝑆𝑡 and 𝐵𝑟 numbers on temperature for both problems.
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Figure 7: Effect on shear thinning fluid of 𝑆𝑡 and 𝐵𝑟 numbers on temperature for both problems.
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in both problems, for the velocity field, temperature distri-
bution, volume flux, average film velocity, and shear stress
on cylinder. It is worth mentioning that normal stresses have
no contribution for steady modified second grade fluid flow.
We do not see any contribution of modified second grade
fluidmodel verses power lawmodel as solutions (18) and (29)
for velocity profiles and also (19) and (30) for temperature
distributions are the same as those of the power law fluid.

Nomenclature

V : Velocity vector
f : Body force
𝑝: Dynamic pressure
𝑡: Time
L: Gradient of velocity
𝐶𝑝: Specific heat
T: Extra stress tensor
𝑚: Flow behavior index
A1,A2: Rivlin Ericksen tensors
𝑔: Gravitational acceleration
𝑅: Radius of cylinder
𝑟, 𝜃, 𝑧: Coordinate directions
𝑢, V, 𝑤: Velocity components in 𝑟, 𝜃, 𝑧 directions
𝑆𝑡: Stokes number
𝐵𝑟: Brinkman number
𝑄: Volume flux
𝑉: Average velocity
𝑈: Velocity of fluid at the surface of cylinder
𝑉0: Velocity of cylinder.

Greek Letters
𝜌: Density
Θ: Temperature
Θ0: Temperature at the surface of cylinder
Θ1: Reference temperature
𝜅: Thermal conductivity
𝛼1, 𝛼2: Normal stress coefficients
𝜇eff: Effective viscosity
𝜂: Flow consistency index
𝛿: Thickness of film.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] A. M. Siddiqui, R. Mahmood, and Q. K. Ghori, “Some exact
solutions for the thin film flow of a PTT fluid,” Physics Letters
A, vol. 356, no. 4-5, pp. 353–356, 2006.

[2] A. M. Siddiqui, R. Mahmood, and Q. K. Ghori, “Homotopy
perturbation method for thin film flow of a fourth grade fluid
down a vertical cylinder,” Physics Letters A, vol. 352, no. 4-5, pp.
404–410, 2006.

[3] A. M. Siddiqui, M. Ahmed, and Q. K. Ghori, “Thin film flow
of non-Newtonian fluids on a moving belt,” Chaos, Solitons &
Fractals, vol. 33, no. 3, pp. 1006–1016, 2007.

[4] A. M. Siddiqui, R. Mahmood, and Q. K. Ghori, “Homotopy
perturbation method for thin film flow of a third grade fluid
down an inclined plane,” Chaos, Solitons & Fractals, vol. 35, no.
1, pp. 140–147, 2008.

[5] S. Nadeem andM. Awais, “Thin film ow of an unsteady shrink-
ing sheet through porous medium with variable viscosity,”
Physics Letters A, vol. 372, pp. 4965–4972, 2008.

[6] M. Sajid, N. Ali, and T. Hayat, “On exact solutions for thin
film flows of a micropolar fluid,” Communications in Nonlinear
Science and Numerical Simulation, vol. 14, no. 2, pp. 451–461,
2009.

[7] V. Marinca, N. Herisanu, and I. Nemes, “Optimal homotopy
asymptotic method with application to thin film flow,” Central
European Journal of Physics, vol. 6, no. 3, pp. 648–653, 2008.

[8] J. E. Dunn and K. R. Rajagopal, “Fluids of differential type:
critical review and thermodynamic analysis,” International
Journal of Engineering Science, vol. 33, no. 5, pp. 689–729, 1995.

[9] C. Truesdell and W. Noll, “The non-linear field theories of
mechanics,” in Handbuch der Physik, HI/3, Springer, Berlin,
Germany, 1965.

[10] M. Khan, S. Nadeem, T. Hayat, and A. M. Siddiqui, “Unsteady
motions of a generalized second grade fluid,”Mathematical and
Computer Modelling, vol. 41, no. 6-7, pp. 629–637, 2005.

[11] T. Hayat and M. Khan, “Homotopy solutions for a generalized
second-grade fluid past a porous plate,” Nonlinear Dynamics,
vol. 42, no. 4, pp. 395–405, 2005.

[12] M. Khan, Hashim, and C. Feteacu, “On the exact solutions for
oscillating ow of an MHD second grade uid through porous
media,” Special Topics and Reviews in Porous Media, vol. 3, no.
1, pp. 13–22, 2012.

[13] M. Khan, T. Safdar, and M. Azram, “Starting solution for some
oscillatory rotating ows of MHD second grade uid through
porous space,” Journal of Porous Media, vol. 14, no. 8, pp. 723–
734, 2011.

[14] H. I. Andersson and D. Y. Shang, “An extended study of the
hydrodynamics of gravity-driven film flow of power-law fluids,”
Fluid Dynamics Research, vol. 22, pp. 345–357, 1998.

[15] B. K. Rao, “Heat transfer to a falling power-law fluid film,”
International Journal of Heat and Fluid Flow, vol. 20, pp. 429–
436, 1999.

[16] D. Y. Shang and H. I. Andersson, “Heat transfer in gravity-
driven film flow of power-law fluids,” International Journal of
Heat and Mass Transfer, vol. 42, pp. 2085–2099, 1999.

[17] N. V. Lavrik, C. A. Tipple,M. J. Sepaniak, andD. Datskos, “Gold
nano-structures for transduction of biomolecular interactions
into micrometer scale movements,” Biomedical Microdevices,
vol. 3, no. 1, pp. 35–44, 2001.

[18] M. Massoudi and T. X. Phuoc, “Flow of a generalized second
grade non-Newtonian fluid with variable viscosity,” Continuum
Mechanics and Thermodynamics, vol. 16, no. 6, pp. 529–538,
2004.

[19] C. Wang and I. Pop, “Analysis of the flow of a power-law fluid
film on an unsteady stretching surface by means of homotopy
analysis method,” Journal of Non-Newtonian Fluid Mechanics,
vol. 138, pp. 161–172, 2006.


