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A variational inequality (VI) formulation of a mixed traffic assignment problem associated with user equilibrium (UE) player and
altruistic players (UE-AP) is developed. The users governed by the UE player use the paths with minimum actual travel cost, while
the users governed by altruistic players use the paths with minimum perceived travel cost, which is a linear combination of the
actual and marginal travel costs. A nonlinear programming method is adopted to derive the efficiency loss of the UE-AP mixed
equilibrium with polynomial cost function. Finally, numerical examples are given to verify our analytical results.

1. Introduction

Traditionally, traffic assignment problems assume that travel-
ers followWardrop’s first and secondprinciples or their exten-
sions. Wardrop’s first principle or the user equilibrium (UE)
principle assumes that all users are identical, noncooperative,
and rational in selecting the shortest route and know the exact
travel cost they will encounter. At equilibrium, no one can
reduce her/his travel cost by unilaterally choosing alternative
route of the same origin-destination (OD) pair. Wardrop’s
second principle or the system optimum (SO) principle
assumes that each user chooses her/his route cooperatively
with other users to minimize the total system travel cost.

Most of traffic assignment problems addressed in litera-
tures are with homogeneous users. However, it has long been
recognized that users in a traffic network are heterogeneous
in general. For example, Haurie and Marcotte [1] considered
that there exist some noncooperative Cournot-Nash (CN)
players in the network and assumed that users belonging to
the same player are fully cooperative but are fully competitive
for users belonging to different players. Harker [2] developed
a network model with consideration of mixed behaviors and
assumed that distinct CN players control certain portions
of users, and the other users follow the UE principle.
The UE principle and SO principle were also combined in

a traffic assignment problem to investigate the route guidance
problems [3–5]. Yang et al. [6] formulated a mixed behavior
network equilibriummodel that simultaneously describes the
routing behaviors of UE, SO, and CN players. Bhavathrathan
and Mallikarjuna [7] explored the heterogeneous traffic in
Indian road traffic and introduced an idea of diminishing
density in macroscopic model.

The efficiency loss of traffic assignment problem was
initially addressed by Roughgarden and Tardos [8]. The effi-
ciency loss or price of anarchy is the largest ratio of the total
system travel cost at the UE state to that at the SO state for
given traffic demand. Whereafter, the efficiency loss of many
other traffic assignment problems with homogeneous users
was further investigated [9–14]. Roughgarden [15] examined
the price of anarchy with consideration of heterogeneous
players. Liu et al. [16] investigated the efficiency loss of mixed
travel behavior in networks with advanced travel information
systems (ATIS). Han and Yang [17] derived the efficiency loss
caused by the multiclass and multicriterion traffic equilib-
rium.Yang et al. [18] investigated the efficiency loss of the self-
ish routing with the atomic CN players. Yu et al. [19] studied
the efficiency loss caused by the multiclass stochastic traffic
equilibrium assignment with fixed demand. Yu and Huang
[20] investigated the upper bound of the efficiency loss of UE-
CN mixed equilibrium with polynomial cost functions.
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Most of existing works assume that each player is entirely
selfish and aims to find the minimum travel cost route
for herself/himself without regard to the external cost in
the congested networks [8–20]. Experiments have shown
that participants do not act absolutely selfishly even for
simple games in controlled environments [21, 22]. Instead,
their behavior can be either altruistic or malicious. Chen
and Kempe [23] studied the efficiency loss of network with
altruistic players. Karakostas et al. [24] considered the price
of anarchy of selfish players and oblivious players, in which
the oblivious users ignore congestion altogether and decide
their routing on the basis of cheapest routes on a network
without any flow whatsoever.

In this paper, we assume that there are a single UE
player and several altruistic players (UE-AP) in the network.
The UE player controls all the selfish users who follow
UE principle in their routing decisions, while the altruistic
players regard the external cost that they cause for other
players in the network. The perceived travel cost of altruistic
users governed by an altruistic player is a linear combination
of the selfish component (i.e., the actual travel cost) and the
altruistic component (i.e., the marginal travel cost). All the
users belonging to the same altruistic player are assumed
to have the same altruism coefficient. This paper develops
a variational inequality (VI) formulation for the UE-AP
mixed traffic assignment problem and adopts a nonlinear
programming method to derive the efficiency loss of the
mixed equilibrium with polynomial cost function.

The rest of this paper is organized as follows. In Section 2,
the UE-AP mixed traffic assignment problem is proposed
and formulated as a VI problem. In Section 3, a nonlinear
programming approach is adopted to derive the upper bound
of efficiency loss of the UE-AP mixed equilibrium with
polynomial cost function. Numerical examples are provided
in Section 4. Finally, Section 5 draws the conclusions.

2. The UE-AP Mixed Traffic
Assignment Problem

In the UE-AP mixed traffic assignment problem, each player
can control more than one OD pair, but, for notational
purpose, each OD pair is supposed to be controlled by
only one player. If several players compete over the same
physical OD pair, the OD pair is copied and treated as a set
of OD pairs. Thus, any ownership of the OD pairs can be
represented [2, 6]. The OD demands are assumed to be fixed.
In a multidestination and strongly connected network 𝐺,𝑁
denotes the set of nodes, whereas 𝐴 denotes the set of arcs
(links). The following notations will be adopted throughout
this paper:

𝑈: the UE player in the network;
𝐾: the set of altruistic players in the network;

𝑊
𝑈: the set of OD pairs controlled by UE player;

𝑊
𝑘: the set of OD pairs controlled by altruistic player

𝑘 ∈ 𝐾;
𝛽
𝑘
: the altruism coefficient of altruistic player 𝑘 ∈ 𝐾;

𝑊
𝐾:𝑊𝐾 ≡ ⋃

𝑘∈𝐾
𝑊
𝑘;

𝑊:𝑊 ≡ 𝑊
𝑈
∪𝑊
𝐾;

𝑑
𝑤
: the demand between OD pair 𝑤 ∈ 𝑊;

𝑅
𝑤
: the set of paths connecting OD pair 𝑤 ∈ 𝑊;

𝑓
𝑟𝑤
: the flow on path 𝑟 ∈ 𝑅

𝑤
, 𝑤 ∈ 𝑊;

𝛿
𝑤

𝑎𝑟
: 0-1 indicator variable; it equals 1 if path 𝑟 ∈ 𝑅

𝑤

traverses link 𝑎 ∈ 𝐴, and 0 otherwise;
V𝑈
𝑎
: the flow of link 𝑎 arising out of the OD pair flows

from the set𝑊𝑈;
k𝑈: k𝑈 ≡ (. . . , V𝑈

𝑎−1
, V𝑈
𝑎
, V𝑈
𝑎+1
, . . .);

V𝑘
𝑎
: the flow of link 𝑎 arising out of the OD flows from

the set𝑊𝑘, 𝑘 ∈ 𝐾;
k𝐾
𝑎
: k𝐾
𝑎
≡ (. . . , V𝑘−1

𝑎
, V𝑘
𝑎
, V𝑘+1
𝑎
, . . .);

k𝑘: k𝑘 ≡ (. . . , V𝑘
𝑎−1
, V𝑘
𝑎
, V𝑘
𝑎+1
, . . .);

k𝐾: k𝐾 ≡ (. . . , k𝑘−1, k𝑘, k𝑘+1, . . .);
V𝐾
𝑎
: V𝐾
𝑎
= ∑
𝑘∈𝐾

V𝑘
𝑎
;

V
𝑎
: V
𝑎
= V𝑈
𝑎
+ V𝐾
𝑎
;

k
𝑎
: k
𝑎
≡ (V𝑈
𝑎
, k𝐾
𝑎
) ≡ (V𝑈

𝑎
, V1
𝑎
, . . . , V𝑘

𝑎
, . . .);

k: k ≡ (k𝑈, k𝐾);
𝑡
𝑎
(V
𝑎
): the average travel cost of traversing link 𝑎 ∈ 𝐴,

which is separable in link flows and is assumed to be
twice continuously differentiable, convex, and strictly
increasing function.

The feasible sets of link flows by the UE player and the
altruistic players can be defined as follows [6], respectively:

Ω
𝑈
= {k𝑈 | V𝑈

𝑎
= ∑

𝑤∈𝑊
𝑈

∑

𝑟∈𝑅𝑤

𝑓
𝑟𝑤
𝛿
𝑤

𝑎𝑟
, 𝑎 ∈ 𝐴;

∑

𝑟∈𝑅𝑤

𝑓
𝑟𝑤
= 𝑑
𝑤
; 𝑓
𝑟𝑤
≥ 0, 𝑟 ∈ 𝑅

𝑤
, 𝑤 ∈ 𝑊

𝑈
} ,

Ω
𝑘
=
{

{

{

k𝑘 | V𝑘
𝑎
= ∑

𝑤∈𝑊
𝑘

∑

𝑟∈𝑅𝑤

𝑓
𝑟𝑤
𝛿
𝑤

𝑎𝑟
, 𝑎 ∈ 𝐴;

∑

𝑟∈𝑅𝑤

𝑓
𝑟𝑤
= 𝑑
𝑤
; 𝑓
𝑟𝑤
≥ 0, 𝑟 ∈ 𝑅

𝑤
, 𝑤 ∈ 𝑊

𝑘
}

}

}

,

𝑘 ∈ 𝐾.

(1)

Based on the results of [21, 23], we propose the following
definitions for altruistic users.

Definition 1 (perceived link cost). The perceived cost of link 𝑎
is a linear combination of the actual andmarginal travel costs
of the link, given as follows:

𝑡
𝛽

𝑎
(k) = (1 − 𝛽) 𝑡𝑎 (V𝑎) + 𝛽 (V𝑎𝑡𝑎 (V𝑎))

= 𝑡
𝑎
(V
𝑎
) + 𝛽V

𝑎
𝑡


𝑎
(V
𝑎
) ,

(2)

where 𝛽 ∈ (0, 1] is the altruistic coefficient.
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Definition 2 (𝛽 altruistic user). Each 𝛽 altruistic user chooses
a path 𝑟 so as to minimize the following perceived route cost:

𝑡
𝛽

𝑟
(k) = ∑

𝑎∈𝑟

𝑡
𝛽

𝑎
(k) = ∑

𝑎∈𝑟

𝑡
𝑎
(V
𝑎
) + 𝛽∑

𝑎∈𝑟

V
𝑎
𝑡


𝑎
(V
𝑎
) . (3)

The users governed by UE player aim to minimize
their travel cost under the current routing decisions of the
altruistic players, which is equivalent to solve the following
optimization problem:

min
k𝑈∈Ω𝑈

∑

𝑎∈𝐴

∫

V𝑈
𝑎

0

𝑡
𝑎
(V𝐾
𝑎
+ 𝑥) d𝑥, (4)

where V𝐾
𝑎
is fixed for the optimization problem (4). Since

𝑡
𝑎
(V
𝑎
) is strictly increasing, theminimization problem (4) has

a unique solution.
The users governed by altruistic player 𝑘 ∈ 𝐾 aim

to minimize their perceived travel cost under the current
routing decisions of other players, which is equivalent to solve
the following optimization problem:

min
k𝑘∈Ω𝑘

∑

𝑎∈𝐴

∫

V𝑘
𝑎

0

𝑡
𝛽𝑘

𝑎
(V𝑈
𝑎
+ V−𝑘
𝑎
+ 𝑥) d𝑥, (5)

where V−𝑘
𝑎
= ∑
𝑖∈𝐾,𝑖 ̸= 𝑘

V𝑖
𝑎
, V𝑈
𝑎
and V−𝑘
𝑎

are fixed, and V𝑘
𝑎
is the

decision variable.Themonotonicity of 𝑡
𝑎
(V
𝑎
) ensures that the

minimization problem (5) has a unique solution.
If a link flow pattern simultaneously satisfies the opti-

mality conditions of the optimization problems (4) and (5),
then it is referred to as a UE-AP mixed equilibrium solution.
Given the fact that the feasible sets for each player are disjoint,
it is well known that the combination of the optimization
problems (4) and (5) can be formulated as a VI problem,
given as follows [25].

Lemma 3. A vector k = (k𝑈, k𝐾) ∈ Ω is an optimal solution
of the UE-AP mixed equilibrium of problems (4) and (5) if and
only if the vector k satisfies the following VI problem:

∑

𝑎∈𝐴

[𝑡
𝑎
(V
𝑎
) (V𝑈
𝑎
− V𝑈
𝑎
) + ∑

𝑘∈𝐾

𝑡
𝛽𝑘

𝑎
(V
𝑎
) (V𝑘
𝑎
− V𝑘
𝑎
)] ≥ 0, k ∈ Ω,

(6)

where V
𝑎
= V𝑈
𝑎
+ V𝐾
𝑎
= V𝑈
𝑎
+ ∑
𝑘∈𝐾

V𝑘
𝑎
, 𝑡𝛽𝑘
𝑎
(V
𝑎
) = 𝑡

𝑎
(V
𝑎
) +

𝛽
𝑘
V
𝑎
𝑡


𝑎
(V
𝑎
), and Ω = Ω𝑈 ×∏

𝑘∈𝐾
Ω
𝑘.

It is easy to know that both Ω𝑈 and Ω𝑘 are nonempty
compact convex set, and hence the feasible solution set Ω of
the VI problem (6) is a nonempty compact convex set. Since
𝑡
𝑎
(V
𝑎
) is also twice continuously differentiable, the solution

existence of the VI problem (6) can be guaranteed. The link
costs perceived by the UE player and altruistic players on link
𝑎 ∈ 𝐴 can be jointly defined as a vector, given as follows:

c
𝑎
(V𝑈
𝑎
, V𝐾
𝑎
) = (𝑡

𝑎
(V
𝑎
) , . . . , 𝑡

𝑎
(V
𝑎
) + 𝛽
𝑘
V
𝑎
𝑡


𝑎
(V
𝑎
) , . . .) ,

𝑘 ∈ 𝐾.

(7)

If c
𝑎
(V𝑈
𝑎
, V𝐾
𝑎
) is strictly monotone, then the solution

uniqueness of the VI problem (6) can be guaranteed [25].
Let k = (k𝑈, k𝐾) and k

𝐴
= (V
𝑎
), 𝑎 ∈ 𝐴, be an optimal

solution of the VI problem (6) and the vector of the aggregate
link flowof theUE-APmixed equilibrium, respectively.Then,
the total system travel cost can be expressed as follows:

𝑇 (k) = ∑
𝑎∈𝐴

𝑡
𝑎
(V
𝑎
) V
𝑎
= ∑

𝑎∈𝐴

𝑡
𝑎
(V
𝑎
) V𝑈
𝑎
+ ∑

𝑎∈𝐴

∑

𝑘∈𝐾

𝑡
𝑎
(V
𝑎
) V𝑘
𝑎
. (8)

Let kso = (kso,𝑈, kso,𝐾) and kso
𝐴
= (Vso
𝑎
), 𝑎 ∈ 𝐴, respectively,

be the optimal solution and the aggregate link flow of the
following optimization problem:

min
k∈Ω
∑

𝑎∈𝐴

𝑡
𝑎
(V
𝑎
) V
𝑎
. (9)

Since 𝑡
𝑎
(V
𝑎
) is strictly increasing and convex, the opti-

mization problem (9) has a unique solution in terms of
aggregate link flows kso

𝐴
. Note that the link flows Vso,𝑈

𝑎
and

Vso,𝑘
𝑎

, 𝑘 ∈ 𝐾, 𝑎 ∈ 𝐴, may not be unique, but Vso
𝑎
= Vso,𝑈
𝑎

+

∑
𝑘∈𝐾

Vso,𝑘
𝑎

is unique. Thus, the efficiency loss of the UE-AP
mixed equilibrium can be defined as follows:

𝜌 =
𝑇 (k)
𝑇 (kso)

=
∑
𝑎∈𝐴
𝑡
𝑎
(V
𝑎
) V
𝑎

∑
𝑎∈𝐴
𝑡
𝑎
(Vso
𝑎
) Vso
𝑎

, (10)

where 𝑇(kso)measures the minimum total system travel cost
and 𝑇(k) is the total system travel cost at the UE-AP mixed
equilibrium. Obviously, 𝜌 ≥ 1 holds. In the next section, we
will derive the upper bound of the value of 𝜌.

3. Bounding the Efficiency Loss of
the UE-AP Mixed Equilibrium

In this section, the following assumption is adopted for link
travel cost functions.

Assumption 4. The link travel cost function is polynomial and
has the following form:

𝑡
𝑎
(V
𝑎
) = 𝑡
𝑎 (0) + 𝛼𝑎(V𝑎)

𝑝
,

𝑎 ∈ 𝐴, 𝑡
𝑎 (0) ≥ 0, 𝛼𝑎 ≥ 0, 𝑝 ≥ 1.

(11)

Let kso = (kso,𝑈, kso,𝐾) be an optimal solution of the
optimization problem (9). Note that kso,𝑈 ∈ Ω𝑈, kso,𝑘 ∈ Ω𝑘,
𝑘 ∈ 𝐾. Substituting k = kso into the VI problem (6), we have

∑

𝑎∈𝐴

[𝑡
𝑎
(V
𝑎
) (Vso,𝑈
𝑎
− V𝑈
𝑎
) + ∑

𝑘∈𝐾

𝑡
𝛽𝑘

𝑎
(V
𝑎
) (Vso,𝑘
𝑎
− V𝑘
𝑎
)] ≥ 0.

(12)

Rearranging (12), we have

∑

𝑎∈𝐴

𝑡
𝑎
(V
𝑎
) V𝑈
𝑎
+ ∑

𝑎∈𝐴

∑

𝑘∈𝐾

𝑡
𝑎
(V
𝑎
) V𝑘
𝑎

≤ ∑

𝑎∈𝐴

𝑡
𝑎
(V
𝑎
) Vso,𝑈
𝑎
+ ∑

𝑎∈𝐴

∑

𝑘∈𝐾

𝑡
𝑎
(V
𝑎
) Vso,𝑘
𝑎

+ ∑

𝑎∈𝐴

∑

𝑘∈𝐾

𝛽
𝑘
V
𝑎
𝑡


𝑎
(V
𝑎
) (Vso,𝑘
𝑎
− V𝑘
𝑎
) .

(13)
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Thus,

𝑇 (k) ≤ 𝑇 (kso) + ∑
𝑎∈𝐴

Vso
𝑎
[𝑡
𝑎
(V
𝑎
) − 𝑡
𝑎
(Vso
𝑎
)]

+ ∑

𝑎∈𝐴

∑

𝑘∈𝐾

𝛽
𝑘
V
𝑎
𝑡


𝑎
(V
𝑎
) (Vso,𝑘
𝑎
− V𝑘
𝑎
)

≤ 𝑇 (kso) +max
k∈Ω

{∑

𝑎∈𝐴

Vso
𝑎
[𝑡
𝑎
(V
𝑎
) − 𝑡
𝑎
(Vso
𝑎
)]

+∑

𝑎∈𝐴

∑

𝑘∈𝐾

𝛽
𝑘
V
𝑎
𝑡


𝑎
(V
𝑎
) (Vso,𝑘
𝑎
− V𝑘
𝑎
)}

≤ 𝑇 (kso) +max
k≥0
{∑

𝑎∈𝐴

Vso
𝑎
[𝑡
𝑎
(V
𝑎
) − 𝑡
𝑎
(Vso
𝑎
)]

+∑

𝑎∈𝐴

∑

𝑘∈𝐾

𝛽
𝑘
V
𝑎
𝑡


𝑎
(V
𝑎
) (Vso,𝑘
𝑎
− V𝑘
𝑎
)} .

(14)

The last inequality of (14) is satisfied because the set {k |
k ≥ 0} includes the feasible solution setΩ.

Substituting (11) into (14), we have

𝑇 (k) ≤ 𝑇 (kso) +max
k≥0
{∑

𝑎∈𝐴

𝛼
𝑎
[(V
𝑎
)
𝑝
− (Vso
𝑎
)
𝑝
] Vso
𝑎

+ ∑

𝑎∈𝐴

𝛼
𝑎
𝑝(V
𝑎
)
𝑝
∑

𝑘∈𝐾

𝛽
𝑘
(Vso,𝑘
𝑎
− V𝑘
𝑎
)} .

(15)

The following nonlinear programming is developed to get
the upper bound of the second term on the right-hand side of
(15):

max
k𝑎≥0

{𝛼
𝑎
[(V
𝑎
)
𝑝
− (V
𝑎
)
𝑝
] V
𝑎
+ 𝛼
𝑎
𝑝(V
𝑎
)
𝑝
∑

𝑘∈𝐾

𝛽
𝑘
(V𝑘
𝑎
− V𝑘
𝑎
)} .

(16)

Define a function 𝐹(k
𝑎
) = 𝛼

𝑎
[(V
𝑎
)
𝑝
− (V
𝑎
)
𝑝
]V
𝑎
+

𝛼
𝑎
𝑝(V
𝑎
)
𝑝
∑
𝑘∈𝐾
𝛽
𝑘
(V𝑘
𝑎
− V𝑘
𝑎
). Since the Hessian matrix of 𝐹(k

𝑎
)

is negative semidefinite, 𝐹(k
𝑎
) is a concave function when

k
𝑎
≥ 0 and 𝑝 ≥ 1. Hence, any local optimal solutions of the

optimization problem (16) guarantee the global maximum
objective. Let𝜆𝑈

𝑎
and𝜆𝑘

𝑎
be the Lagrangemultiplies associated

with V𝑈
𝑎
≥ 0 and V𝑘

𝑎
≥ 0, 𝑘 ∈ 𝐾, 𝑎 ∈ 𝐴, respectively.

Then, we can get the first-order optimality conditions of the
optimization problem (16) as follows:

𝛼
𝑎
(V
𝑎
)
𝑝
− 𝛼
𝑎
(𝑝 + 1) (V

𝑎
)
𝑝
+ 𝜆
𝑈

𝑎
= 0, ∀𝑎 ∈ 𝐴, (17)

𝜆
𝑈

𝑎
≥ 0, 𝜆

𝑈

𝑎
V𝑈
𝑎
= 0, ∀𝑎 ∈ 𝐴, (18)

𝛼
𝑎
(V
𝑎
)
𝑝
− 𝛼
𝑎
(𝑝 + 1) (V

𝑎
)
𝑝
+ 𝛼
𝑎
𝑝𝛽
𝑘
(V
𝑎
)
𝑝
+ 𝜆
𝑘

𝑎
= 0,

∀𝑎 ∈ 𝐴, 𝑘 ∈ 𝐾,

(19)

𝜆
𝑘

𝑎
≥ 0, 𝜆

𝑘

𝑎
V𝑘
𝑎
= 0, ∀𝑎 ∈ 𝐴, 𝑘 ∈ 𝐾. (20)

Combining (17) with (18), we have V
𝑎
≥ (1/(1 + 𝑝))

1/𝑝V
𝑎
.

For each given link, we can find that the optimization
problem (16) can reach its maximum if one and only one of
the following two conditions is satisfied:

V
𝑎
= (

1

1 + 𝑝
)

1/𝑝

V
𝑎
, (21)

V
𝑎
> (

1

1 + 𝑝
)

1/𝑝

V
𝑎
. (22)

If condition (21) is satisfied, (17) and (18) imply 𝜆𝑈
𝑎
= 0

and V𝑈
𝑎
≥ 0. Substituting (21) into (19), we have

𝛼
𝑎
𝑝𝛽
𝑘
(V
𝑎
)
𝑝
+ 𝜆
𝑘

𝑎
= 0, 𝑘 ∈ 𝐾. (23)

Since all parameters in (23) are nonnegative, we have 𝜆𝑘
𝑎
=

0, 𝑘 ∈ 𝐾, and at least one of the three parameters V
𝑎
, 𝛼
𝑎
, and

𝛽
𝑘
should be zero. If V

𝑎
= 0, then (21) implies V

𝑎
= 0, and

hence 𝐹(v
𝑎
) = 0. If 𝛼

𝑎
= 0, then the travel cost is a constant,

and we also have 𝐹(k
𝑎
) = 0. If 𝛽

𝑘
= 0, according to (16), we

have

max
k𝑎≥0

{𝛼
𝑎
[(V
𝑎
)
𝑝
− (V
𝑎
)
𝑝
] V
𝑎
+ 𝛼
𝑎
𝑝(V
𝑎
)
𝑝
∑

𝑘∈𝐾

𝛽
𝑘
(V𝑘
𝑎
− V𝑘
𝑎
)}

= 𝛼
𝑎
{(V
𝑎
)
𝑝
− [(

1

1 + 𝑝
)

1/𝑝

V
𝑎
]

𝑝

}(
1

1 + 𝑝
)

1/𝑝

V
𝑎

= 𝛼
𝑎
(
𝑝

1 + 𝑝
)(

1

1 + 𝑝
)

1/𝑝

(V
𝑎
)
𝑝+1

≤ (
𝑝

1 + 𝑝
)(

1

1 + 𝑝
)

1/𝑝

𝑡
𝑎
(V
𝑎
) V
𝑎
.

(24)

The last inequality of (24) follows the fact that 𝑡
𝑎
(0) ≥ 0, for

all 𝑎 ∈ 𝐴.
If (22) holds, referring to (17) and (18), we have 𝜆𝑈

𝑎
> 0

and V𝑈
𝑎
= 0. Hence, (19) implies that 𝜆𝑘1

𝑎
< 𝜆
𝑘2
𝑎
if 𝛽
𝑘1
> 𝛽
𝑘2
.

According to (20), we further have V𝑘1
𝑎
≥ V𝑘2
𝑎
= 0. Let 𝛽

𝑘

and𝛽
�̃�
be themaximumandminimumaltruism coefficient of

altruistic player that has positive flow on link 𝑎, respectively.
Since V𝑈

𝑎
= 0 and V

𝑎
= V𝑈
𝑎
+ ∑
𝑘∈𝐾

V𝑘
𝑎
, (19) implies V

𝑎
= V𝑘
𝑎
=

((1 + 𝑝𝛽
𝑘
)/(1 + 𝑝))

1/𝑝V
𝑎
. Therefore, we have

max
k𝑎≥0

{𝛼
𝑎
[(V
𝑎
)
𝑝
− (V
𝑎
)
𝑝
] V
𝑎
+ 𝛼
𝑎
𝑝(V
𝑎
)
𝑝
∑

𝑘∈𝐾

𝛽
𝑘
(V𝑘
𝑎
− V𝑘
𝑎
)}

= 𝛼
𝑎
(1 − 𝛽

𝑘
) (

𝑝

1 + 𝑝
)(
1 + 𝑝𝛽

𝑘

1 + 𝑝
)

1/𝑝

(V
𝑎
)
𝑝+1

+ 𝛼
𝑎
𝑝𝛽
𝑘
[(
1 + 𝑝𝛽

𝑘

1 + 𝑝
)

1/𝑝

− 𝛾
𝑎
] (V
𝑎
)
𝑝+1

− 𝛼
𝑎
𝑝(V
𝑎
)
𝑝
∑

𝑘∈𝐾,𝑘 ̸= 𝑘

𝛽
𝑘
V𝑘
𝑎
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≤ 𝛼
𝑎
(1 − 𝛽

𝑘
) (

𝑝

1 + 𝑝
)(
1 + 𝑝𝛽

𝑘

1 + 𝑝
)

1/𝑝

(V
𝑎
)
𝑝+1

+ 𝛼
𝑎
𝑝𝛽
𝑘
[(
1 + 𝑝𝛽

𝑘

1 + 𝑝
)

1/𝑝

− 𝛾
𝑎
] (V
𝑎
)
𝑝+1

− 𝛼
𝑎
𝑝𝛽
�̃�
(V
𝑎
)
𝑝
∑

𝑘∈𝐾,𝑘 ̸= 𝑘

V𝑘
𝑎

= 𝛼
𝑎
(1 − 𝛽

𝑘
) (

𝑝

1 + 𝑝
)(
1 + 𝑝𝛽

𝑘

1 + 𝑝
)

1/𝑝

(V
𝑎
)
𝑝+1

+ 𝛼
𝑎
𝑝𝛽
𝑘
[(
1 + 𝑝𝛽

𝑘

1 + 𝑝
)

1/𝑝

− 𝛾
𝑎
] (V
𝑎
)
𝑝+1

− 𝛼
𝑎
𝑝𝛽
�̃�
(1 − 𝛾

𝑎
− 𝜅
𝑎
) (V
𝑎
)
𝑝+1

= 𝛼
𝑎
𝜍
𝑎
(V
𝑎
)
𝑝+1
≤ 𝜍
𝑎
𝑡
𝑎
(V
𝑎
) V
𝑎
,

(25)

where 𝛾
𝑎
= V𝑘
𝑎
/V
𝑎
, 𝜅
𝑎
= V𝑈
𝑎
/V
𝑎
for 𝑎 ∈ 𝐴 with 0 ≤ 𝛾

𝑎
≤ 1,

0 ≤ 𝜅
𝑎
≤ 1, 0 ≤ 𝛾

𝑎
+ 𝜅
𝑎
≤ 1, and

𝜍
𝑎
= (1 − 𝛽

𝑘
) (

𝑝

1 + 𝑝
)(
1 + 𝑝𝛽

𝑘

1 + 𝑝
)

1/𝑝

+ 𝑝𝛽
𝑘
[(
1 + 𝑝𝛽

𝑘

1 + 𝑝
)

1/𝑝

− 𝛾
𝑎
] − 𝑝𝛽

�̃�
(1 − 𝛾

𝑎
− 𝜅
𝑎
) .

(26)

The last inequality of (25) follows the fact that 𝑡
𝑎
(0) ≥ 0,

𝑎 ∈ 𝐴. If V
𝑎
= 0, then V

𝑎
= 0 and 𝐹(v

𝑎
) = 0. In this case, we

have 𝜍
𝑎
= 0.

Then, (24) or (25) is satisfied when the objective of the
optimization problem (16) achieved its maximum value. Let

𝜉
𝑎
= max{(

𝑝

1 + 𝑝
)(

1

1 + 𝑝
)

1/𝑝

, 𝜍
𝑎
} , (27)

𝜉 = max
𝑎∈𝐴

𝜉
𝑎
. (28)

Then, (15) can be rewritten as follows:

𝑇 (k) ≤ 𝑇 (kso) + 𝜉𝑇 (k) . (29)

Based on the above analysis, we have the following
theorem.

Theorem 5. Under Assumption 4, let k = (k𝑈, k𝐾) ∈ Ω

be an optimal solution of the VI problem (6) and let k so
=

(kso,𝑈, kso,𝐾) ∈ Ω be an optimal solution of the optimization
problem (9). Then, the efficiency loss of the UE-AP mixed
equilibrium satisfies 𝜌 ≤ 1/(1 − 𝜉), where 𝜉 is defined by (26)–
(28).

If there is only UE player in the network, that is, all
users in the network are selfish, then only (24) is satisfied
when the optimization problem (16) reaches its maximum.

2

2

1

1

3
3

4

4

5

Figure 1: The network used in the example.

The efficiency loss of the equilibrium immediately follows
𝜌 ≤ [1 − (𝑝/(1 + 𝑝))(1/(1 + 𝑝))

1/𝑝
]
−1

, which is consistent
with the result in [12]. When the network only has altruistic
players, then, only (25) is satisfied when the optimization
problem (16) reaches its maximum. If 𝜅

𝑎
= 0 is satisfied for

all 𝑎 ∈ 𝐴, we can obtain that the efficiency loss of altruistic
players is 𝜌 ≤ 1/(1 − 𝜓), where 𝜓 = max

𝑎∈𝐴
{𝜍
𝑎
}, and

𝜍
𝑎
= (1 − 𝛽

𝑘
) (

𝑝

1 + 𝑝
)(
1 + 𝑝𝛽

𝑘

1 + 𝑝
)

1/𝑝

+ 𝑝𝛽
𝑘
[(
1 + 𝑝𝛽

𝑘

1 + 𝑝
)

1/𝑝

− 𝛾
𝑎
] − 𝑝𝛽

�̃�
(1 − 𝛾

𝑎
) .

(30)

If 𝛽
𝑘
= 1 for all 𝑘 ∈ 𝐾, we have 𝛾

𝑎
= 1. This implies that

𝜍
𝑎
= 0 and 𝜓 = 0. Then, 𝜌 = 1; that is, there are no efficiency

loss if all players are perfectly altruistic.

4. Numerical Example

We developed a numerical example using the network pre-
sented in Figure 1, which consists of 4 nodes and 5 links. The
link travel cost functions are 𝑡

1
= 1.8, 𝑡

2
= 0.1V

2
, 𝑡
3
= V
3
,

𝑡
4
= 0.1V

4
, and 𝑡

5
= 2.7. There are two OD pairs (1, 4) and (2,

4) with fixed demands 𝑑
14
= 1 and 𝑑

24
= 1, respectively.

We can obtain that the optimal SO link flow solution of
the optimization problem (9) is kso = [1, 0, 1, 1, 0] and the
total travel cost is 2.9.The following two cases were examined.

Case A. OD pair (1, 4) is controlled by a UE player (denoted
by “U”), andODpair (2, 4) is controlled by an altruism player
(denoted by “𝛽”); the altruism coefficient 𝛽 = 0.5.

Case B. The two OD pairs are controlled by altruism player,
but the altruism coefficient is different. The OD pair (1,
4) is controlled by altruistic player “𝛽

1
” and the altruism

coefficient 𝛽
1
= 0.2, and OD pair (2, 4) is controlled by

altruistic player “𝛽
2
” and the altruism coefficient 𝛽

2
= 0.7.
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For case A, the UE-AP mixed equilibrium solution is
given as follows:

V𝑈
1
= 0.1429, V𝑈

2
= 0.8571,

V𝑈
3
= 0.8571, V𝑈

4
= 0, V𝑈

5
= 0,

V𝛽
1
= 0, V𝛽

2
= 0, V𝛽

3
= 0.8571,

V𝛽
4
= 0.8571, V𝛽

5
= 0.1429.

(31)

The aggregate link flow is V
1
= 0.1429, V

2
= 0.8571, V

3
=

1.7142, V
4
= 0.8571, and V

5
= 0.1429, which generates the

system’s total travel cost that is 3.7285.Thus, the efficiency loss
is 1.2857. Using (26)–(28), we can obtain 𝜉 = 0.3125 and the
upper bound of efficiency loss 𝜌 ≤ (1 − 𝜉)−1 = 1.4545. This
result is consistent withTheorem 5.

For case B, the UE-AP mixed equilibrium solution is
given as follows:

V𝛽1
1
= 0.5455, V𝛽1

2
= 0.4545,

V𝛽1
3
= 0.4545, V𝛽1

4
= 0, V𝛽1

5
= 0,

V𝛽2
1
= 0, V𝛽2

2
= 0,

V𝛽2
3
= 1, V𝛽2

4
= 1, V𝛽2

5
= 0.

(32)

The aggregate link flow is V
1
= 0.5455, V

2
= 0.4545, V

3
=

1.4545, V
4
= 1, and V

5
= 0, which generates the total system

travel cost of 3.2181. Thus, the efficiency loss is 1.1097. Using
(30), we have 𝜓 = 0.1787 and the upper bound of efficiency
loss 𝜌 ≤ (1 − 𝜓)−1 = 1.2176. The result is also consistent with
Theorem 5.

5. Conclusion

In this paper, the UE-AP mixed traffic assignment problem
was proposed and formulated as a VI problem. We assumed
that there are two categories of players in the network: the
UE player and altruistic players. The former only has the
selfish users, each of the later controls the altruistic users who
have the same altruism coefficient. The efficiency loss of the
mixed traffic equilibrium under the polynomial cost function
was analytically developed. We found that the upper bounds
of the UE-AP are independent with network topology but
depend on the degree of the link travel cost functions and
the maximum andminimum altruism coefficient.The results
also show that the efficiency losses in existing literatures are
special cases of our model. In the future, we will investigate
the efficiency loss of the UE-AP mixed equilibrium with
elastic demand.
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