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In mathematics, to a large extent, control theory addresses the stability of solutions of differential equations, which can describe the
behavior of dynamic systems. In this paper, a class of fractional-order nonautonomous systems with multiple time delays modeled
by differential equations is considered. A sufficient condition is established for the existence and uniqueness of solutions for such
systems involving Caputo fractional derivative, and the uniform stability of solution is studied. At last, two examples are given to
demonstrate the applicability of our results.

1. Introduction

Fractional calculus is an ongoing topic for more than 300
years; it is a generalization of ordinary differentiation and
integration to arbitrary (noninteger) order. The number of
literature concerning the application of fractional calculus
has been growing rapidly, especially in recent years. In
fact, fractional derivatives are more adequate to describe
underlying phenomena than traditionally used integral-order
derivatives in many cases, because fractional-order deriva-
tives provide an excellent tool for the description of memory
and hereditary properties of various processes, in contrast to
integral-order derivatives. Nowadays, fractional calculus is a
flourishing field of active research [1–9].

Stability is one of the most fundamental and interesting
problem in control theory. So far, there have been some
advances in control theory of fractional dynamical systems
for stability questions such as robust stability [10–12], Mittag-
Leffler stability [13], bounded-input bounded-output stability
[14, 15], uniform stability [16], finite-time stability [17], and
robust controllability [18]. However, it should be noted
that it is difficult to evaluate the stability for fractional-
order dynamic systems by simply examining its characteristic
equation either by finding its dominant roots or by using
other algebraic methods. In addition, it is well known
that Lyapunov direct method cannot be simply extended

and applied to the case of fractional order, although many
stability results about integer-order systems are obtained by
constructing a suitable Lyapunov functional [19–22]. From
the above discussion, it may be seen that study on the stability
of fractional-order systems is still meaningful. Moreover,
time delay plays an important role in mathematical modeling
ofmany real world phenomena. Time delay can have an effect
on the stability of a system and occasionally can cause a
system to become unstable. To the best of our knowledge,
there are relatively few results on the stability of fractional-
order systems with delay, such as Lazarević and Spasić [17],
Akbari Moornani and Haeri [23], Kumar and Sukavanam
[24], Wang et al. [25], and El-Sayed and Gaafar [26]. In
[17], a finite-time stability test procedure is proposed for
linear nonhomogeneous fractional-order systems with a pure
time delay. In [23], two theorems are given to check the
robust BIBO stability of two large classes of fractional-order
delay systems (retarded and neutral types), respectively. In
[24], sufficient conditions are established for the approximate
controllability of a class of semilinear delay control systems of
fractional order. A delayed fractional-order financial system
is proposed and the complex dynamical behaviors of such a
system are discussed by numerical simulations in [25]. The
existence of a unique solution and the uniform stability of
solution are proved for a class of nonlinear nonautonomous
system of Riemann-Liouville fractional differential systems
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with different constant delays and nonlocal condition in [26].
For more details, the reader can refer to [27–30].

Motivated by the above discussions, this paper aims at
studying the uniform stability of a class of fractional-order
nonautonomous systems with multiple time delays. Besides,
a sufficient condition for the existence and uniqueness of
solutions is given.

The rest of this paper is organized as follows. In Section 2,
some useful definitions, lemmas, and notations are intro-
duced. In Section 3, the existence and uniqueness of solutions
and uniform stability problem for fractional-order nonau-
tonomous systems with multiple time delays are studied. In
Section 4, two numerical examples are presented to demon-
strate the main results. Finally, some conclusions are drawn
in Section 5.

2. Preliminaries

In this section, we present some definitions, lemmas, and
notations related to the main results that we will obtain in the
following.

Definition 1 (see [31]). The fractional-order integral of a
function 𝑓(𝑡) of order 𝛼 ∈ 𝑅+ is defined by

𝐼𝛼
𝑡0

𝑓 (𝑡) =
1

Γ (𝛼)
∫
𝑡

𝑡0

𝑓 (𝜏)

(𝑡 − 𝜏)1−𝛼
𝑑𝜏, (1)

where Γ(⋅) is the gamma function given as

Γ (𝑧) = ∫
∞

0

𝑡𝑧−1𝑒−𝑡𝑑𝑡. (2)

Definition 2 (see [32]). The Caputo fractional derivative 𝐷𝛼
of order 𝛼 of a function 𝑓(𝑡) is defined as

𝐷𝛼
𝑡0

𝑓 (𝑡) =
1

Γ (𝑛 − 𝛼)
∫
𝑡

𝑡0

𝑓(𝑛) (𝜏)

(𝑡 − 𝜏)𝛼+1−𝑛
𝑑𝜏, (𝑛 − 1 < 𝛼 < 𝑛) ,

(3)

where 𝑛 = [𝛼], [𝛼] is the ceiling function.

From the previous definitions, it is recognized that frac-
tional derivative represents a global property of a function
within a given closed interval [0, 𝑡], while integral derivative
of a function is only related to its nearby value of the
independent variable, which is a local property.

Lemma3 (see [32]). Let 𝑛 be a positive integer such that 𝑛−1 <
𝛼 < 𝑛; if 𝑓(𝑡) ∈ 𝐶𝑛−1[𝑡

0
, 𝑡], then

𝐼𝛼
𝑡0

𝐷𝛼
𝑡0

𝑓 (𝑡) = 𝑓 (𝑡) −
𝑛−1

∑
𝑚=0

𝑓(𝑚) (𝑡
0
)

𝑚!
(𝑡 − 𝑡
0
)
𝑚

. (4)

In particular, if 0 < 𝛼 < 1 and 𝑓(𝑡) ∈ 𝐶[𝑡
0
, 𝑡], then

𝐼𝛼
𝑡0

𝐷𝛼
𝑡0

𝑓 (𝑡) = 𝑓 (𝑡) − 𝑓 (𝑡
0
) . (5)

The following notations will be used throughout the
paper. Let 𝐶([𝑎, 𝑏], 𝑅𝑛) denote the class of all continuous

column 𝑛-vectors function defined on [𝑎, 𝑏]; for 𝑥 ∈
𝐶([𝑎, 𝑏], 𝑅𝑛), the norm is ‖𝑥(𝑡)‖ = ∑

𝑛

𝑖=1
sup
𝑡∈(𝑎,𝑏]

{𝑒−𝐾𝑡|𝑥
𝑖
(𝑡)|},

where𝐾 is a large enough constant. In addition, we define the
norm of 𝐴 = (𝑎

𝑖𝑗
)
𝑛×𝑛

by ‖𝐴‖ = ∑
𝑛

𝑖=1
𝑎
𝑖
= ∑
𝑛

𝑖=1
sup
𝑡,∀𝑗

|𝑎
𝑖𝑗
(𝑡)|.

3. Main Results

The differential equation describing the dynamic behavior of
a class of nonautonomous systems with multiple time delays
can be represented as follows:

𝐷𝛼𝑥
𝑖
(𝑡) =

𝑛

∑
𝑗=1

𝑎
𝑖𝑗
(𝑡) 𝑥
𝑗
(𝑡) +

𝑛

∑
𝑗=1

𝑏
𝑖𝑗
(𝑡) 𝑓
𝑗
(𝑥
𝑗
(𝑡))

+
𝑛

∑
𝑗=1

𝑐
𝑖𝑗
(𝑡) 𝑓
𝑗
(𝑥
𝑗
(𝑡 − 𝜏
𝑖𝑗
))

+ 𝑢
𝑖
(𝑡) , 𝑡 ∈ [0, 𝑇] , 𝑖 ∈ 𝑁 = {1, 2, . . . 𝑛} ,

(6)

where 𝑇 < +∞; 𝐷𝛼 denotes Caputo fractional-order
derivative of order 𝛼 (0 < 𝛼 < 1) with 𝑡

0
= 0; 𝑥(𝑡) =

(𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡))𝑇 represents the state vector at time 𝑡;

𝐴(𝑡) = (𝑎
𝑖𝑗
)
𝑛×𝑛

, 𝐵(𝑡) = (𝑏
𝑖𝑗
)
𝑛×𝑛

, 𝐶(𝑡) = (𝑐
𝑖𝑗
)
𝑛×𝑛

, and 𝑢(𝑡) =

(𝑢
𝑖
(𝑡))
𝑛×1

are given matrices whose elements are absolutely
continuous; 𝑓(𝑥(𝑡)) = (𝑓

1
(𝑥
1
(𝑡)), 𝑓

2
(𝑥
2
(𝑡)), . . . , 𝑓

𝑛
(𝑥
𝑛
(𝑡)))

corresponds to a vector function; 𝜏
𝑖𝑗
is a constant and denotes

the corresponding time delay.
Accompanying the system (6) is an initial condition of the

form:

𝑥
𝑖
(𝑡) = 𝜙

𝑖
(𝑡) , 𝑡 ∈ [−𝜏, 0] , (7)

for all 𝑖 ∈ 𝑁, where 𝜏 = max
𝑖,𝑗∈𝑁

{𝜏
𝑖𝑗
} and 𝜙

𝑖
(𝑡) is continuous

on [−𝜏, 0].
In order to prove the main results, we make the following

assumption:

(H1) 𝑓
𝑗
(𝑗 = 1, 2, . . . , 𝑛) is Lipschitz continuous with

Lipschitz constant 𝐿
𝑗
; that is,

󵄨󵄨󵄨󵄨󵄨𝑓𝑗 (𝑥) − 𝑓
𝑗
(𝑦)

󵄨󵄨󵄨󵄨󵄨 ≤ 𝐿
𝑗

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨 . (8)

3.1. Existence and Uniqueness of Solutions. In this section,
we will give a sufficient condition for the existence and
uniqueness of solutions of system (6).

Theorem 4. Assume that (H1) holds; then, system (6) exists
a unique solution 𝑥(𝑡) which satisfies 𝑥(𝑡) ∈ 𝐶([0, 𝑇], 𝑅𝑛) on
[0, 𝑇] and coincides with 𝜙 for 𝑡 ∈ [−𝜏, 0].
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Proof. Equation (6) is equivalent to the equation

𝑥
𝑖
(𝑡) = 𝜙

𝑖
(0) +

1

Γ (𝛼)

× ∫
𝑡

0

(𝑡 − 𝑠)
𝛼−1

× [

[

𝑛

∑
𝑗=1

𝑎
𝑖𝑗
(𝑠) 𝑥
𝑗
(𝑠) +

𝑛

∑
𝑗=1

𝑏
𝑖𝑗
(𝑠) 𝑓
𝑗
(𝑥
𝑗
(𝑠))

+
𝑛

∑
𝑗=1

𝑐
𝑖𝑗
(𝑠) 𝑓
𝑗
(𝑥
𝑗
(𝑠 − 𝜏

𝑖𝑗
))

+𝑢
𝑖
(𝑠) ]

]

𝑑𝑠, 𝑡 ∈ [0, 𝑇] .

(9)

Now, construct a mapping 𝑇
𝑖
, defined by

𝑇
𝑖
𝑥
𝑖
(𝑡) = 𝜙

𝑖
(0) +

1

Γ (𝛼)

× ∫
𝑡

0

(𝑡 − 𝑠)
𝛼−1

× [

[

𝑛

∑
𝑗=1

𝑎
𝑖𝑗
(𝑠) 𝑥
𝑗
(𝑠) +

𝑛

∑
𝑗=1

(𝑏
𝑖𝑗
(𝑠) + 𝑐

𝑖𝑗
(𝑠))

× 𝑓
𝑗
(𝑥
𝑗
(𝑠)) + 𝑢

𝑖
(𝑠) ]

]

𝑑𝑠, 𝑡 ∈ [0, 𝑇] ,

(10)

where 𝑇𝑥 = (𝑇
1
𝑥
1
, 𝑇
2
𝑥
2
, . . . , 𝑇

𝑛
𝑥
𝑛
)𝑇.

For any two different 𝑥(𝑡), 𝑦(𝑡) ∈ 𝐶([0, 𝑇], 𝑅𝑛), we have
󵄨󵄨󵄨󵄨𝑇𝑖𝑥𝑖 (𝑡) − 𝑇

𝑖
𝑦
𝑖
(𝑡)
󵄨󵄨󵄨󵄨

≤
1

Γ (𝛼)
∫
𝑡

0

(𝑡 − 𝑠)
𝛼−1

× [

[

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑎𝑖𝑗 (𝑠)
󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨𝑥𝑗 (𝑠) − 𝑦

𝑗
(𝑠)
󵄨󵄨󵄨󵄨󵄨

+
𝑛

∑
𝑗=1

(
󵄨󵄨󵄨󵄨󵄨𝑏𝑖𝑗 (𝑠)

󵄨󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨󵄨𝑐𝑖𝑗 (𝑠)

󵄨󵄨󵄨󵄨󵄨)

×

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑓
𝑗
(𝑥
𝑗
(𝑠)) − 𝑓

𝑗
( 𝑦
𝑗
(𝑠))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

]

]

𝑑𝑠

≤
1

Γ (𝛼)
∫
𝑡

0

(𝑡 − 𝑠)
𝛼−1

× [

[

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑎𝑖𝑗 (𝑠)
󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨𝑥𝑗 (𝑠) − 𝑦

𝑗
(𝑠)
󵄨󵄨󵄨󵄨󵄨

+
𝑛

∑
𝑗=1

(
󵄨󵄨󵄨󵄨󵄨𝑏𝑖𝑗 (𝑠)

󵄨󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨󵄨𝑐𝑖𝑗 (𝑠)

󵄨󵄨󵄨󵄨󵄨)

×𝐿
𝑗

󵄨󵄨󵄨󵄨󵄨𝑥𝑗 (𝑠) − 𝑦
𝑗
(𝑠)
󵄨󵄨󵄨󵄨󵄨
]

]

𝑑𝑠,

(11)

from which it follows that

𝑒−𝐾𝑡
󵄨󵄨󵄨󵄨𝑇𝑖𝑥𝑖 (𝑡) − 𝑇

𝑖
𝑦
𝑖
(𝑡)
󵄨󵄨󵄨󵄨

≤
1

Γ (𝛼)
𝑒−𝐾𝑡

× ∫
𝑡

0

(𝑡 − 𝑠)
𝛼−1

× [

[

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑎𝑖𝑗 (𝑠)
󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨𝑥𝑗 (𝑠) − 𝑦

𝑗
(𝑠)
󵄨󵄨󵄨󵄨󵄨

+
𝑛

∑
𝑗=1

(
󵄨󵄨󵄨󵄨󵄨𝑏𝑖𝑗 (𝑠)

󵄨󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨󵄨𝑐𝑖𝑗 (𝑠)

󵄨󵄨󵄨󵄨󵄨)

×𝐿
𝑗

󵄨󵄨󵄨󵄨󵄨𝑥𝑗 (𝑠) − 𝑦
𝑗
(𝑠)
󵄨󵄨󵄨󵄨󵄨
]

]

𝑑𝑠

≤
1

Γ (𝛼)
∫
𝑡

0

(𝑡 − 𝑠)
𝛼−1

× [

[

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑎𝑖𝑗 (𝑠)
󵄨󵄨󵄨󵄨󵄨 𝑒
−𝐾(𝑡−𝑠)

× 𝑒−𝐾𝑠
󵄨󵄨󵄨󵄨󵄨𝑥𝑗 (𝑠) − 𝑦

𝑗
(𝑠)
󵄨󵄨󵄨󵄨󵄨

+
𝑛

∑
𝑗=1

(
󵄨󵄨󵄨󵄨󵄨𝑏𝑖𝑗 (𝑠)

󵄨󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨󵄨𝑐𝑖𝑗 (𝑠)

󵄨󵄨󵄨󵄨󵄨)

× 𝐿
𝑗
𝑒−𝐾(𝑡−𝑠)

× 𝑒−𝐾𝑠
󵄨󵄨󵄨󵄨󵄨𝑥𝑗 (𝑠) − 𝑦

𝑗
(𝑠)
󵄨󵄨󵄨󵄨󵄨
]

]

𝑑𝑠

≤
1

Γ (𝛼)
sup
𝑡,∀𝑗

󵄨󵄨󵄨󵄨󵄨𝑎𝑖𝑗 (𝑡)
󵄨󵄨󵄨󵄨󵄨

× ∫
𝑡

0

(𝑡 − 𝑠)
𝛼−1

× [

[

𝑛

∑
𝑗=1

𝑒−𝐾(𝑡−𝑠)𝑒−𝐾𝑠
󵄨󵄨󵄨󵄨󵄨𝑥𝑗 (𝑠) − 𝑦

𝑗
(𝑠)
󵄨󵄨󵄨󵄨󵄨
]

]

𝑑𝑠
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+
(sup
𝑡,∀𝑗

󵄨󵄨󵄨󵄨󵄨𝑏𝑖𝑗 (𝑡)
󵄨󵄨󵄨󵄨󵄨 + sup

𝑡,∀𝑗

󵄨󵄨󵄨󵄨󵄨𝑐𝑖𝑗 (𝑡)
󵄨󵄨󵄨󵄨󵄨) 𝐿

Γ (𝛼)

× ∫
𝑡

0

(𝑡 − 𝑠)
𝛼−1

× [

[

𝑛

∑
𝑗=1

𝑒−𝐾(𝑡−𝑠)𝑒−𝐾𝑠
󵄨󵄨󵄨󵄨󵄨𝑥𝑗 (𝑠) − 𝑦

𝑗
(𝑠)
󵄨󵄨󵄨󵄨󵄨
]

]

𝑑𝑠

≤ 𝑎
𝑖

𝑛

∑
𝑗=1

sup
𝑡

{𝑒−𝐾𝑡
󵄨󵄨󵄨󵄨󵄨𝑥𝑗 (𝑡) − 𝑦

𝑗
(𝑡)
󵄨󵄨󵄨󵄨󵄨}

×
1

Γ (𝛼)
∫
𝑡

0

(𝑡 − 𝑠)
𝛼−1𝑒−𝐾(𝑡−𝑠)𝑑𝑠

+ (𝑏
𝑖
+ 𝑐
𝑖
) 𝐿
𝑛

∑
𝑗=1

sup
𝑡

{𝑒−𝐾𝑡
󵄨󵄨󵄨󵄨󵄨𝑥𝑗 (𝑡) − 𝑦

𝑗
(𝑡)
󵄨󵄨󵄨󵄨󵄨}

×
1

Γ (𝛼)
∫
𝑡

0

(𝑡 − 𝑠)
𝛼−1𝑒−𝐾(𝑡−𝑠)𝑑𝑠

<
𝑎
𝑖
+ (𝑏
𝑖
+ 𝑐
𝑖
) 𝐿

𝐾𝛼
󵄩󵄩󵄩󵄩𝑥 (𝑡) − 𝑦 (𝑡)

󵄩󵄩󵄩󵄩 .

(12)

Then, we have
󵄩󵄩󵄩󵄩𝑇𝑥 (𝑡) − 𝑇𝑦 (𝑡)

󵄩󵄩󵄩󵄩

=
𝑛

∑
𝑖=1

sup
𝑡

{𝑒−𝐾𝑡
󵄨󵄨󵄨󵄨𝑇𝑖𝑥𝑖 (𝑡) − 𝑇

𝑖
𝑦
𝑖
(𝑡)
󵄨󵄨󵄨󵄨}

<
𝑛

∑
𝑖=1

𝑎
𝑖
+ (𝑏
𝑖
+ 𝑐
𝑖
) 𝐿

𝐾𝛼
󵄩󵄩󵄩󵄩𝑥 (𝑡) − 𝑦 (𝑡)

󵄩󵄩󵄩󵄩

=
‖𝐴‖ + (‖𝐵‖ + ‖𝐶‖) 𝐿

𝐾𝛼
󵄩󵄩󵄩󵄩𝑥 (𝑡) − 𝑦 (𝑡)

󵄩󵄩󵄩󵄩 .

(13)

For 𝐾 is a large enough constant, here we can choose 𝐾
such that ‖𝐴‖ + (‖𝐵‖ + ‖𝐶‖)𝐿 < 𝐾𝛼; then, we have

󵄩󵄩󵄩󵄩𝑇𝑥 (𝑡) − 𝑇𝑦 (𝑡)
󵄩󵄩󵄩󵄩 <

󵄩󵄩󵄩󵄩𝑥 (𝑡) − 𝑦 (𝑡)
󵄩󵄩󵄩󵄩 . (14)

From the above proof, we know that 𝑇 is a contraction
mapping and it has a unique fixed point 𝑥 = 𝑇𝑥, so that
system (6) exists a unique solution.

3.2. Stability of Nonautonomous Systems. In this section, we
study the stability of solution of system (6).

Definition 5 (see [33]). The solution of (6) is called stable if
for any 𝜀 > 0, 𝑡

0
≥ 0, there exists 𝛿(𝜀, 𝑡

0
) such that 𝑡 ≥ 𝑡

0
≥ 0,

‖𝜑(𝑡) − 𝜙(𝑡)‖ < 𝛿(𝜀, 𝑡
0
) imply ‖𝑦(𝑡, 𝑡

0
, 𝜑) − 𝑥(𝑡, 𝑡

0
, 𝜙)‖ < 𝜀 for

any two solutions 𝑥(𝑡, 𝑡
0
, 𝜙) and 𝑦(𝑡, 𝑡

0
, 𝜑). And the solution

of (6) is called uniformly stable if 𝛿(𝜀, 𝑡
0
) can be chosen

independently of 𝑡
0
: 𝛿(𝜀, 𝑡

0
) ≡ 𝛿(𝜀).

Theorem6. Under assumption (H1), the solution of system (6)
is uniformly stable.

Proof. Let 𝑥(𝑡) = (𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡))𝑇 be a solution of

(6) with initial condition 𝑥(𝑡) = 𝜙(𝑡) ∈ 𝐶([−𝜏, 0], 𝑅𝑛), and we
have

𝑥
𝑖
(𝑡) = 𝜙

𝑖
(0) +

1

Γ (𝛼)

× ∫
𝑡

0

(𝑡 − 𝑠)
𝛼−1

× [

[

𝑛

∑
𝑗=1

𝑎
𝑖𝑗
(𝑠) 𝑥
𝑗
(𝑠) +

𝑛

∑
𝑗=1

𝑏
𝑖𝑗
(𝑠) 𝑓
𝑗
(𝑥
𝑗
(𝑠))

+
𝑛

∑
𝑗=1

𝑐
𝑖𝑗
(𝑠) 𝑓
𝑗
(𝑥
𝑗
(𝑠 − 𝜏

𝑖𝑗
))

+𝑢
𝑖
(𝑠) ]

]

𝑑𝑠, 𝑡 ∈ [0, 𝑇] .

(15)

And let 𝑦(𝑡) = (𝑦
1
(𝑡), 𝑦
2
(𝑡), . . . , 𝑦

𝑛
(𝑡))𝑇 be a different solution

with initial condition 𝑦(𝑡) = 𝜑(𝑡) ∈ 𝐶([−𝜏, 0], 𝑅𝑛); then,

󵄨󵄨󵄨󵄨𝑥𝑖 (𝑡) − 𝑦
𝑖
(𝑡)
󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨𝜙𝑖 (0) − 𝜑

𝑖
(0)

󵄨󵄨󵄨󵄨 +
1

Γ (𝛼)

× ∫
𝑡

0

(𝑡 − 𝑠)
𝛼−1

× [

[

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑎𝑖𝑗 (𝑠)
󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨𝑥𝑗 (𝑠) − 𝑦

𝑗
(𝑠)
󵄨󵄨󵄨󵄨󵄨

+
𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑏𝑖𝑗 (𝑠)
󵄨󵄨󵄨󵄨󵄨

×
󵄨󵄨󵄨󵄨󵄨𝑓𝑗 (𝑥𝑗 (𝑠)) − 𝑓

𝑗
(𝑦
𝑗
(𝑠))

󵄨󵄨󵄨󵄨󵄨

+
𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑐𝑖𝑗 (𝑠)
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗

(𝑥
𝑗
(𝑠 − 𝜏

𝑖𝑗
))

−𝑓
𝑗
(𝑦
𝑗
(𝑠 − 𝜏

𝑖𝑗
))
󵄨󵄨󵄨󵄨󵄨
]

]

𝑑𝑠

≤
󵄨󵄨󵄨󵄨𝜙𝑖 (0) − 𝜑

𝑖
(0)

󵄨󵄨󵄨󵄨 +
1

Γ (𝛼)

× ∫
𝑡

0

(𝑡 − 𝑠)
𝛼−1

× [

[

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑎𝑖𝑗 (𝑠)
󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨𝑥𝑗 (𝑠) − 𝑦

𝑗
(𝑠)
󵄨󵄨󵄨󵄨󵄨
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+
𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑏𝑖𝑗 (𝑠)
󵄨󵄨󵄨󵄨󵄨 𝐿𝑗

󵄨󵄨󵄨󵄨󵄨𝑥𝑗 (𝑠) − 𝑦
𝑗
(𝑠)
󵄨󵄨󵄨󵄨󵄨

+
𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑐𝑖𝑗 (𝑠)
󵄨󵄨󵄨󵄨󵄨 𝐿𝑗

×
󵄨󵄨󵄨󵄨󵄨𝑥𝑗 (𝑠 − 𝜏

𝑖𝑗
) − 𝑦
𝑗
(𝑠 − 𝜏

𝑖𝑗
)
󵄨󵄨󵄨󵄨󵄨
]

]

𝑑𝑠.

(16)

It immediately follows that

𝑒−𝐾𝑡
󵄨󵄨󵄨󵄨𝑥𝑖 (𝑡) − 𝑦

𝑖
(𝑡)
󵄨󵄨󵄨󵄨

≤ 𝑒−𝐾𝑡
󵄨󵄨󵄨󵄨𝜙𝑖 (0) − 𝜑

𝑖
(0)

󵄨󵄨󵄨󵄨 +
1

Γ (𝛼)
𝑒−𝐾𝑡

× ∫
𝑡

0

(𝑡 − 𝑠)
𝛼−1

× [

[

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑎𝑖𝑗 (𝑠)
󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨𝑥𝑗 (𝑠) − 𝑦

𝑗
(𝑠)
󵄨󵄨󵄨󵄨󵄨

+
𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑏𝑖𝑗 (𝑠)
󵄨󵄨󵄨󵄨󵄨 𝐿𝑗

󵄨󵄨󵄨󵄨󵄨𝑥𝑗 (𝑠) − 𝑦
𝑗
(𝑠)
󵄨󵄨󵄨󵄨󵄨

+
𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑐𝑖𝑗 (𝑠)
󵄨󵄨󵄨󵄨󵄨 𝐿𝑗

×
󵄨󵄨󵄨󵄨󵄨𝑥𝑗 (𝑠 − 𝜏

𝑖𝑗
) − 𝑦
𝑗
(𝑠 − 𝜏

𝑖𝑗
)
󵄨󵄨󵄨󵄨󵄨
]

]

𝑑𝑠

≤ 𝑒−𝐾𝑡
󵄨󵄨󵄨󵄨𝜙𝑖 (0) − 𝜑

𝑖
(0)

󵄨󵄨󵄨󵄨 +
1

Γ (𝛼)

× ∫
𝑡

0

(𝑡 − 𝑠)
𝛼−1

× [

[

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑎𝑖𝑗 (𝑠)
󵄨󵄨󵄨󵄨󵄨 𝑒
−𝐾(𝑡−𝑠)𝑒−𝐾𝑠

󵄨󵄨󵄨󵄨󵄨𝑥𝑗 (𝑠) − 𝑦
𝑗
(𝑠)
󵄨󵄨󵄨󵄨󵄨

+
𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑏𝑖𝑗 (𝑠)
󵄨󵄨󵄨󵄨󵄨 𝐿𝑗𝑒
−𝐾(𝑡−𝑠)

× 𝑒−𝐾𝑠
󵄨󵄨󵄨󵄨󵄨𝑥𝑗 (𝑠) − 𝑦

𝑗
(𝑠)
󵄨󵄨󵄨󵄨󵄨

+
𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑐𝑖𝑗 (𝑠)
󵄨󵄨󵄨󵄨󵄨 𝐿𝑗𝑒
−𝐾(𝑡−(𝑠−𝜏𝑖𝑗))𝑒−𝐾(𝑠−𝜏𝑖𝑗)

×
󵄨󵄨󵄨󵄨󵄨𝑥𝑗 (𝑠 − 𝜏

𝑖𝑗
) − 𝑦
𝑗
(𝑠 − 𝜏

𝑖𝑗
)
󵄨󵄨󵄨󵄨󵄨
]

]

𝑑𝑠

≤ 𝑒−𝐾𝑡
󵄨󵄨󵄨󵄨𝜙𝑖 (0) − 𝜑

𝑖
(0)

󵄨󵄨󵄨󵄨 +
sup
𝑡,∀𝑗

󵄨󵄨󵄨󵄨󵄨𝑎𝑖𝑗 (𝑡)
󵄨󵄨󵄨󵄨󵄨

Γ (𝛼)

× ∫
𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑛

∑
𝑗=1

𝑒−𝐾(𝑡−𝑠)𝑒−𝐾𝑠
󵄨󵄨󵄨󵄨󵄨𝑥𝑗 (𝑠) − 𝑦

𝑗
(𝑠)
󵄨󵄨󵄨󵄨󵄨 𝑑𝑠

+
sup
𝑡,∀𝑗

󵄨󵄨󵄨󵄨󵄨𝑏𝑖𝑗 (𝑡)
󵄨󵄨󵄨󵄨󵄨

Γ (𝛼)
𝐿∫
𝑡

0

(𝑡 − 𝑠)
𝛼−1

×
𝑛

∑
𝑗=1

𝑒−𝐾(𝑡−𝑠)𝑒−𝐾𝑠
󵄨󵄨󵄨󵄨󵄨𝑥𝑗 (𝑠) − 𝑦

𝑗
(𝑠)
󵄨󵄨󵄨󵄨󵄨 𝑑𝑠

+
sup
𝑡,∀𝑗

󵄨󵄨󵄨󵄨󵄨𝑐𝑖𝑗 (𝑡)
󵄨󵄨󵄨󵄨󵄨

Γ (𝛼)
𝐿

× ∫
𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑛

∑
𝑗=1

𝑒−𝐾(𝑡−(𝑠−𝜏𝑖𝑗))𝑒−𝐾(𝑠−𝜏𝑖𝑗)

×
󵄨󵄨󵄨󵄨󵄨𝑥𝑗 (𝑠 − 𝜏

𝑖𝑗
) − 𝑦
𝑗
(𝑠 − 𝜏

𝑖𝑗
)
󵄨󵄨󵄨󵄨󵄨 𝑑𝑠

≤ 𝑒−𝐾𝑡
󵄨󵄨󵄨󵄨𝜙𝑖 (0) − 𝜑

𝑖
(0)

󵄨󵄨󵄨󵄨 +
sup
𝑡,∀𝑗

󵄨󵄨󵄨󵄨󵄨𝑎𝑖𝑗 (𝑡)
󵄨󵄨󵄨󵄨󵄨

Γ (𝛼)

× ∫
𝑡

0

(𝑡 − 𝑠)
𝛼−1

×
𝑛

∑
𝑗=1

𝑒−𝐾(𝑡−𝑠)𝑒−𝐾𝑠
󵄨󵄨󵄨󵄨󵄨𝑥𝑗 (𝑠) − 𝑦

𝑗
(𝑠)
󵄨󵄨󵄨󵄨󵄨 𝑑𝑠

+
sup
𝑡,∀𝑗

󵄨󵄨󵄨󵄨󵄨𝑏𝑖𝑗 (𝑡)
󵄨󵄨󵄨󵄨󵄨

Γ (𝛼)
𝐿

× ∫
𝑡

0

(𝑡 − 𝑠)
𝛼−1

×
𝑛

∑
𝑗=1

𝑒−𝐾(𝑡−𝑠)𝑒−𝐾𝑠
󵄨󵄨󵄨󵄨󵄨𝑥𝑗 (𝑠) − 𝑦

𝑗
(𝑠)
󵄨󵄨󵄨󵄨󵄨 𝑑𝑠

+
sup
𝑡,∀𝑗

󵄨󵄨󵄨󵄨󵄨𝑐𝑖𝑗 (𝑡)
󵄨󵄨󵄨󵄨󵄨

Γ (𝛼)
𝐿

×
𝑛

∑
𝑗=1

∫
𝑡−𝜏𝑖𝑗

0

(𝑡 − 𝜏
𝑖𝑗
− 𝜃)
𝛼−1

× 𝑒−𝐾(𝑡−𝜃)𝑒−𝐾𝜃
󵄨󵄨󵄨󵄨󵄨𝑥𝑗 (𝜃) − 𝑦

𝑗
(𝜃)

󵄨󵄨󵄨󵄨󵄨 𝑑𝜃

+
sup
𝑡,∀𝑗

󵄨󵄨󵄨󵄨󵄨𝑐𝑖𝑗 (𝑡)
󵄨󵄨󵄨󵄨󵄨

Γ (𝛼)
𝐿
𝑛

∑
𝑗=1

∫
0

−𝜏𝑖𝑗

(𝑡 − 𝜏
𝑖𝑗
− 𝜃)
𝛼−1

𝑒−𝐾(𝑡−𝜃)

× 𝑒−𝐾𝜃
󵄨󵄨󵄨󵄨󵄨𝜙𝑗 (𝜃) − 𝜑

𝑗
(𝜃)

󵄨󵄨󵄨󵄨󵄨 𝑑𝜃

≤ sup
𝑡∈[−𝜏,0]

{𝑒−𝐾𝑡
󵄨󵄨󵄨󵄨𝜙𝑖 (𝑡) − 𝜑

𝑖
(𝑡)
󵄨󵄨󵄨󵄨}

+ 𝑎
𝑖

𝑛

∑
𝑗=1

sup
𝑡

{𝑒−𝐾𝑡
󵄨󵄨󵄨󵄨󵄨𝑥𝑗 (𝑡) − 𝑦

𝑗
(𝑡)
󵄨󵄨󵄨󵄨󵄨}

1

Γ (𝛼)

× ∫
𝑡

0

(𝑡 − 𝑠)
𝛼−1𝑒−𝐾(𝑡−𝑠)𝑑𝑠
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+ 𝑏
𝑖
𝐿
𝑛

∑
𝑗=1

sup
𝑡

{𝑒−𝐾𝑡
󵄨󵄨󵄨󵄨󵄨𝑥𝑗 (𝑡) − 𝑦

𝑗
(𝑡)
󵄨󵄨󵄨󵄨󵄨}

1

Γ (𝛼)

× ∫
𝑡

0

(𝑡 − 𝑠)
𝛼−1𝑒−𝐾(𝑡−𝑠)𝑑𝑠

+ 𝑐
𝑖
𝐿
𝑛

∑
𝑗=1

sup
𝑡

{𝑒−𝐾𝑡
󵄨󵄨󵄨󵄨󵄨𝑥𝑗 (𝑡) − 𝑦

𝑗
(𝑡)
󵄨󵄨󵄨󵄨󵄨}

1

Γ (𝛼)

× ∫
𝑡−𝜏𝑖𝑗

0

(𝑡 − 𝜏
𝑖𝑗
− 𝜃)
𝛼−1

𝑒−𝐾(𝑡−𝜃)𝑑𝜃

+ 𝑐
𝑖
𝐿
𝑛

∑
𝑗=1

sup
𝑡∈[−𝜏,0]

{𝑒−𝐾𝑡
󵄨󵄨󵄨󵄨󵄨𝜙𝑗 (𝑡) − 𝜑

𝑗
(𝑡)
󵄨󵄨󵄨󵄨󵄨}

1

Γ (𝛼)

× ∫
0

−𝜏𝑖𝑗

(𝑡 − 𝜏
𝑖𝑗
− 𝜃)
𝛼−1

𝑒−𝐾(𝑡−𝜃)𝑑𝜃

< sup
𝑡∈[−𝜏,0]

{𝑒−𝐾𝑡
󵄨󵄨󵄨󵄨𝜙𝑖 (𝑡) − 𝜑

𝑖
(𝑡)
󵄨󵄨󵄨󵄨}

+
𝑎
𝑖

𝐾𝛼

𝑛

∑
𝑗=1

sup
𝑡

{𝑒−𝐾𝑡
󵄨󵄨󵄨󵄨󵄨𝑥𝑗 (𝑡) − 𝑦

𝑗
(𝑡)
󵄨󵄨󵄨󵄨󵄨}

+
𝑏
𝑖
𝐿

𝐾𝛼

𝑛

∑
𝑗=1

sup
𝑡

{𝑒−𝐾𝑡
󵄨󵄨󵄨󵄨󵄨𝑥𝑗 (𝑡) − 𝑦

𝑗
(𝑡)
󵄨󵄨󵄨󵄨󵄨}

+
𝑐
𝑖
𝐿

𝐾𝛼

𝑛

∑
𝑗=1

sup
𝑡

{𝑒−𝐾𝑡
󵄨󵄨󵄨󵄨󵄨𝑥𝑗 (𝑡) − 𝑦

𝑗
(𝑡)
󵄨󵄨󵄨󵄨󵄨}

+
𝑐
𝑖
𝐿

𝐾𝛼

𝑛

∑
𝑗=1

sup
𝑡∈[−𝜏,0]

{𝑒−𝐾𝑡
󵄨󵄨󵄨󵄨󵄨𝜙𝑗 (𝑡) − 𝜑

𝑗
(𝑡)
󵄨󵄨󵄨󵄨󵄨}

= sup
𝑡∈[−𝜏,0]

{𝑒−𝐾𝑡
󵄨󵄨󵄨󵄨𝜙𝑖 (𝑡) − 𝜑

𝑖
(𝑡)
󵄨󵄨󵄨󵄨}

+
𝑐
𝑖
𝐿

𝐾𝛼
󵄩󵄩󵄩󵄩𝜙 (𝑡) − 𝜑 (𝑡)

󵄩󵄩󵄩󵄩 +
𝑎
𝑖
+ 𝑏
𝑖
𝐿 + 𝑐
𝑖
𝐿

𝐾𝛼
󵄩󵄩󵄩󵄩𝑥 (𝑡) − 𝑦 (𝑡)

󵄩󵄩󵄩󵄩 ,

(17)

which implies

󵄩󵄩󵄩󵄩𝑥 (𝑡) − 𝑦 (𝑡)
󵄩󵄩󵄩󵄩

=
𝑛

∑
𝑖=1

sup
𝑡

{𝑒−𝐾𝑡
󵄨󵄨󵄨󵄨𝑥𝑖 (𝑡) − 𝑦

𝑖
(𝑡)
󵄨󵄨󵄨󵄨}

<
𝑛

∑
𝑖=1

( sup
𝑡[−𝜏,0]

{𝑒−𝐾𝑡
󵄨󵄨󵄨󵄨𝜙𝑖 (𝑡) − 𝜑

𝑖
(𝑡)
󵄨󵄨󵄨󵄨}

+
𝑐
𝑖
𝐿

𝐾𝛼
󵄩󵄩󵄩󵄩𝜙 (𝑡) − 𝜑 (𝑡)

󵄩󵄩󵄩󵄩

+
𝑎
𝑖
+ 𝑏
𝑖
𝐿 + 𝑐
𝑖
𝐿

𝐾𝛼
󵄩󵄩󵄩󵄩𝑥 (𝑡) − 𝑦 (𝑡)

󵄩󵄩󵄩󵄩 )

= (1 +
‖𝐶‖ 𝐿

𝐾𝛼
)
󵄩󵄩󵄩󵄩𝜙 (𝑡) − 𝜑 (𝑡)

󵄩󵄩󵄩󵄩

+
‖𝐴‖ + (‖𝐵‖ + ‖𝐶‖) 𝐿

𝐾𝛼
󵄩󵄩󵄩󵄩𝑥 (𝑡) − 𝑦 (𝑡)

󵄩󵄩󵄩󵄩 .

(18)

Because 𝐾 is a large enough constant, now we choose 𝐾
large enough constant such that ‖𝐴‖ + (‖𝐵‖ + ‖𝐶‖)𝐿 < 𝐾𝛼;
then, from (18), we know that

󵄩󵄩󵄩󵄩𝑥 (𝑡) − 𝑦 (𝑡)
󵄩󵄩󵄩󵄩 <

𝐾𝛼 + ‖𝐶‖ 𝐿

𝐾𝛼 − (‖𝐴‖ + (‖𝐵‖ + ‖𝐶‖) 𝐿)

󵄩󵄩󵄩󵄩𝜙 (𝑡) − 𝜑 (𝑡)
󵄩󵄩󵄩󵄩 .

(19)

Therefore, for any 𝜀 > 0, there exists 𝛿(𝜀) = ((𝐾𝛼 − (‖𝐴‖ +
(‖𝐵‖ + ‖𝐶‖)𝐿))/(𝐾𝛼 + ‖𝐶‖𝐿))𝜀 > 0 such that ‖𝑥(𝑡) − 𝑦(𝑡)‖ <
𝜀 when ‖𝜙(𝑡) − 𝜑(𝑡)‖ < 𝛿. According to Definition 5, the
solution of system (6) is uniformly stable.

Remark 7. Reference [16] investigated the uniform stability
and the existence and uniqueness of solutions of a class
of fractional-order nonautonomous systems (or differential
equations), respectively, but without considering the time
delay.

Remark 8. To the best of our knowledge, the theoretical result
on stability analysis of fractional-order nonlinear systems
with multiple time delays has not been seen yet.

4. Illustrative Examples

In this section, we consider two examples to illustrate the
obtained results.

Example 1. Consider the following fractional system with
time-invariant coefficients and multiple time delays:

𝐷𝛼𝑥
1
(𝑡) = − 1.3𝑥

1
(𝑡) + 0.9𝑥

2
(𝑡) − 0.5 tanh (𝑥

1
(𝑡))

+ tanh (𝑥
2
(𝑡)) − 0.5 tanh (𝑥

1
(𝑡 − 0.01))

+ 0.6 tanh (𝑥
2
(𝑡 − 0.02)) − 1.8,

𝐷𝛼𝑥
2
(𝑡) = 1.2𝑥

1
(𝑡) − 1.6𝑥

2
(𝑡) − 0.4 tanh (𝑥

1
(𝑡))

+ 0.1 tanh (𝑥
2
(𝑡)) − tanh (𝑥

1
(𝑡 − 0.02))

− 1.9 tanh (𝑥
2
(𝑡 − 0.01)) + 2,

(20)

where 𝛼 = 0.9, 𝑇 < +∞, with an associated function of the
initial state:

𝜙
1
(𝑡) = 2 cos 𝑡, 𝜙

2
(𝑡) = sin 𝑡 − 1, 𝑡 ∈ [−0.02, 0] . (21)

Since function tanh(𝑥) is Lipschitz continuous (𝐿
1

=
𝐿
2

= 1), then the condition of the theorems is satisfied.
Hence, by Theorems 4 and 6, we conclude that system (20)
has a unique solution, which is uniformly stable.
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Figure 1: The dynamic behavior of system (20).

In fact, system (20) has a unique fixed point 𝑥∗ =

(𝑥∗
1
, 𝑥∗
2
)
𝑇, which satisfies

−1.3𝑥∗
1
+ 0.9𝑥∗

2
− tanh (𝑥∗

1
) + 1.6 tanh (𝑥∗

2
) − 1.8 = 0,

1.2𝑥∗
1
− 1.6𝑥∗

2
− 1.5 tanh (𝑥∗

1
) − 1.5 tanh (𝑥∗

2
) + 2 = 0.

(22)

By calculation, the unique fixed point 𝑥∗ = (𝑥∗
1
, 𝑥∗
2
)
𝑇

of system (20) is (−0.088, 0.670). Figure 1 shows that the
solution of system (20) converges to the fixed point 𝑥∗.

Example 2. Consider the following fractional delay system
with time-varying coefficients:

𝐷𝛼𝑥
1
(𝑡) =

1

5
𝑒−𝑡𝑥
1
(𝑡) −

1

6
sin 𝑡 × 𝑥

2
(𝑡)

+
3

10
tanh (𝑥

1
(𝑡)) −

1 + cos 𝑡
8

tanh (𝑥
2
(𝑡))

−
1

8
tanh (𝑥

1
(𝑡 − 0.03))

+
1

9
tanh (𝑥

2
(𝑡 − 0.01)) + sin2𝑡,

𝐷𝛼𝑥
2
(𝑡) =

1

10
cos 𝑡 × 𝑥

1
(𝑡) +

1

10
𝑒−2𝑡𝑥
2
(𝑡)

−
1

10
tanh (𝑥

1
(𝑡)) +

1

12
𝑒−𝑡 tanh (𝑥

2
(𝑡))

+
1

6
sin 𝑡 × tanh (𝑥

1
(𝑡 − 0.01))

+
1

8
tanh (𝑥

2
(𝑡 − 0.02)) − cosh (𝑡) ,

(23)

where 0 < 𝛼 < 1, 𝑇 < +∞, with an associated function of the
initial state:

𝜙
1
(𝑡) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑥 +

3

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
−
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑥 −

1

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
, 𝜙

2
(𝑡) = 1 − 𝑥2,

𝑡 ∈ [−0.03, 0] .

(24)

From (23), one can obtain

𝐴 (𝑡) = (

1

5
𝑒−𝑡 −

1

6
sin 𝑡

1

10
cos 𝑡 1

10
𝑒−2𝑡

),

𝐵 (𝑡) = (

3

10
−
1 + cos 𝑡

8

−
1

10

1

12
𝑒−𝑡

),

𝐶 (𝑡) = (

−
1

8

1

9

1

6
sin 𝑡 1

8

) ,

𝑢 (𝑡) = (
sin2𝑡

− cosh (𝑡)
) .

(25)

Since function tanh(𝑥) is a Lipschitz continuous function,
then according toTheorems 4 and 6, we conclude that system
(23) has a unique uniformly stable solution.

5. Conclusion

Uniform stability problem of a class of fractional-order
nonautonomous systems with multiple time delays is dis-
cussed in this paper. Moreover, the existence and uniqueness
of solutions under certain conditions are proven by using
Banach fixed point principle. At last, two examples are given
for illustration.
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