
Research Article
Optimality Conditions for Fuzzy Number Quadratic
Programming with Fuzzy Coefficients

Xue-Gang Zhou,1,2 Bing-Yuan Cao,1 and Seyed Hadi Nasseri3

1 School of Mathematics and Information Science, Key Laboratory of Mathematics and Interdisciplinary Sciences of Guangdong,
Higher Education Institutes, Guangzhou University, Guangzhou, Guangdong 510006, China

2Department of Applied Mathematics, Guangdong University of Finance, Guangzhou, Guangdong 510521, China
3Department of Mathematical Sciences, University of Mazandaran, P.O. Box 47415-1468, Babolsar, Iran

Correspondence should be addressed to Bing-Yuan Cao; caobingy@163.com

Received 16 January 2014; Accepted 27 March 2014; Published 23 April 2014

Academic Editor: Mohammad Khodabakhshi

Copyright © 2014 Xue-Gang Zhou et al.This is an open access article distributed under theCreativeCommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The purpose of the present paper is to investigate optimality conditions and duality theory in fuzzy number quadratic programming
(FNQP) in which the objective function is fuzzy quadratic function with fuzzy number coefficients and the constraint set is fuzzy
linear functions with fuzzy number coefficients. Firstly, the equivalent quadratic programming of FNQP is presented by utilizing a
linear ranking function and the dual of fuzzy number quadratic programming primal problems is introduced. Secondly, we present
optimality conditions for fuzzy number quadratic programming. We then prove several duality results for fuzzy number quadratic
programming problems with fuzzy coefficients.

1. Introduction

Quadratic programming is a mathematical modeling tech-
nique designed to optimize the usage of limited resources. It
has led to a number of interesting applications and the devel-
opment of numerous useful results (see [1–7]). Quadratic
programming is one of the most important optimization
techniques in operations research. In real-world applications,
quadratic programming models usually are formulated to
find some future course of action. The parameter values
used would be based on a prediction of future conditions
which inevitably involves some degree of uncertainty. If some
parameters are imprecise or uncertain, then some crisp values
are usually assigned to those uncertain parameters to make
the conventional quadratic program workable. The occur-
rences of randomness and imprecision in the real world are
inevitable owing to some unexpected situations.The research
on fuzzy mathematical programming has been an active area
since Bellman and Zadeh proposed the definition of fuzzy
decision [8–12]. As the definition of Bellman and Zadeh,
fuzzy decision may be described as the best balance degree

of fuzzy objective and resource constraints. In light of the
above view, Zimmermann developed a tolerance approach
[10, 11] for a symmetric model of fuzzy linear programming.
Intuitively, when the cost and constraint coefficients and the
right-hand sides are fuzzy numbers, the derived objective
value is fuzzy as well.

Recently, Liu [13] proposes an effective solution method
to solve a class of fuzzy quadratic programming problems.
Based on Zadeh’s extension principle [11, 14], the fuzzy
quadratic programming problem is transformed into a pair of
two-level mathematical programs to calculate the upper and
lower bounds of the objective value at possibility level 𝛼. The
membership function of the fuzzy objective value is derived
numerically by enumerating different values of. Mahdavi-
Amiria and Nasseria [15, 16], using a linear ranking function,
establish the dual problem of the linear programming prob-
lem with trapezoidal fuzzy variables and hence deduce some
duality results.

The organization and content of this paper can be sum-
marized as follows. In Section 2, we provide some properties
of fuzzy numbers and introduce the concept of fuzzy scalar

Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2014, Article ID 489893, 8 pages
http://dx.doi.org/10.1155/2014/489893

http://dx.doi.org/10.1155/2014/489893


2 Journal of Applied Mathematics

product. Then we provide a discussion of fuzzy numbers and
linear ranking functions for ordering them. The definition
of the FNQP problem is given and the equivalent quadratic
programming of FNQP is presented by utilizing a linear rank-
ing function in Section 3. Section 4 optimality conditions
for fuzzy number quadratic programming are presented. We
establish duality for the FNQP problem in Section 5 and
deduce the duality results. We conclude in Section 6.

2. Preliminaries

2.1. Fuzzy Numbers. We review the fundamental notions of
fuzzy set theory, initiated by Bellman and Zadeh [8]. Let 𝑈
be a universal set. The fuzzy subset 𝑎 of 𝑈 is defined by its
membership function 𝜇

𝑎

: 𝑈 → [0, 1]. The 𝛼-level set of
fuzzy set 𝑎 is given by

𝑎
𝛼

= {

{𝑥 ∈ 𝑈 | 𝜇
𝑎

(𝑥) ⩾ 𝛼} , if 𝛼 ∈ (0, 1] ,

cl {𝑥 ∈ 𝑈 | 𝜇
𝑎

(𝑥) > 0} , if 𝛼 = 0.

(1)

Definition 1. Let 𝑎 be a fuzzy number, that is, a convex
normalized fuzzy subset of the real line in the sense that

(a) ∃𝑥
0

∈ 𝑅 and 𝜇
𝑎

(𝑥
0

) = 1, where 𝜇
𝑎

(𝑥) is the
membership function specifying to what degree 𝑥

belongs to 𝑎.

(b) 𝜇
𝑎

is a piecewise continuous function.

The lower and upper bounds of any 𝛼-level set 𝑎
𝛼

are
represented by inf

𝑥∈𝑎

𝛼

and sup
𝑥∈𝑎

𝛼

.
A function, usually denoted by “𝐿” or “𝑅”, is a reference

function of a fuzzy number if and only if

(1) 𝐿(𝑥) = 𝐿(−𝑥),

(2) 𝐿(0) = 1,

(3) 𝐿 is nonincreasing on [0, +∞).

Definition 2. A convenient representation of fuzzy numbers
is in the form of an 𝐿-𝑅 fuzzy number which is defined as

𝜇
𝑎

(𝑥) =

{
{
{
{

{
{
{
{

{

𝐿((𝑎
𝐿

− 𝑥) /𝛼) , if 𝑥 ⩽ 𝑎
𝐿 and 𝛼 > 0,

𝑅 ((𝑥 − 𝑎
𝑈

) /𝛽) , if 𝑥 ⩾ 𝑎
𝑈 and 𝛽 > 0,

1, otherwise,

(2)

where 𝑎
𝐿

⩽ 𝑎
𝑈

, [𝑎
𝐿

, 𝑎
𝑈

] is the core of 𝑎, 𝜇
𝑎

(𝑥) = 1, ∀𝑥 ∈

[𝑎
𝐿

, 𝑎
𝑈

], 𝑎
𝐿

, 𝑎
𝑈 are the lower and upper modal values of 𝑎,

and 𝛼 > 0, 𝛽 > 0 are the left-hand and right-hand spreads
[16].

A flat fuzzy number is denoted by 𝑎 = [𝑎
𝐿

, 𝑎
𝑈

, 𝛼, 𝛽]
𝐿𝑅

.
Among the various types of 𝐿−𝑅 fuzzy numbers, trapezoidal
fuzzy numbers, denoted by 𝑎 = (𝑎

𝐿

, 𝑎
𝑈

, 𝛼, 𝛽), are of the
greatest importance.We denote the set of all trapezoidal fuzzy
numbers byF(R). If 𝑎 = 𝑎

𝐿

= 𝑎
𝑈, thenwe obtain a triangular

fuzzy number, and we show it with 𝑎 = (𝑎, 𝛼, 𝛽).

Let 𝑎 = (𝑎
𝐿

, 𝑎
𝑈

, 𝛼
1

, 𝛽
1

) and ̃
𝑏 = (𝑏

𝐿

, 𝑏
𝑈

, 𝛼
2

, 𝛽
2

), both
being trapezoidal fuzzy numbers. We next define arithmetic
on the fuzzy numbers 𝑎 and ̃

𝑏 as follows:

𝑥 > 0, 𝑥 ∈ 𝑅; 𝑥 ⋅ 𝑎 = (𝑥𝑎
𝐿

, 𝑥𝑎
𝑈

, 𝑥𝛼
1

, 𝑥𝛽
1

) ,

𝑥 < 0, 𝑥 ∈ 𝑅; 𝑥 ⋅ 𝑎 = (𝑥𝑎
𝑈

, 𝑥𝑎
𝐿

, −𝑥𝛽
1

, −𝑥𝛼
1

) ,

𝑎 +
̃
𝑏 = (𝑎

𝐿

+ 𝑏
𝐿

, 𝑎
𝑈

+ 𝑏
𝑈

, 𝛼
1

+ 𝛼
2

, 𝛽
1

+ 𝛽
2

) ,

𝑎 −
̃
𝑏 = (𝑎

𝐿

− 𝑏
𝑈

, 𝑎
𝑈

− 𝑏
𝐿

, 𝛼
1

+ 𝛽
2

, 𝛽
1

+ 𝛼
2

) .

(3)

2.2. Ranking Functions. There are different methods for
comparison of fuzzy numbers [17–22]. One of the most
convenient methods is comparison by use of ranking func-
tions [23, 24]. In fact, an efficient approach for ordering
the elements of F(𝑅) is to define a ranking function A :

F(𝑅) → 𝑅 which maps each fuzzy number into the real
line, where a natural order exists. We define orders on F(𝑅)

by

𝑎 ⩾A
̃
𝑏 if and only if A (𝑎) ⩾ A (

̃
𝑏) ,

𝑎 >A
̃
𝑏 if and only if A (𝑎) > A (

̃
𝑏) ,

𝑎 =A
̃
𝑏 if and only if A (𝑎) = A (

̃
𝑏) ,

(4)

where 𝑎,
̃
𝑏 ∈ F(𝑅). Also we write 𝑎 ⩽A

̃
𝑏 if and only if

̃
𝑏 ⩾A 𝑎.

We restrict our attention to linear ranking functions, that
is, a ranking functionA such that

A (𝑘𝑎 +
̃
𝑏) = 𝑘A (𝑎) +A (

̃
𝑏) , (5)

for all 𝑎, ̃𝑏 ∈ F(𝑅) and 𝑘 ∈ 𝑅. The following lemma is now
immediate.

Lemma3 (see [16]). LetA be any linear ranking function and,
without loss of generality, let 0̃ = (0, 0, 0, 0); then

(i) 𝑎 ⩾A
̃
𝑏 if and only if 𝑎−̃𝑏 ⩾A 0̃ if and only if−𝑎 ⩽A −

̃
𝑏.

(ii) If 𝑎 ⩾A
̃
𝑏 and 𝑐 ⩾A

̃
𝑑, then 𝑎 + 𝑐 ⩾A

̃
𝑏 +

̃
𝑑.

(iii) Let 𝑎 ⩾A
̃
𝑏; if 𝑥 > 0, then 𝑥𝑎 ⩾A 𝑥

̃
𝑏;

otherwise, 𝑥𝑎 ⩽A 𝑥
̃
𝑏.

Here, we introduce a linear ranking function that is similar
to the ranking function adopted by Maleki et al. [24]. For any
𝐿 − 𝑅 fuzzy number 𝑎 = [𝑎

𝐿

, 𝑎
𝑈

, 𝛼, 𝛽]
𝐿𝑅

, we use ranking
function as follows:

A (𝑎) = ∫

1

0

(𝑅
−1

𝑎

(𝜆) + 𝐿
−1

𝑎

(𝜆)) 𝑑𝜆, (6)

where 𝜆 ∈ [0, 1] and 𝑅
−1

𝑎

and 𝐿
−1

𝑎

are inverse function of 𝑅
𝑎

and 𝐿
𝑎

, respectively. In the case of trapezoidal fuzzy numbers
𝑎 = (𝑎

𝐿

, 𝑎
𝑈

, 𝛾, 𝛿), we have

A (𝑎) = ∫

1

0

( inf
𝑥∈𝑎

𝛼

+ sup
𝑥∈

̃

𝐴

𝛼

)𝑑𝛼, (7)
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where 𝑎
𝛼

is the 𝛼-level set of 𝑎. Then, for trapezoidal fuzzy
numbers 𝑎 = (𝑎

𝐿

, 𝑎
𝑈

, 𝛼
1

, 𝛽
1

) and ̃
𝑏 = (𝑏

𝐿

, 𝑏
𝑈

, 𝛼
2

, 𝛽
2

), we can
get

A (𝑎) = 𝑎
𝐿

+ 𝑎
𝑈

+

1

2

(𝛽
1

− 𝛼
1

) ,

𝑎 ⩾A
̃
𝑏

𝑖𝑓𝑓𝑎
𝐿

+ 𝑎
𝑈

+

1

2

(𝛽
1

− 𝛼
1

) ⩾ 𝑏
𝐿

+ 𝑏
𝑈

+

1

2

(𝛽
2

− 𝛼
2

) .

(8)

Definition 4. We shall say that the real number 𝑟 corresponds
to the fuzzy number 𝑟, with respect to a given linear ranking
functionA, if 𝑟 = A(𝑟).

3. Fuzzy Number Quadratic
Programming Problems

In this section, we first define fuzzy number quadratic
programming problems with fuzzy coefficients. Then, using
ranking functions for comparison of fuzzy numbers, we
define a crisp model which is equivalent to the fuzzy
quadratic programming problem with fuzzy coefficients and
use optimal solution of this model as the optimal solution
of fuzzy number quadratic programming problemwith fuzzy
number coefficients.

Definition 5. Let F(𝑅) be the set of all trapezoidal fuzzy
numbers. The model

min �̃� =A 𝑐
𝑇

𝑥 +

1

2

𝑥
𝑇

𝑄𝑥,

s.t. 𝐴𝑥 ⩽A
̃
𝑏,

𝑥 ∈ 𝑅
𝑛

,

(9)

or

min �̃� =A

𝑛

∑

𝑗=1

𝑐
𝑗

𝑥
𝑗

+

1

2

𝑚

∑

𝑘=1

𝑛

∑

𝑗=1

𝑞
𝑘𝑗

𝑥
𝑘

𝑥
𝑗

,

s.t.
𝑛

∑

𝑗=1

𝑎
𝑖𝑗

𝑥
𝑗

⩽A
̃
𝑏
𝑖

, 𝑖 = 1, 2, . . . , 𝑚,

𝑥
𝑗

∈ 𝑅, 𝑗 = 1, 2, . . . , 𝑛,

(10)

where 𝑄 = (𝑞
𝑘𝑗

)
𝑛×𝑛

, 𝐴 = (𝑎
𝑖𝑗

)
𝑚×𝑛

, 𝑐 = (𝑐
1

, 𝑐
2

, . . . , 𝑐
𝑛

)
𝑇

,
̃
𝑏 =

(
̃
𝑏
1

,
̃
𝑏
2

, . . . ,
̃
𝑏
𝑚

)
𝑇, and 𝑞

𝑘𝑗

, 𝑎
𝑖𝑗

, 𝑐
𝑗

,
̃
𝑏
𝑖

∈ F(𝑅), for 𝑖 =

1, 2, . . . , 𝑚, 𝑘 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑛, is called a fuzzy
number quadratic programming model.

Definition 6. Any 𝑥 which satisfies the set of constraints
of FNQP is called a feasible solution. Let F be the set of
all feasible solutions of FNQP. We shall say that 𝑥

0

∈ F

is a global optimal feasible solution for FNQP if 𝑐
𝑇

𝑥 +

(1/2)𝑥
𝑇

𝑄𝑥 ⩽A 𝑐
𝑇

𝑥
0

+ (1/2)𝑥
𝑇

0

𝑄𝑥
0

for any 𝑥 ∈ F . We
say that 𝑥

0

∈ F is a local optimal feasible solution for

FNQP if there exists a neighborhood𝑈 of 𝑥
0

such that 𝑐𝑇𝑥 +

(1/2)𝑥
𝑇

𝑄𝑥 ⩽A 𝑐
𝑇

𝑥
0

+ (1/2)𝑥
𝑇

0

𝑄𝑥
0

for all 𝑥 ∈ 𝑈⋂ F .
The following theorem shows that any FNQP can be

reduced to a quadratic programming problem.

Theorem 7. The following quadratic programming problem
(QPP) and the FNQP in (9) are equivalent:

min 𝑧 = 𝑐
𝑇

𝑥 +

1

2

𝑥
𝑇

𝑄𝑥,

𝑠.𝑡. 𝐴𝑥 ⩽ 𝑏,

𝑥 ∈ 𝑅
𝑛

,

(11)

or

min 𝑧 =

𝑛

∑

𝑗=1

𝑐
𝑗

𝑥
𝑗

+

1

2

𝑚

∑

𝑘=1

𝑛

∑

𝑗=1

𝑞
𝑘𝑗

𝑥
𝑘

𝑥
𝑗

,

𝑠.𝑡.

𝑛

∑

𝑗=1

𝑎
𝑖𝑗

𝑥
𝑗

⩽ 𝑏
𝑖

, 𝑖 = 1, 2, . . . , 𝑚,

𝑥
𝑗

∈ 𝑅, 𝑗 = 1, 2, . . . , 𝑛,

(12)

where = (𝑞
𝑘𝑗

)
𝑛×𝑛

, 𝐴 = (𝑎
𝑖𝑗

)
𝑚×𝑛

, and 𝑞
𝑘𝑗

, 𝑎
𝑖𝑗

, 𝑏
𝑖

, 𝑐
𝑗

are real
numbers corresponding to the fuzzy numbers 𝑞

𝑘𝑗

, 𝑎
𝑖𝑗

,
̃
𝑏
𝑖

, 𝑐
𝑗

with
respect to a given linear ranking functionA, respectively.

Proof. The method of proof is the same as Lemma 3.1 in
[24]. However, to provide a self-contained presentation, and
because this result is central to this paper, we provide a direct
proof. Let F

1

and F
2

be the set of all feasible solutions of (9)
and (11), respectively. We first prove that F

1

= F
2

. We see

𝑥 ∈ F
1

⇐⇒

𝑛

∑

𝑗=1

𝑎
𝑖𝑗

𝑥
𝑗

⩽A
̃
𝑏
𝑖

, 𝑖 = 1, 2, . . . , 𝑚,

⇐⇒

𝑛

∑

𝑗=1

(𝑎
𝐿

𝑖𝑗

, 𝑎
𝑈

𝑖𝑗

, 𝛼
𝑖𝑗

, 𝛽
𝑖𝑗

) 𝑥
𝑗

⩽A (𝑏
𝐿

𝑖

, 𝑏
𝑈

𝑖

, 𝛼
𝑖

, 𝛽
𝑖

) , 𝑖 = 1, 2, . . . , 𝑚,

⇐⇒ A[

[

𝑛

∑

𝑗=1

(𝑎
𝐿

𝑖𝑗

, 𝑎
𝑈

𝑖𝑗

, 𝛼
𝑖𝑗

, 𝛽
𝑖𝑗

) 𝑥
𝑗

]

]

⩽ A [(𝑏
𝐿

𝑖

, 𝑏
𝑈

𝑖

, 𝛼
𝑖

, 𝛽
𝑖

)] , 𝑖 = 1, 2, . . . , 𝑚,

⇐⇒

𝑛

∑

𝑗=1

(A [𝑎
𝐿

𝑖𝑗

, 𝑎
𝑈

𝑖𝑗

, 𝛼
𝑖𝑗

, 𝛽
𝑖𝑗

]) 𝑥
𝑗

⩽ A [(𝑏
𝐿

𝑖

, 𝑏
𝑈

𝑖

, 𝛼
𝑖

, 𝛽
𝑖

)] , 𝑖 = 1, 2, . . . , 𝑚,

⇐⇒

𝑛

∑

𝑗=1

𝑎
𝑖𝑗

𝑥
𝑗

⩽ 𝑏
𝑖

, 𝑖 = 1, 2, . . . , 𝑚, ,

⇐⇒ 𝑥 ∈ F
2

.

(13)
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Then, we have F
1

= F
2

. Let 𝑥
0 be an optimal feasible

solution for (9); then, for all 𝑥 ∈ F
1

, we have

𝑐
𝑇

𝑥 +

1

2

𝑥
𝑇

𝑄𝑥 ⩾A 𝑐
𝑇

𝑥
0

+

1

2

(𝑥
0

)

𝑇

𝑄𝑥
0

,

⇐⇒

𝑛

∑

𝑗=1

𝑐
𝑗

𝑥
𝑗

+

1

2

𝑚

∑

𝑘=1

𝑛

∑

𝑗=1

𝑞
𝑘𝑗

𝑥
𝑘

𝑥
𝑗

⩾A

𝑛

∑

𝑗=1

𝑐
𝑗

𝑥
0

𝑗

+

1

2

𝑚

∑

𝑘=1

𝑛

∑

𝑗=1

𝑞
𝑘𝑗

𝑥
0

𝑘

𝑥
0

𝑗

,

⇐⇒ A(

𝑛

∑

𝑗=1

𝑐
𝑗

𝑥
𝑗

+

1

2

𝑚

∑

𝑘=1

𝑛

∑

𝑗=1

𝑞
𝑘𝑗

𝑥
𝑘

𝑥
𝑗

)

⩾ A(

𝑛

∑

𝑗=1

𝑐
𝑗

𝑥
0

𝑗

+

1

2

𝑚

∑

𝑘=1

𝑛

∑

𝑗=1

𝑞
𝑘𝑗

𝑥
0

𝑘

𝑥
0

𝑗

) ,

⇐⇒

𝑛

∑

𝑗=1

A (𝑐
𝑗

) 𝑥
𝑗

+

1

2

𝑚

∑

𝑘=1

𝑛

∑

𝑗=1

A (𝑞
𝑘𝑗

) 𝑥
𝑘

𝑥
𝑗

⩾

𝑛

∑

𝑗=1

A (𝑐
𝑗

) 𝑥
0

𝑗

+

1

2

𝑚

∑

𝑘=1

𝑛

∑

𝑗=1

A (𝑞
𝑘𝑗

) 𝑥
0

𝑘

𝑥
0

𝑗

,

⇐⇒

𝑛

∑

𝑗=1

𝑐
𝑗

𝑥
𝑗

+

1

2

𝑚

∑

𝑘=1

𝑛

∑

𝑗=1

𝑞
𝑘𝑗

𝑥
𝑘

𝑥
𝑗

⩾

𝑛

∑

𝑗=1

𝑐
𝑗

𝑥
0

𝑗

+

1

2

𝑚

∑

𝑘=1

𝑛

∑

𝑗=1

𝑞
𝑘𝑗

𝑥
0

𝑘

𝑥
0

𝑗

.

(14)

So, 𝑥0 is an optimal feasible solution for (11) or (12).
Now, let 𝑥0 be an optimal feasible solution for (11) or (12).

We shall assume that 𝑥0 is not an optimal feasible solution for
(9) and exhibit a contradiction. If 𝑥0 is not an optimal feasible
solution for (9), then there exists a 𝑥

1

∈ F
1

such that

𝑐
𝑇

𝑥
0

+

1

2

(𝑥
0

)

𝑇

𝑄𝑥
0

>A 𝑐
𝑇

𝑥
1

+

1

2

(𝑥
1

)

𝑇

𝑄𝑥
1

. (15)

From the ranking function (8), (15) can be written as

𝑐
𝑇

𝑥
0

+

1

2

(𝑥
0

)

𝑇

𝑄𝑥
0

> 𝑐
𝑇

𝑥
1

+

1

2

(𝑥
1

)

𝑇

𝑄𝑥
1

, (16)

which contradicts the facts that 𝑥
0 is an optimal feasible

solution for (11), since 𝑥
1

∈ F
2

.

From Theorem 7, we have that the sets of all feasible
solutions of FNQP and QPP are the same. And if 𝑥

∗ is an
optimal feasible solution for FNQP, then 𝑥

∗ is an optimal
feasible solution for QPP.Thenwe can easily see the following
result.

Corollary 8. If QPP does not have a solution, then FNQP does
not have a solution either.

Definition 9. 𝑄 = (𝑞
𝑘𝑗

)
𝑛×𝑛

is denoted by a symmetric fuzzy
number matrix if 𝑞

𝑘𝑗

∈ F(𝑅) and 𝑞
𝑘𝑗

= 𝑞
𝑗𝑘

for any 𝑘, 𝑗 =

1, 2, . . . , 𝑛.

Let 𝑄 = (𝑞
𝑘𝑗

)
𝑛×𝑛

be a real symmetric matrix correspond-
ing to the symmetric fuzzy numbers matrix𝑄 = (𝑞

𝑘𝑗

)
𝑛×𝑛

and
𝑄 = A(𝑄). In the following, we only consider the symmetric
fuzzy numbers matrix 𝑄 = (𝑞

𝑘𝑗

)
𝑛×𝑛

.

Definition 10. Let 𝑄 be a symmetric fuzzy numbers matrix
and 𝑄 = A(𝑄) by the ranking function (8).

(i) 𝑄 is called a fuzzy number positive definite matrix
(resp., fuzzy number negative definite matrix) if
𝑥
𝑇

𝑄𝑥 >A 0 (resp., 𝑥𝑇𝑄𝑥 <A 0) for all nonzero 𝑥 in
𝑅
𝑛 or 𝑄 is a positive definite matrix (resp., negative

definite matrix).
(ii) If 𝑥

𝑇

𝑄𝑥 ⩾A 0 (resp., 𝑥𝑇𝑄𝑥 ⩽A 0) for all 𝑥 in 𝑅
𝑛,

or 𝑄 is a positive semidefinite matrix (resp., negative
semidefinite matrix), then 𝑄 is said to be a fuzzy
number positive semidefinite (resp., fuzzy number
negative semidefinite).

(iii) If𝑄 is an indefinitematrix, then𝑄 is said to be a fuzzy
number indefinite matrix.

Definition 11. If the fuzzy number matrix 𝑄 is fuzzy number
positive semidefinite matrix, then (9) is called a convex
fuzzy number quadratic programming problem. If𝑄 is fuzzy
number positive definite matrix, (9) is a strict convex FNQP.
Equation (9) is said to be a nonconvex FNQP if 𝑄 is fuzzy
number indefinite matrix.

From Theorem 7 and definition above, the following
result is now immediate.

Corollary 12. (i) If 𝑄 is fuzzy number positive semidefinite
matrix, then the local solution 𝑥

∗ of (9) is a global solution.
(ii) If 𝑄 is fuzzy number positive definite matrix, then the

local solution 𝑥
∗ of (9) is a unique global solution.

Example 13. Consider the following FNQP:

min �̃� =A

1

2

(1, 3, 2, 2) 𝑥
2

1

+

1

2

(0.5, 1.5, 1, 1) 𝑥
2

2

− (1, 1, 4, 2) 𝑥
1

𝑥
2

s.t. (2, 3, 2, 2) 𝑥
1

+ (1, 3, 2, 3) 𝑥
2

⩽A (5, 6, 2, 2) ,

(2, 3, 1, 3) 𝑥
1

+ (1, 2, 3, 1) 𝑥
2

⩽A (3, 5, 2, 4) ,

− (−1, 2, 1, 1) 𝑥
1

− (0, 2, 4, 2) 𝑥
2

⩽A − (0, 1, 1, 1) ,

(17)

where coefficients are trapezoidal fuzzy numbers.
We apply the ranking function (8) to solve the above

FNQP. The problem reduces to

min 𝑧 = 2𝑥
2

1

+ 𝑥
2

2

− 𝑥
1

𝑥
2

s.t. 5𝑥
1

+ 4.5𝑥
2

⩽ 11,

6𝑥
1

+ 2𝑥
2

⩽ 9,

− 𝑥
1

− 𝑥
2

⩽ −1.

(18)
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Then we see that coefficient matrix of (18) is𝑄 = (
4 −1

−1 2

).
Since 𝑄 is a positive definite matrix, (17) is a strict convex
FNQP and the local solution 𝑥

∗ of (18) is a global solution
of (17).

The optimal solution of (18) is 𝑥
∗

1

= 0.375, 𝑥
∗

2

= 0.625;
then the optimal solution of (17) is 𝑥

∗

1

= 0.375, 𝑥
∗

2

=

0.625, and the optimal objective value is �̃�∗ = (−0.06640625,
0.26953125, 0.8046875, 1.2734375). So, by the ranking func-
tion (8),A(�̃�

∗

) = 0.4375.

4. Optimality Conditions for Fuzzy Number
Quadratic Programming

Let us now state the necessary optimality conditions of
problem (9).

Theorem 14 (necessary conditions). Let 𝑥
∗ be a local min-

imizer of the fuzzy number quadratic programming problem
(9). Then there exists a 𝑚-vector 𝜆∗ ∈ 𝑅

𝑚 such that

𝑐 + 𝑄𝑥
∗

− 𝐴𝜆
∗

=A 0̃,

𝜆
∗

𝑖

[(𝑎
𝑖

) 𝑥
∗

−
̃
𝑏
𝑖

] =A 0̃, 𝑖 = 1, 2, . . . , 𝑚,

𝜆
∗

⩾ 0,

(19)

where 𝑎
𝑖 is the 𝑖th row of 𝑚 × 𝑛 fuzzy number matrix 𝐴, and,

for every 𝑑 ̸= 0, satisfying

𝑎
𝑖

𝑑 =A 0̃, 𝑖 ∈ 𝐼 (𝑥
∗

) , (20)

where

𝐼 (𝑥
∗

) = {𝑖 | 𝑎
𝑖

𝑥
∗

=A
̃
𝑏
𝑖

, 𝑖 = 1, 2, . . . , 𝑚} , (21)

we have

𝑑
𝑇

𝑄𝑑 ⩾A 0̃. (22)

Proof. Since 𝑥
∗ is a local minimizer of fuzzy number

quadratic programming problem (9), 𝑥∗ is a local minimizer
of quadratic programming problem (11) byTheorem 7.Then,
fromTheorem 7.1 in Avriel [25], there exists a 𝑚-vector 𝜆∗ ∈
𝑅
𝑚 such that

𝑐 + 𝑄𝑥
∗

− 𝐴𝜆
∗

= 0,

𝜆
∗

𝑖

[(𝑎
𝑖

) 𝑥
∗

− 𝑏
𝑖

] = 0, 𝑖 = 1, 2, . . . , 𝑚,

𝜆
∗

⩾ 0,

(23)

where 𝑐 = A(𝑐), 𝑄 = A(𝑄), 𝐴 = A(𝐴), 𝑏
𝑖

= A(
̃
𝑏
𝑖

) for any
𝑖 = 1, 2, . . . , 𝑚, and 𝑎

𝑖 is the 𝑖th row of 𝑚 × 𝑛 matrix 𝐴, and,
for every 𝑑 ̸= 0, satisfying

𝑎
𝑖

𝑑 = 0, 𝑖 ∈ 𝐼 (𝑥
∗

) , (24)

where

𝐼 (𝑥
∗

) = {𝑖 | 𝑎
𝑖

𝑥
∗

= 𝑏
𝑖

, 𝑖 = 1, 2, . . . , 𝑚} , (25)

we have

𝑑
𝑇

𝑄𝑑 ⩾ 0. (26)

From the ranking function (8), formulas (19)–(22) and
(23)–(26) are equivalent and the proof is complete.

Turning to sufficient conditions, we first define

𝐼 (𝑥
∗

) = {𝑖 : 𝑖 ∈ 𝐼 (𝑥
∗

) , 𝜆
∗

> 0} . (27)

Let us now state the sufficient optimality conditions for
problem (9).

Theorem 15 (sufficient conditions). Let 𝑥
∗ be feasible for

problem (9). If there exists a vector 𝜆
∗

∈ 𝑅
𝑚 satisfying (19)–

(22), and for every 0 ̸= 𝑏 ∈ 𝑅
𝑚 such that

𝑎
𝑖

𝑏 =A 0̃, 𝑖 ∈ 𝐼 (𝑥
∗

) ,

𝑎
𝑖

𝑏 ⩽A 0̃, 𝑖 ∈ 𝐼 (𝑥
∗

) , 𝑖 ∉ 𝐼 (𝑥
∗

) ,

(28)

it follows that

𝑏
𝑇

𝑄𝑏 >A 0̃; (29)

then 𝑥
∗ is a strict local minimum of FNQP.

Proof. From the ranking function (8), there exists a vector
𝜆
∗

∈ 𝑅
𝑚 satisfying (23)–(26), and for every 0 ̸= 𝑏 ∈ 𝑅

𝑚 such
that

𝑎
𝑖

𝑏 = 0, 𝑖 ∈ 𝐼 (𝑥
∗

) ,

𝑎
𝑖

𝑏 ⩽ 0, 𝑖 ∈ 𝐼 (𝑥
∗

) , 𝑖 ∉ 𝐼 (𝑥
∗

) ,

(30)

it follows that

𝑏
𝑇

𝑄𝑏 > 0. (31)

Then, fromTheorem 7.2 in Avriel [25], 𝑥∗ is a strict local
minimum of (11). So 𝑥

∗ is a strict local minimum of FNQP
byTheorem 7.

Next, we give a sufficient and necessary optimality condi-
tion for FNQP (9).

Theorem 16 (necessary and sufficient conditions). Let 𝑥∗ be
feasible for problem (9); then 𝑥

∗ is a local minimizer if and only
if there exists (𝑥∗, 𝜆∗) such that (19)–(22) hold, and

𝑑
𝑇

𝑄𝑑 ⩾A 0̃, ∀𝑑 ∈ 𝑄 (𝑥
∗

, 𝜆
∗

) , (32)

where

𝑄 (𝑥
∗

, 𝜆
∗

) = {𝑑 ̸= 0 | 𝑎
𝑖

𝑑 ⩽A 0̃, 𝑖 ∈ 𝐼 (𝑥
∗

) ,

𝑎
𝑖

𝑑 =A 0̃, 𝑖 ∈ 𝐼 (𝑥
∗

) ,

𝜆
∗

> 0} .

(33)
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Proof. Using the ranking function (8), formulas (19)–(22) and
formulas (23)–(26) are equivalent. Then (32) and (33) are
respectively equivalent to the following formulas:

𝑑
𝑇

𝑄𝑑 ⩾ 0, ∀𝑑 ∈ 𝑄 (𝑥
∗

, 𝜆
∗

) , (34)

where

𝑄 (𝑥
∗

, 𝜆
∗

) = {𝑑 ̸= 0 | 𝑎
𝑖

𝑑 ⩽ 0, 𝑖 ∈ 𝐼 (𝑥
∗

) ,

𝑎
𝑖

𝑑 = 0, 𝑖 ∈ 𝐼 (𝑥
∗

) , 𝜆
∗

> 0} .

(35)

ByTheorem 3.4 in Lee et al. [26], 𝑥∗ is a local minimizer
of (11) if and only if there exists (𝑥

∗

, 𝜆
∗

) such that (23)-(26)
and (34)-(35) hold. Then, based on Theorem 7, we complete
the proof.

5. Duality for Fuzzy Number
Quadratic Programming

Similar to the duality theory in quadratic programming (see,
e.g.,Mangasarian [27]), for every FNQP, there is an associated
problem which satisfies some important properties. We shall
call this related FNQP the dual fuzzy number quadratic
programming (DFNQP).

5.1. Dual Problem. For the FNQP

min �̃� =A 𝑐
𝑇

𝑥 +

1

2

𝑥
𝑇

𝑄𝑥,

s.t. 𝐴𝑥 ⩽A
̃
𝑏,

𝑥 ∈ 𝑅
𝑛

,

(36)

define the dual fuzzy number quadratic programming prob-
lem (DFNQP) as

max 𝑦 =A −
̃
𝑏
𝑇

𝑢 −

1

2

𝑥
𝑇

𝑄𝑥,

s.t. 𝑄𝑥 + 𝐴
𝑇

𝑢 =A 𝑐,

𝑢 ⩾ 0, 𝑥 ∈ 𝑅
𝑛

, 𝑢 ∈ 𝑅
𝑚

.

(37)

By the ranking function (8), problem (37) and the following
quadratic programming problem are equivalent:

max 𝑦 = −𝑏
𝑇

𝑢 −

1

2

𝑥
𝑇

𝑄𝑥,

s.t. 𝑄𝑥 + 𝐴
𝑇

𝑢 = 𝑐,

𝑢 ⩾ 0, 𝑥 ∈ 𝑅
𝑛

, 𝑢 ∈ 𝑅
𝑚

.

(38)

We see that (38) is the dual quadratic programming
problem for (9) (see, e.g., Mangasarian [27]).

Example 17. Consider the given FNQP in Example 13. The
dual to this problem follows:

max 𝑦 =A −

1

2

(1, 3, 2, 2) 𝑥
2

1

−

1

2

(0.5, 1.5, 1, 1) 𝑥
2

2

+ (1, 1, 4, 2) 𝑥
1

𝑥
2

− (5, 6, 2, 2) 𝑢
1

− (3, 5, 2, 4) 𝑢
2

+ (0, 1, 1, 1) 𝑢
3

,

s.t. (1, 3, 2, 2) 𝑥
1

− (1, 1, 4, 2) 𝑥
2

+ (2, 3, 2, 2) 𝑢
1

+ (2, 3, 1, 3) 𝑢
2

− (−1, 2, 1, 1) 𝑢
3

=A 0,

− (1, 1, 4, 2) 𝑥
1

+ (0.5, 1.5, 1, 1) 𝑥
2

(1, 3, 2, 3) 𝑢
1

+ (1, 2, 3, 1) 𝑢
2

− (0, 2, 4, 2) 𝑢
3

=A 0,

𝑢
1

, 𝑢
2

⩾ 0, 𝑥
1

, 𝑥
2

∈ 𝑅.

(39)

Now if we apply the ranking function (8), we have

max 𝑦 = −2𝑥
2

1

− 𝑥
2

2

+ 𝑥
1

𝑥
2

− 11𝑢
1

− 9𝑢
2

+ 𝑢
3

s.t. 4𝑥
1

− 𝑥
2

+ 5𝑢
1

+ 6𝑢
2

− 𝑢
3

= 0,

− 𝑥
1

+ 2𝑥
2

+ 4.5𝑢
1

+ 2𝑢
2

− 𝑢
3

= 0

𝑢
1

, 𝑢
2

⩾ 0, 𝑥
1

, 𝑥
2

∈ 𝑅.

(40)

The optimal solution is 𝑥
∗

1

= 0.375, 𝑥
∗

2

= 0.625, 𝑢
1

=

0, 𝑢
2

= 0, 𝑢
3

= 0.875, and the optimal objective value is
𝑦
∗

= (−0.26953125, 0.94140625, 2.15625, 1.6875). So, by the
ranking function (8),A(𝑦

∗

) = 0.4375.

5.2. The Relationships between FNQP and DFNQP. We shall
discuss here the relationships between the fuzzy number
quadratic programming problem and its corresponding dual.
Let F
1

and F
2

be the feasible solution sets of FNQP and
DFNQP, respectively.

Lemma 18. Dual of DFNP is FNQP.

Proof. Use Lemma 3 and the definition of DFNQP.

Lemma 18 indicates that the duality results can be applied
to any of the primal or dual problems posed as the primal
problem.

Theorem 19 (weak duality theorem). Let 𝑄 be fuzzy number
positive semidefinite matrix, 𝑥0 ∈ F

1

, (𝑥1, 𝑢1) ∈ F
2

; then we
have

−
̃
𝑏
𝑇

𝑢
1

−

1

2

(𝑥
1

)

𝑇

𝑄𝑥
1

⩽A 𝑐
𝑇

𝑥
0

+

1

2

(𝑥
0

)

𝑇

𝑄𝑥
0

. (41)

Proof. By the ranking function (8), (41) holds if and only if

−𝑏
𝑇

𝑢
1

−

1

2

(𝑥
1

)

𝑇

𝑄𝑥
1

⩽ 𝑐
𝑇

𝑥
0

+

1

2

(𝑥
0

)

𝑇

𝑄𝑥
0

, (42)

where 𝑏, 𝑄, 𝑐 are real numbers corresponding to the fuzzy
numbers ̃

𝑏, 𝑄, 𝑐. Equation (42) follows from Theorem 8.1.3
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in [27] by observing that 𝑐𝑇𝑥 + (1/2)(𝑥)
𝑇

𝑄𝑥 is convex on 𝑅
𝑛

if the matrix 𝑄 is positive semidefinite.

The following corollaries are immediate consequences of
Theorem 19.

Corollary 20. Let 𝑄 be fuzzy number positive semidefinite
matrix. If 𝑥0 and (𝑥

1

, 𝑢
1

) are feasible solutions to FNQP and
DFNQP, respectively, and −

̃
𝑏
𝑇

𝑢
1

− (1/2)(𝑥
1

)
𝑇

𝑄𝑥
1

=A 𝑐
𝑇

𝑥
0

+

(1/2)(𝑥
0

)
𝑇

𝑄𝑥
0, then 𝑥

0 and (𝑥
1

, 𝑢
1

) are optimal solutions to
their respective problems.

Definition 21. We say that FNLPP (or DFNLPP) is
unbounded if feasible solutions exist with arbitrary small (or
large) ranking values for the fuzzy objective function.

Corollary 22. If either problem is unbounded, then the other
problem has no feasible solution.

Theorem 23. Let 𝑄 be fuzzy number positive semidefinite
matrix. If 𝑥∗ solves FNQP (36), then 𝑥

∗ and some 𝑢
∗

∈ 𝑅
𝑚

solves DFNQP (37) and the two optimal values of ranking
functions for the fuzzy objectives are equal.

Proof. Since 𝑥
∗ solves FNQP (36), then 𝑥

∗ is the optimal
solutions toQPP (11). FromDorn’s duality theorem [27], there
exist 𝑥∗ and some 𝑢

∗

∈ 𝑅
𝑚 solves problem (38) since 𝑄 is

positive semidefinite matrix, and −𝑏
𝑇

𝑢
∗

− (1/2)(𝑥
∗

)
𝑇

𝑄𝑥
∗

=

𝐶
𝑇

𝑥
∗

+ (1/2)(𝑥
∗

)
𝑇

𝑄𝑥
∗. Then, (𝑥∗, 𝑢∗) solves DFNQP (37)

and −
̃
𝑏
𝑇

𝑢
∗

− (1/2)(𝑥
∗

)
𝑇

𝑄𝑥
∗

=A 𝑐
𝑇

𝑥
∗

+ (1/2)(𝑥
∗

)
𝑇

𝑄𝑥
∗. For

if −̃𝑏𝑇𝑢∗ − (1/2)(𝑥
∗

)
𝑇

𝑄𝑥
∗

̸=A 𝑐
𝑇

𝑥
∗

+(1/2)(𝑥
∗

)
𝑇

𝑄𝑥
∗, then,

by the ranking function (8),−𝑏𝑇𝑢∗−(1/2)(𝑥
∗

)
𝑇

𝑄𝑥
∗

̸= 𝐶
𝑇

𝑥
∗

+

(1/2)(𝑥
∗

)
𝑇

𝑄𝑥
∗, which contradicts −𝑏𝑇𝑢∗−(1/2)(𝑥

∗

)
𝑇

𝑄𝑥
∗

=

𝐶
𝑇

𝑥
∗

+ (1/2)(𝑥
∗

)
𝑇

𝑄𝑥
∗.

For an illustration of the above theorem, consider the
FNQP and DFNQP given in Examples 13 and 17, respectively.
Symmetric fuzzy number matrix 𝑄 = (

(1,3,2,2) −(1,1,4,2)

−(1,1,4,2) (0.5,1.5,1,1)

) is
fuzzy number positive definite, since matrix 𝑄 = A(𝑄) =

(
4 −1

−1 2

) is positive definite. We see that the optimal solution
for the FNQP is 𝑥

∗

= (0.375, 0.626); then there exists 𝑢
1

=

0, 𝑢
2

= 0, 𝑢
3

= 0.875 such that 𝑥∗
1

= 0.375, 𝑥
∗

2

= 0.625, 𝑢
1

=

0, 𝑢
2

= 0, 𝑢
3

= 0.875 solves DFNQP and �̃�
∗

=A 𝑦
∗ by the

ranking function (8).

Theorem24 (strict converse duality theorem). Let𝑄 be fuzzy
number positive definite matrix. If (𝑥

∗

, 𝑢
∗

) is an optimal
solution to DFNQP (37), then 𝑥

∗ solves FNQP (36), and
−
̃
𝑏
𝑇

𝑢
∗

− (1/2)(𝑥
∗

)
𝑇

𝑄𝑥
∗

=A 𝑐
𝑇

𝑥
∗ + (1/2)(𝑥

∗

)
𝑇

𝑄𝑥
∗.

Proof. Since 𝑄 is fuzzy number positive definite and (𝑥
∗

, 𝑢
∗

)

is an optimal solution to DFNQP (37), we have that 𝑄

is positive definite and (𝑥
∗

, 𝑢
∗

) is an optimal solution to
problem (38). FromTheorem 8.2.5 in [27], 𝑥∗ solves QPP (11)
and −𝑏

𝑇

𝑢
∗

− (1/2)(𝑥
∗

)
𝑇

𝑄𝑥
∗

= 𝐶
𝑇

𝑥
∗

+ (1/2)(𝑥
∗

)
𝑇

𝑄𝑥
∗. From

Theorem 7 above, then 𝑥
∗ solves FNQP (36), and −

̃
𝑏
𝑇

𝑢
∗

−

(1/2)(𝑥
∗

)
𝑇

𝑄𝑥
∗

=A 𝑐
𝑇

𝑥
∗

+ (1/2)(𝑥
∗

)
𝑇

𝑄𝑥
∗.

Theorem 25 (Dorn’s converse duality theorem). Let 𝑄 be
fuzzy number positive semidefinite matrix. If (𝑥

∗

, 𝑢
∗

) solves
DFNQP (37), then some 𝑥 ∈ 𝑅

𝑛 (not necessarily equal to 𝑥
∗),

satifying 𝑄(𝑥 − 𝑥
∗

) =A 0, solves FNQP (36), and −
̃
𝑏
𝑇

𝑢
∗

−

(1/2)(𝑥
∗

)
𝑇

𝑄𝑥
∗

=A 𝑐
𝑇

𝑥 + (1/2)(𝑥)
𝑇

𝑄𝑥.

Proof. Since 𝑄 is fuzzy number positive semidefinite and
(𝑥
∗

, 𝑢
∗

) solves DFNQP (37), we have that 𝑄 is positive
semidefinite and (𝑥

∗

, 𝑢
∗

) is an optimal solution to problem
(38). From Theorem 8.2.6 in [27], some 𝑥 ∈ 𝑅

𝑛 (not neces-
sarily equal to 𝑥

∗), satisfying 𝑄(𝑥 − 𝑥
∗

) = 0, solves FNQP
(11), and −𝑏

𝑇

𝑢
∗

− (1/2)(𝑥
∗

)
𝑇

𝑄𝑥
∗

= 𝑐
𝑇

𝑥 + (1/2)(𝑥)
𝑇

𝑄𝑥.
From Theorem 7 above, 𝑥 solves FNQP (36) and −

̃
𝑏
𝑇

𝑢
∗

−

(1/2)(𝑥
∗

)
𝑇

𝑄𝑥
∗

=A 𝑐
𝑇

𝑥 + (1/2)(𝑥)
𝑇

𝑄𝑥.

6. Conclusion

We used a linear ranking function to define the dual of
fuzzy number quadratic programming primal problems. We
provide optimality conditions for fuzzy number quadratic
programming. Similar to general quadratic programming, we
presented several duality results.
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