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Compared with the conventional probabilistic mean-variance methodology, fuzzy number can better describe an uncertain
environment with vagueness and ambiguity. In this paper, we discuss a portfolio adjusting problem under the assumption that the
returns of risky assets are fuzzy numbers and there exist general transaction costs in portfolio adjusting process. In the proposed
model, we take the first possibilistic moment about zero of a portfolio as the investment return and the second possibilistic moment
about the possibilistic mean value of the portfolio as the investment risk. To solve the proposed model, a modified artificial bee
colony (ABC) algorithm is developed for calculating the optimal portfolio adjusting strategy. Finally, a numerical example is given
to illustrate the effectiveness of the proposed model and approach.

1. Introduction

The mean-variance methodology for the portfolio selection
problem, proposed originally by Markowitz [1], has played
an important role in the development of modern portfolio
selection theory. In Markowitz’s pioneer work, he combined
probability theory with optimization tool to study the invest-
ment behavior under uncertainty. The key principle of the
mean-variance model is to take the expected return of a
portfolio as the investment return and to take the variance
of the expected return of a portfolio as the investment risk.
Following Markowitz’s work, many scholars have studied
portfolio selection models, such as Best and Hlouskova [2],
Alexander and Baptista [3], Jacobs et al. [4], and Yu and Lee
[5].The basic assumption for usingMarkowitz’s model is that
the future state of the assets can be correctly reflected by
asset data in the past. However, this assumption can rarely
be satisfied in the ever-changing real asset markets. With the
introduction of fuzzy set theory [6] and possibility theory [7],
a number of researchers began to employ these theories to
study portfolio selection problems in a fuzzy environment.
For example, Inuiguchi and Tanino [8] introduced a novel
possibilistic programming approach to the portfolio selection

problem based on the minimax regret criterion. Carlsson et
al. [9] introduced a possibilistic approach to the selection
of portfolios with highest utility score. Zhang and Nie [10]
introduced the admissible efficient portfolio model under
the assumption that the expected returns and risks of assets
have admissible errors. Vercher et al. [11] presented a fuzzy
downside risk approach for managing portfolio problems in
the framework of risk-return trade-off using interval-valued
expectations. Gupta et al. [12] applied multicriteria decision
making via fuzzy mathematical programming to develop
comprehensive models of asset portfolio optimization for the
investors’ pursuing either of the aggressive or conservative
strategies. Recently, Chen et al. [13] presented a possibilistic
portfolio selection model with different interest rates for
borrowing and lending. Tsaur [14] developed a fuzzy port-
folio model that focuses on different investor risk attitudes.
Zhang et al. [15] presented a possibilisticmean-semivariance-
entropy model for multiperiod portfolio selection which
takes into account four criteria, namely, return, risk, trans-
action cost, and diversification degree of portfolio. Barak et
al. [16] proposed a mean-variance-skewness fuzzy portfolio
model with cardinality constraint and by considering the
fuzzy chance constraint to measure portfolio liquidity.
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Transaction cost is an important factor considered by
investors in financial markets. Most of the cases, investors
usually start with an existing portfolio and the decisions
are how to readjust to the changes in the security market.
This adjustment entails both purchases and sales of securities
along with transaction costs. Arnott and Wagner [17] found
that ignoring transaction costs would result in inefficient
portfolio. Recently, several studies have dealt with the portfo-
lio selection problemunder consideration of different types of
transaction costs. For example, Mao [18], Morton and Pliska
[19], Best and Hlouskova [20], and Lobo et al. [21] studied
portfolio optimization problem with fixed transaction costs.
Konno and Wijayanayake [22] discussed portfolio selection
problem under concave transaction costs andminimal trans-
action unit constraints. Later, they [23] presented a portfolio
selection model under nonconvex transaction costs and
minimal transaction unit constraints. Zhang et al. [24] dealt
with the portfolio selection problem with general transaction
costs under the assumption that the returns of assets obey
LR-type possibility distributions. However, when complex
types of transaction costs are considered, it would be more
difficult to obtain the efficient portfolios by using traditional
optimization algorithms. Therefore, many scholars applied
heuristic algorithm for complex portfolio optimization prob-
lems. For example, Chang et al. [25] used three heuristic
algorithms based on genetic algorithm (GA), tabu search
(TS), and simulated annealing (SA) for the standard M-V
model including cardinality and quantity constraints. Crama
and Schyns [26] applied SA to the solution of a complex port-
folio selection model with realistic constraints. Fernández
and Gómez [27] applied artificial neural networks (NN) to
trace out the efficient frontier associated with the standard
Markowitz mean-variance model with additional cardinal-
ity and bounding constraints. Yu et al. [28] proposed an
improved radial basis function (RBF) network-based portfo-
lio selection model to realize mean-variance-skewness trade-
off. In 2009, Cura [29] utilized particle swarm optimization
(PSO) to solve portfolio optimization problems. Later, Chen
andZhang [30] applied PSOalgorithm to solve the admissible
portfolio selection problemwith transaction costs. Krink and
Paterlini [31] developed an improved differential evolution
(DE) formultiobjective portfolio optimization and compared
the proposed algorithm with quadratic programming and
the NSGA-II algorithm. Bermúdez et al. [32] introduced a
multiobjective GA for cardinality constrained fuzzy portfolio
selection.

The purpose of this paper is to discuss the portfolio
adjusting problem with transaction costs under the assump-
tions that the uncertain returns of assets in financial markets
are fuzzy numbers.Wepropose a possibilistic portfoliomodel
with general transaction costs, in which the first possibilistic
moment about zero of a portfolio is used to measure the
investment return, and the second possibilistic moment
about the possibilistic mean value of the portfolio is used to
measure the investment risk. Moreover, we notice that the
artificial bee colony (ABC) algorithm proposed by Karaboga
[33] is a relatively new algorithm, and numerical comparisons
demonstrated that the performance of ABC algorithm is
competitive to other population-based algorithms such as

genetic algorithm (GA), differential evolution (DE), particle
swarm optimization (PSO), and evolutionary algorithm (EA)
[34–36]. Due to its simplicity and ease of implementation,
ABC algorithm has captured much attention and has been
applied to solve many practical optimization problems, such
as vehicle routing problem [37], image registration [38],
and flowshop scheduling problem [39]. Based on the above
discussion, in this paper, a modified ABC algorithm is
developed to solve complex portfolio selection problem.

The rest of the paper is organized as follows. In Section 2,
we introduce the definitions of the possibilistic moments
and some properties. Section 3 presents a portfolio selection
model with general transaction costs under the assumption
that the returns of assets are trapezoidal fuzzy variables.
To solve the proposed portfolio optimization problem, a
modifiedABCalgorithm is described in Section 4. Anumeral
example is given to illustrate the effectiveness of the proposed
models and algorithm in Section 5. Finally, some concluding
remarks are given in Section 6.

2. Preliminaries

Let us introduce some definitions which are needed in the
following section. A fuzzy number 𝐴 is a fuzzy set of the
real line R with a normal, fuzzy convex, and continuous
membership function of bounder support. The family of
fuzzy numbers is denoted by F. Moreover, a function
𝑓 : [0, 1] → R is said to be a weighting function if
𝑓 is a nonnegative, monotone increasing and satisfies the
normalization condition ∫1

0
𝑓(𝛾)𝑑𝛾 = 1.

Definition 1 (Fullér and Majlender [40]). Let [𝐴]𝛾 = [𝑎
1
(𝛾),

𝑎
2
(𝛾)] be a fuzzy number and let𝑓(𝛾) be a weighted function.

Then 𝑓-weighted lower possibilistic and upper possibilistic
mean values and possibilistic mean of 𝐴 are defined as
follows:

𝑀
−

𝑓
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0
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(𝛾) 𝑓 (𝛾) 𝑑𝛾,

𝑀
+

𝑓
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(1)

Remark 2. The 𝑓-weighted possibilistic mean of 𝐴 is the
arithmeticmean of its𝑓-weighted lower and upper possibilis-
tic mean values; that is,
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Remark 3. If 𝑓(𝛾) = 2𝛾, then,
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That is, the 𝑓-weighted possibilistic mean value can be con-
sidered as a generalization of possibilistic mean value intro-
duced by Carlsson and Fullér [41].

Definition 4 (Saeidifar and Pasha [42]). Let [𝐴]𝛾 = [𝑎
1
(𝛾),

𝑎
2
(𝛾)] be a fuzzy number and let𝑓(𝛾) be a weighted function.

Then the 𝑘th weighted double possibilistic moment of fuzzy
number 𝐴 about points𝑀−

𝑓
(𝐴),𝑀+

𝑓
(𝐴) is defined as follows:

𝜇
(𝑀
−
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𝑘
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2
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] 𝑑𝛾, 𝑘 = 1, 2, . . . .

(4)

Specifically, if 𝑓(𝛾) = 2𝛾, then the 𝑘th possibilistic
moment about the possibilistic mean value of fuzzy number
𝐴 is

𝜇
𝑘
(𝐴) = ∫

1

0

𝛾 [(𝑎
1
(𝛾) −𝑀 (𝐴))
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2
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𝑘

] ,
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(5)

Definition 5 (Saeidifar and Pasha [42]). Let [𝐴]
𝛾

=

[𝑎
1
(𝛾), 𝑎
2
(𝛾)] be a fuzzy number. Then the 𝑘th possibilistic

moment about zero of a fuzzy number𝐴 is defined as follows:

𝜇


𝑘
(𝐴) = ∫

1

0
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1
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𝑘

+ (𝑎
2
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Furthermore, Saeidifar and Pasha [42] defined the first
possibilistic moment as the crisp possibilistic mean value and
the second possibilistic moment as the possibilistic variance
of fuzzy number 𝐴, where

𝑀(𝐴) = 𝜇
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] ,

(7)

which are consistent with the definitions introduced by
Carlsson and Fullér [41].

It is straightforward to show the following formula:

𝜇
2
(𝐴) = 𝜇



2
(𝐴) − (𝜇



1
(𝐴))
2

. (8)

The variance of 𝐴 is defined as the expected value of
the squared deviations between the arithmetic mean and the
endpoints of its level sets. The variance is always positive and
a measure of dispersion or spread of the fuzzy number. In the
physical interpretation of the variance, it gives themoment of
inertia of the mass distributed about the center of mass; also
the variance gives information about the spread of variables
around the mean value and it is a very important factor to
find out the fluctuations in the observed values (for more see
[41, 42]).

3. Portfolio Rebalancing Model

In this paper, we suppose that an investor starts with an
existing portfolio and considers reallocate his/her wealth
among 𝑛 risky assets. In order to describe conveniently, we
use the following notations:

𝑥
𝑖
: the proportion invested in asset 𝑖;

𝑟
𝑖
: the random return rate of asset 𝑖;
𝜎
𝑖𝑗
: the covariance between assets 𝑖 and 𝑗;

𝑢
𝑖
: the upper bound constraint on asset 𝑖;

𝑖, 𝑗 = 1, 2, . . . , 𝑛.

Following Markowitz’s idea, we quantify investment
return by the expected value of a portfolio and risk by the
variance. A rational investor may be interested in obtaining
a certain average return from the portfolio at a minimum
risk.Thus, a portfolio selection problem in themean-variance
context can be written as

min
𝑛

∑
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𝑛
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𝑥
𝑖
𝑥
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∑

𝑖=1

𝐸 (𝑟
𝑖
) 𝑥
𝑖
= 𝑅
∗
,
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0 ≤ 𝑥
𝑖
≤ 𝑢
𝑖
, 𝑖 = 1, 2, . . . , 𝑛,

(9)

where 𝐸(𝑟
𝑖
) is the expected returns of asset 𝑖 and 𝑅∗ is the

desired mean return of the portfolio.
By solving the above optimization problem continuously

with a different 𝑅∗ each time, a set of efficient points is
traced out. This efficient set is called the efficient frontier
and is a curve that lies between the global minimum risk
portfolio and the maximum return portfolio. In other words,
the portfolio selection problem is to find all the efficient
portfolios along this frontier.

In order to enrich the model, a weighting parameter
𝜆 ( 0 ≤ 𝜆 ≤ 1) is introduced to reflect different investor
risk attitudes. With this new parameter, model (9) can be
described as follows:

max (1 − 𝜆)

𝑛
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𝐸 (𝑟
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) 𝑥
𝑖
− 𝜆
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𝑖
𝑥
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,
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𝑛
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𝑥
𝑖
= 1,

0 ≤ 𝑥
𝑖
≤ 𝑢
𝑖
, 𝑖 = 1, 2, . . . , 𝑛,

(10)

where the parameter 𝜆 can also be interpreted as the risk
aversion factor of the investor satisfying 0 ≤ 𝜆 ≤ 1.
Obviously, the greater the factor 𝜆 is, the more risk aversion
the investor has. Especially, when 𝜆 = 1, the investor will
be extremely conservative because in this case only the risk
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of his/her investment is considered and no attention is paid
to the returns of his/her investment. Conversely, 𝜆 = 0

means that the investor is extremely aggressive to pursue the
returns of his/her investment, completely ignoring the risk of
investment.

Transaction costs are inevitably present in practical appli-
cations of portfolio selection and can be used to capture a
number of costs such as brokerage fees, bid-ask spreads, taxes,
or even fund loads [21]. The transaction cost associated with
a portfolio x = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) is usually defined as the sum

of individual transaction costs on each asset:

𝐶 (𝑥) =

𝑛

∑

𝑖=1

𝐶
𝑖
(𝑥
𝑖
) , (11)

where 𝐶
𝑖
(𝑥
𝑖
) is the individual cost on the 𝑖th asset.

Therefore, the portfolio adjusting model with general
transaction cost can be expressed as

max (1 − 𝜆)

𝑛

∑
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[𝐸 (𝑟
𝑖
) 𝑥
𝑖
− 𝐶
𝑖
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𝑖
)] − 𝜆

𝑛
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𝑛
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,

s.t.
𝑛

∑
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𝑥
𝑖
= 1,

0 ≤ 𝑥
𝑖
≤ 𝑢
𝑖
, 𝑖 = 1, 2, . . . , 𝑛.

(12)

As discussed in Section 1, the returns of risky assets are in
a fuzzy uncertain economic environment and vary from time
to time; the future states of returns and risks of risky assets
cannot be predicted accurately. Meanwhile, investor can take
into account and complete his knowledge with other pieces
of information, such as economical and financial behaviors of
the companies, government policies, and business strategies.
This information can be estimated quantitatively by the
expert perceptions. Based on these factors, we consider the
portfolio selection problem (12) under the assumption that
the returns of assets are trapezoid fuzzy numbers.

Let 𝑟
𝑖
be a trapezoidal fuzzy number with tolerance

interval [𝑎
𝑖
, 𝑏
𝑖
], leftwidth𝛼

𝑖
, and right width𝛽

𝑖
, 𝑖 = 1, 2, . . . , 𝑛;

that is, 𝑟
𝑖
= (𝑎

𝑖
, 𝑏
𝑖
, 𝛼
𝑖
, 𝛽
𝑖
). 𝑟
𝑖
can be described with the

following membership function:

𝑟
𝑖
(𝑡) =

{{{{{{{{

{{{{{{{{
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𝑖
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𝑖
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𝑖
− 𝛼
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𝑖
,
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𝑖
≤ 𝑡 ≤ 𝑏

𝑖
,

1 −
𝑡 − 𝑏
𝑖

𝛽
𝑖

, if 𝑏
𝑖
≤ 𝑡 ≤ 𝑏

𝑖
+ 𝛽
𝑖
,

0, otherwise.

(13)

Then, a 𝛾-level sets of 𝑟
𝑖
can be computed as

[𝑟
𝑖
]
𝛾

= [𝑎
𝑖
− (1 − 𝛾) 𝛼

𝑖
, 𝑏
𝑖
+ (1 − 𝛾) 𝛽

𝑖
] , ∀𝛾 ∈ [0, 1] . (14)

Using Definitions 1 and 4 introduced in Section 2, we
easily obtain the crisp possibilistic mean value and the
possibilistic variance of 𝑟

𝑖
as follows:

𝑀(𝑟
𝑖
) = ∫

1

0

𝛾 [𝑎
𝑖
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6
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)
2
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,

(16)

respectively.
Furthermore, the crisp possibilistic mean value of the

return associated with the portfolio (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) after

paying transaction costs is easily obtained by

𝑀(𝑟) = 𝜇


1
(

𝑛

∑
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𝑖
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𝑛
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6
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𝑖
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and the possibilistic variance of return associated with the
portfolio (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) is given by
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𝑏
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1
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[

𝑛

∑
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𝑖
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𝑖
)𝑥
𝑖
]
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1
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𝑛

∑
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𝑖
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𝑖
)𝑥
𝑖
]

2

.

(18)

Analogous to Markowitz’s mean-variance methodology
for the portfolio selection problem, the crisp possibilistic
mean value corresponds to the return, while the possibilistic
variance corresponds to the risk. Thus, the possibilistic
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portfolio adjusting problem with transaction costs can be
formulated as

max (1 − 𝜆){

𝑛

∑

𝑖=1

(
𝑎
𝑖
+ 𝑏
𝑖

2
+
𝛽
𝑖
− 𝛼
𝑖
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𝑛
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𝑛
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𝑏
𝑖
− 𝑎
𝑖

2
+
𝛼
𝑖
+ 𝛽
𝑖
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𝑖
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𝑛
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𝑖
− 𝛽
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) 𝑥
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]

2

}

}

}

s.t.
𝑛

∑

𝑖=1

𝑥
𝑖
= 1,

0 ≤ 𝑥
𝑖
≤ 𝑢
𝑖
, 𝑖 = 1, 2, . . . , 𝑛.

(19)

It should be noted that, in this paper, we consider
four kinds of transaction costs, respectively, that is, concave
transaction cost, linear transaction cost, convex transaction
cost, and a general type of transaction cost, which are shown
as follows.

(i) The concave transaction cost function is

𝐶
1

𝑖
(𝑥
𝑖
) = 𝑓
1𝑖
ln (𝑥
𝑖
+ 1) . (20)

(ii) The fixed proportional (linear) transaction cost func-
tion is

𝐶
2

𝑖
(𝑥
𝑖
) = 𝑓
2𝑖
𝑥
𝑖
. (21)

(iii) The convex transaction cost function is

𝐶
3

𝑖
(𝑥
𝑖
) = 𝑓
3𝑖
(𝑒
𝑥
𝑖 − 1) . (22)

(iv) The no-convex-no-concave transaction cost function
is

𝐶
4

𝑖
(𝑥
𝑖
) =

{{

{{

{

𝑓
4𝑖
ln (𝑥
𝑖
+ 1) if 0 ≤ 𝑥

𝑖
≤ 𝑑
𝑖
,

𝑓
4𝑖
(𝑥
𝑖
+ 𝑔
1𝑖
) if 𝑑

𝑖
≤ 𝑥
𝑖
≤ ℎ
𝑖
,

𝑓
4𝑖
(𝑒
𝑥
𝑖 + 𝑔
2𝑖
) if 𝑥

𝑖
≥ ℎ
𝑖
,

(23)

where 𝑔
1𝑖
= ln(𝑑

𝑖
+ 1) − 𝑑

𝑖
and 𝑔

2𝑖
= ℎ
𝑖
+ 𝑔
1𝑖
− 𝑒
ℎ
𝑖 .

Remark 6. In the general type of transaction cost function
𝐶
4

𝑖
(𝑥
𝑖
), the unit transaction cost is relatively larger when

the amount of transaction is smaller and it decreases as the
amount increases. Hence it is a nondecreasing concave func-
tion up to 𝑑

𝑖
point. Because of the market impact effect, the

transaction cost becomes convex when the amount exceeds
ℎ
𝑖
point. Between 𝑑

𝑖
point and ℎ

𝑖
point, the transaction cost

is fixed proportional to the amount. It can be used to describe
the practical situation for the transaction cost precisely.

4. Modified Artificial Bee Colony Algorithm

4.1. Artificial Bee Colony Algorithm. Artificial bee colony
(ABC) algorithm is a relatively new algorithm developed by
Karaboga [33], which is based on simulating the intelligent
forging behavior of honey bee swarm. In ABC algorithm,
the colony of artificial bees consists of three groups of bees:
employed bees, onlooker bees, and scout bees. Employed bees
are responsible for exploiting the nectar sources explored
before and they give information to the other waiting bees in
the hive about the quality of the food source which they are
exploiting. Onlooker bees wait in the hive and establish food
source to exploit depending on the information shared by the
employed bees. Scouts search environment in order to find a
new food source.

In ABC algorithm, each food source is exploited by only
one employed bee. In other words, the number of employed
bees is equal to the number of food sources around the hive.
Moreover, the position of a food source represents a possible
solution to the optimization problem and the nectar amount
of a food source corresponds to the quality (fitness) of the
associated solution. The number of the employed bees or
the onlooker bees is equal to the number of solutions in the
population.

Initial Population. At the first step, the ABC generates a ran-
domly distributed initial population 𝑃 of SN solutions (food
source positions), where SN denotes the size of population.
Each solution𝑋

𝑖
(𝑖 = 1, 2, . . . , SN) is a𝐷-dimensional vector.

Here,𝐷 is the number of optimization parameters.
After initialization, the population of the positions (solu-

tions) is subject to repeated cycles, 𝐶 = 1, 2, . . . ,MCN, where
MCN is the maximum cycle number.The search processes of
employed bees, onlooker bees, and scout bees are described
as follows.

The Employed Bees Phase. An employed bee produces a
modification on the position (solution) in her memory
depending on the local information (visual information) and
tests the nectar amount (fitness value) of the new source (new
solution). Provided that the nectar amount of the new one is
higher than that of the previous one, the bee memorizes the
new position and forgets the old one. Otherwise she keeps the
position of the previous one in her memory. The expression,
which is used by an employed bee to produce a modification,
is given as follows:

V
𝑖,𝑗
= 𝑥
𝑖,𝑗
+ 𝜙
𝑖,𝑗
(𝑥
𝑖,𝑗
− 𝑥
𝑘,𝑗
) , (24)

where 𝑘 ∈ 1, 2, . . . , SN and 𝑗 ∈ 1, 2, . . . , 𝐷 are randomly
chosen indexes. Although 𝑘 is determined randomly, it has to
be different from 𝑖. 𝜙

𝑖𝑗
is a random number between [−1, 1].

The Onlooker Bees Phase. After all employed bees complete
the search process, they share the nectar information of
the food sources and their position information with the
onlooker bees on the dance area. Then, an onlooker bee
evaluates the nectar information taken from all employed
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bees and chooses a food source depending on the probability,
𝑝
𝑖
, associated with that food source:

𝑝
𝑖
=

fit
𝑖

∑
SN
𝑖=1

fit
𝑖

, (25)

where fit
𝑖
is the fitness value of the solution 𝑖 which is

proportional to the nectar amount of the food source in the
position 𝑖 and SN is the number of food sourceswhich is equal
to the number of employed bees.

The Scout Bees Phase. Any food source position that does not
improve the fitness value will be abandoned and replaced by a
newposition that is randomly determined by a scout bee.This
helps avoid suboptimal solutions. The new random position
chosen by the scout bee will be calculated from

𝑥
𝑖,𝑗
= 𝑥
𝑗

min + rand (0, 1) (𝑥𝑗max − 𝑥
𝑗

min) , (26)

where 𝑗 is determined randomly. It should be noticed that it
has to be different from 𝑖.

Based on the above discussions, we formally describe
the main steps of the standard ABC algorithm, given in
Algorithm 1.

4.2.ModifiedArtificial BeeColonyAlgorithm. Although some
researchers [34–36] have demonstrated that the performance
of the ABC algorithm is better than or similar to those
of other population-based algorithms with the advantage
of employing fewer control parameters, ABC also faces up
some insufficiencies. For example, ABC can get trapped in
local optima when solving complex multimodel function
optimization problems [36]. Recently, a few modified or
improved algorithms based on the classical ABC algorithm
are proposed. For example, Akay and Karaboga [43] intro-
duced amodified ABC algorithm and applied it for efficiently
solving real-parameter optimization problems. Alatas [44]
proposed chaotic bee colony algorithms for global numerical
optimization. Xiang and An [45] proposed an efficient and
robust artificial bee colony algorithm for numerical optimiza-
tion. Kalayci and Gupta [46] proposed an ABC algorithm for
a sequence-dependent disassembly line balancing problem
with multiple objectives and compared it with GA, PSO,
SA, TS, river formation dynamics (RFD), and ant colony
optimization (ACO). Tsai [47] integrated ABC algorithm
and bees’ algorithms (BA) into a hybrid ABC-BA algorithm
and conducted experiments on six constrained optimiza-
tion problems with equality or inequality constraints. These
modified or improved ABC algorithms have shown a better
performance than the classical ABC algorithm. In view of the
above, considering the complexity of the portfolio optimiza-
tion proposed, we present an improved ABC algorithm based
on chaotic theory to solve the problem.

Chaotic Initialization. Population initialization is a crucial
task in evolutionary algorithms. If no information about the
solution is available, then random initialization is the most
commonly used method to initialize the population. How-
ever, it may affect the convergence speed and the quality of

the final solution. Having the characteristics of the certainty,
ergodicity, and randomicity, the chaotic map is suitable to
initialize the population for the purpose of increasing the
population diversity and achieving high-quality solution.The
logistic map, which is well known, is given as follows:

𝑥
𝑛+1

= 𝜇 (1 − 𝑥
𝑛
) , (27)

where 𝜇 is a control parameter, 𝑥
𝑛
is a chaotic variable, and

𝑛 = 0, 1, 2, . . .. Obviously, 𝑥
𝑛
∈ (0, 1) under the conditions

that the initial 𝑥
0
∈ (0, 1). Especially, 𝑥

𝑛
behaves chaotic

dynamics when 𝜇 = 4 and 𝑥
0
∉ {0, 0.25, 0.5, 0.75, 1}. The

pseudocode of proposed chaotic initialization is given in
Algorithm 2.

AModified Search Equation. The employed bee and onlooker
bee produce a modification on the position in their memory
by using (24). However, the convergence performance is poor
in some cases.Therefore, here we proposed amodified search
equation, in which a forgetting factor and a neighborhood
factor are considered. It is given as follows:

V
𝑖,𝑗
= 𝜑𝑥
𝑖,𝑗
+ 𝜓𝜙
𝑖,𝑗
(𝑥
𝑖,𝑗
− 𝑥
𝑘,𝑗
) , (28)

where 𝜑 is the forgetting factor, which expresses the memory
strength for current food source when searching the next
food source. It dynamically decreases with the increase of
iterations. In addition, the differences of current food source
and neighbourhood food source also affect the convergence
speed. Thus, the neighborhood factor 𝜓 is introduced to
accelerate the convergence speed by adjusting the radius
of the search for new candidates. The parameters 𝜑 and 𝜓
dynamically change as follows:

𝜑 = 𝜔max −
iteration
MCN

(𝜔max − 𝜔min) ,

𝜓 = 𝜔min +
iteration
MCN

(𝜔max − 𝜔min) ,

(29)

where the value of 𝜔max and 𝜔min represent the maximum
and minimum percentage of the position adjustment for
employed bees and onlooker bees. Therefore, with these
selected values, the value of 𝜑 linearly decreases and the value
of 𝜓 linearly increases.

Chaotic Search for Scout Bees. To avoid the phenomenon of
stagnation and premature convergence in the standard ABC
algorithm, we employed chaotic search technique to get out
of local optimum and get better results.Therefore, the chaotic
search technique for scout bees is specifically illustrated in
Algorithm 3.

The Modified Algorithm. According to the analysis of the
standard ABC algorithm and the modification mentioned
above, it is clear that the modified ABC algorithm can be well
balanced between the exploration and exploitation.Naturally,
the modified ABC algorithm is given in Algorithm 4.

5. Numerical Example

In order to illustrate our proposed effective means and
approaches for the portfolio selection problem in this paper,
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(1) Initialize the population of solutions 𝑥
𝑖,𝑗
, 𝑖 = 1, . . . , SN, 𝑗 = 1, . . . , 𝐷

(2) Evaluate the population
(3) cycle = 1
(4) Repeat
(5) Produce new solutions V

𝑖,𝑗
for the employed bees by using (24) and evaluate them

(6) Apply the greedy selection process for the employed bees
(7) Calculate the probability values 𝑃

𝑖,𝑗
for the solutions 𝑥

𝑖,𝑗
by (25)

(8) Produce the new solutions V
𝑖,𝑗
for the onlookers from the solutions 𝑥

𝑖,𝑗
selected depending on 𝑃

𝑖,𝑗
and evaluate them

(9) Apply the greedy selection process for the onlooker bees
(10) Determine the abandoned solution for the scout, if exists, and replace it with a new

randomly produced solution 𝑥
𝑖,𝑗
by (26)

(11) Memorize the best solution achieved so far
(12) cycle = cycle + 1
(13) Until cycle = MCN

Algorithm 1: Standard ABC algorithm.

(1) Set population size SN and dimension of solution𝐷
//Randomly generate the initial value of chaotic variable 𝑐𝑥

𝑖,𝑗

(2) for 𝑗 = 1 to𝐷 do
(3) 𝑐𝑥

1,𝑗
= rand (0, 1)

(4) while 𝑐𝑥
1,𝑗
∈ {0, 0.25, 0.5, 0.75, 1} do

(5) 𝑐𝑥
1,𝑗
= rand (0, 1)

(6) end while
(7) end for

// The iterative process of chaotic initialization
(8) for 𝑖 = 1 to SN do
(9) for 𝑗 = 1 to𝐷 do
(10) 𝑥

𝑖,𝑗
= 𝑥
𝑗

min + 𝑐𝑥𝑖,𝑗 (𝑥
𝑗

max − 𝑥
𝑗

min)

(11) 𝑐𝑥
𝑖+1,𝑗

= 4𝑐𝑥
𝑖,𝑗
(1 − 𝑐𝑥

𝑖,𝑗
)

(12) end for
(13) end for

Algorithm 2: Chaotic initialization.

we give a numerical example. Consider a 4-security problem
with the following possibility distributions.

Now we use the possibilistic portfolio selection model
(19) proposed in this study to determine the future optimal
portfolio selection strategy.The rate of transaction costs for 4
securities is 𝑓

1𝑖
= 𝑓
2𝑖
= 𝑓
3𝑖
= 𝑓
4𝑖
= (0.03, 0.04, 0.045, 0.05),

the upper bound 𝜇
𝑖
= 0.8, and 𝑑

𝑖
= 0.2, ℎ

𝑖
= 0.35, 𝑖 =

1, 2, . . . , 4. Moreover, we let the maximum cycle MCN =

1500, the size of the population SN = 20, and the control
parameter limit = 100 (Table 1).

To demonstrate the effects of four kinds of transaction
costs on the portfolio selection, we let the risk tolerance
parameter 𝜆 = 0.1, 0.5, and 0.9, respectively. Some optimal
results obtained by using modified ABC algorithm for model
(19) are shown in Tables 2, 3, and 4. It should be noticed that
𝑈max is the objective value and TC is the total transaction
costs.

As is shown in Tables 2, 3, and 4, the total transaction
cost under concave function 𝐶1

𝑖
(𝑥
𝑖
) is the smallest among all

the transaction cost functions and the biggest under convex

Table 1: Possibility distributions of 4 securities.

𝑟
𝑖

𝑎
𝑖

𝑏
𝑖

𝛼
𝑖

𝛽
𝑖

𝑟
1

0.05 0.06 0.01 0.01
𝑟
2

0.06 0.065 0.02 0.005
𝑟
3

0.068 0.075 0.02 0.005
𝑟
4

0.065 0.07 0.015 0.03

function 𝐶
3

𝑖
(𝑥
𝑖
). This is because that concave transaction

cost 𝐶1
𝑖
(𝑥
𝑖
) has a decreasing slope, which means that the

more the amount of asset is allocated, the less transaction
cost increases, while the increasing derivative of convex
transaction cost 𝐶3

𝑖
(𝑥
𝑖
) will induce much more transaction

cost if the holding of asset becomes more. Moreover, for
concave transaction cost function 𝐶

1

𝑖
(𝑥
𝑖
) and the linear

transaction cost function 𝐶
2

𝑖
(𝑥
𝑖
), the portfolio proportions

are concentrated on certain securities. Oppositely, the convex
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(1) Set the maximum number of chaotic iteration max𝐾 = 100 and iterative variable 𝑘 = 1
// The variable 𝑐𝑥

𝑘,𝑗
denotes the 𝑗th chaotic variable in the 𝑘th iteration

(2) for 𝑗 = 1 to𝐷 do

(3) 𝑐𝑥
𝑘,𝑗
=

𝑥
𝑖,𝑗
− 𝑥
𝑗

min

𝑥
𝑗

max − 𝑥
𝑗

min
(4) end for

// The iterative process of chaotic search
(5) while 𝑘 < max𝐾 do
(6) for 𝑗 = 1 to𝐷 do
(7) 𝑐𝑥

𝑘+1,𝑗
= 4𝑐𝑥

𝑘,𝑗
(1 − 𝑐𝑥

𝑘,𝑗
)

// 𝑉 = [V
1
, . . . , V

𝐷
] represents a candidate solution

(8) V
𝑗
= 𝑥
𝑗

min + 𝑐𝑥𝑘+1,𝑗 (𝑥
𝑗

max − 𝑥
𝑗

min)

(9) end for
//Greedy selection is applied between {𝑉,𝑋

𝑖
}

(10) if 𝑓 (𝑉) > 𝑓 (𝑥
𝑖
)

(11) Replace solution𝑋
𝑖
with candidate solution 𝑉

(12) Set 𝑡𝑟𝑖𝑎𝑙 = 0
(13) Break
(14) else
(15) Set 𝑡𝑟𝑖𝑎𝑙(𝑖) = 𝑡𝑟𝑖𝑎𝑙(𝑖) + 1
(16) end if
(17) Set 𝑘 = 𝑘 + 1
(18) end while

Algorithm 3: Chaotic search for scout bees.

Table 2: Comparison results with different transaction costs with
𝜆 = 0.1.

𝐶
1

𝑖
(𝑥
𝑖
) 𝐶

2

𝑖
(𝑥
𝑖
) 𝐶

3

𝑖
(𝑥
𝑖
) 𝐶

4

𝑖
(𝑥
𝑖
)

𝑥
1

0 0.2 0.381 0.298
𝑥
2

0.2 0.8 0.261 0.298
𝑥
3

0.8 0 0.223 0.203
𝑥
4

0 0 0.135 0.201
𝑈max 0.0309 0.0225 0.0168 0.0239
TC 0.0328 0.0340 0.0430 0.0357

Table 3: Comparison results with different transaction costs with
𝜆 = 0.5.

𝐶
1

𝑖
(𝑥
𝑖
) 𝐶

2

𝑖
(𝑥
𝑖
) 𝐶

3

𝑖
(𝑥
𝑖
) 𝐶

4

𝑖
(𝑥
𝑖
)

𝑥
1

0.04 0.2 0.350 0.291
𝑥
2

0.18 0.8 0.305 0.308
𝑥
3

0.78 0 0.223 0.201
𝑥
4

0 0 0.122 0.200
𝑈max 0.0171 0.0125 0.0093 0.0133
TC 0.0328 0.0340 0.0429 0.0357

transaction cost function 𝐶
3

𝑖
(𝑥
𝑖
) and the no-convex-no-

concave transaction cost function 𝐶
4

𝑖
(𝑥
𝑖
) can decentralize

portfolio proportions, and 𝐶4
𝑖
(𝑥
𝑖
) do better than 𝐶3

𝑖
(𝑥
𝑖
). This

means that the general type of transaction cost 𝐶4
𝑖
(𝑥
𝑖
) can

better avoid the amount of each asset being too high or too
low. For example, Table 3 shows that the holding of asset 4
for transaction cost 𝐶1

𝑖
(𝑥
𝑖
) reaches to its lower bound with

Table 4: Comparison results with different transaction costs with
𝜆 = 0.9.

𝐶
1

𝑖
(𝑥
𝑖
) 𝐶

2

𝑖
(𝑥
𝑖
) 𝐶

3

𝑖
(𝑥
𝑖
) 𝐶

4

𝑖
(𝑥
𝑖
)

𝑥
1

0.200 0.193 0.372 0.272
𝑥
2

0 0.800 0.304 0.326
𝑥
3

0.8 0 0.201 0.203
𝑥
4

0 0.007 0.123 0.199
𝑈max 0.0034 0.0025 0.0018 0.0026
TC 0.0319 0.0341 0.0429 0.0358

𝑥
4
= 0 and the total transaction cost TC = 0.0328 is the

smallest. What is more, for linear transaction cost 𝐶2
𝑖
(𝑥
𝑖
),

the holding of assets 3 and 4 reaches their lower bound
with 𝑥

3
= 𝑥
4
= 0 and the total transaction cost TC =

0.0340 is bigger than that with𝐶1
𝑖
(𝑥
𝑖
). Comparing𝐶3

𝑖
(𝑥
𝑖
)with

𝐶
1

𝑖
(𝑥
𝑖
) and𝐶2

𝑖
(𝑥
𝑖
), the portfolio proportions are decentralized

and its total transaction cost TC = 0.0429 is the biggest.
Furthermore, for𝐶4

𝑖
(𝑥
𝑖
), the portfolio proportions are further

decentralized with proportions 𝑥
1
= 0.291, 𝑥

2
= 0.308,

𝑥
3
= 0.201, and 𝑥

4
= 0.200.

To show the effectiveness of the proposed algorithm,
modified ABC algorithm, ABC algorithm, and GA are com-
pared for 𝜆 = 0.5. Results are listed in Tables 5, 6, 7, and 8.
We can see that under the same transaction cost function,
the return obtained bymodified ABC algorithm is the biggest
among three algorithms and the risk obtained by modified
ABC algorithm is the smallest. It illustrates that the modified
ABC algorithm is competitive to ABC algorithm and GA.
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(1) Set population size SN, the number of maximum cycles MCN and the control parameter 𝑙𝑖𝑚𝑖𝑡
(2) Perform Algorithm 2 to fulfill the chaotic initialization of population 𝑥

𝑖
(𝑖 = 1, 2, . . . , SN), and calculate

their objective function values and fitness value values. Set 𝑡𝑟𝑖𝑎𝑙(𝑖) = 0(𝑖 = 1, 2, . . . , SN) and 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 1
(3) while iteration ≤ MCN do

// The employed bees phase
(4) for 𝑖 = 1 to SN do
(5) Produce a new candidate food source 𝑉

𝑖
corresponding to food source𝑋

𝑖
using (24)

(6) if (𝑓(𝑉
𝑖
) > 𝑓(𝑋

𝑖
)) Then 𝑡𝑟𝑖𝑎𝑙(𝑖) = 0

(7) else 𝑡𝑟𝑖𝑎𝑙(𝑖) = 𝑡𝑟𝑖𝑎𝑙(𝑖) + 1
(8) end if
(9) end for
(10) Calculate the fitness values of all food sources and the probability values 𝑝

𝑖
by using (15)

// The onlooker bees phase
(11) Set 𝑡 = 0, 𝑖 = 1
(12) while 𝑡 < SN do
(13) if 𝑟𝑎𝑛𝑑𝑜𝑚() < 𝑝

𝑖
then

(14) Set 𝑡 = 𝑡 + 1
(15) Produce a new candidate food source 𝑉

𝑖
for the onlooker bee corresponding to food source 𝑋

𝑖
using (24)

(16) if 𝑓(𝑉
𝑖
) > 𝑓(𝑋

𝑖
) then

(17) 𝑡𝑟𝑖𝑎𝑙(𝑖) = 0

(18) else 𝑡𝑟𝑖𝑎𝑙(𝑖) = 𝑡𝑟𝑖𝑎𝑙(𝑖) + 1
(19) end if
(20) end if
(21) Set 𝑖 = 𝑖 + 1
(22) if 𝑖 > SN then 𝑖 = 1
(23) end if
(24) end while

//The scout bees phase
(25) for 𝑖 = 1 to SN do
(26) if 𝑡𝑟𝑖𝑎𝑙(𝑖) > 𝑙𝑖𝑚𝑖𝑡 then
(27) Perform Algorithm 3 to implement chaotic search
(28) end if
(29) end for
(30) Set 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 + 1
(31) end while

Algorithm 4: Modified artificial bee colony algorithm.

Table 5: Comparison results of modified ABC, ABC, and GA with 𝐶1
𝑖
(𝑥
𝑖
).

𝑥
1

𝑥
2

𝑥
3

𝑥
4

Return Risk 𝑈max

Modified ABC 0.040 0.180 0.780 0 0.06721 6.7582𝐸 − 5 0.0154
ABC 0.002 0.190 0.800 0.008 0.06719 6.8011𝐸 − 5 0.0153
GA 0.023 0.172 0.800 0.005 0.06712 6.8135𝐸 − 5 0.0153

Table 6: Comparison results of modified ABC, ABC, and GA with 𝐶2
𝑖
(𝑥
𝑖
).

𝑥
1

𝑥
2

𝑥
3

𝑥
4

Return Risk 𝑈max

Modified ABC 0.200 0.800 0 0 0.059 5.9000𝐸 − 5 0.0125
ABC 0.200 0.800 0 0 0.059 5.9000𝐸 − 5 0.0125
GA 0.274 0.725 0 0.001 0.058 6.0220𝐸 − 5 0.0112

Table 7: Comparison results of modified ABC, ABC, and GA with 𝐶3
𝑖
(𝑥
𝑖
).

𝑥
1

𝑥
2

𝑥
3

𝑥
4

Return Risk 𝑈max

Modified ABC 0.339 0.306 0.221 0.134 0.06163 7.2276𝐸 − 5 0.0084
ABC 0.342 0.300 0.223 0.135 0.06154 7.3773𝐸 − 5 0.0083
GA 0.343 0.300 0.217 0.139 0.06160 7.2608𝐸 − 5 0.0083
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Table 8: Comparison results of modified ABC, ABC, and GA with 𝐶4
𝑖
(𝑥
𝑖
).

𝑥
1

𝑥
2

𝑥
3

𝑥
4

Return Risk 𝑈max

Modified ABC 0.274 0.326 0.201 0.199 0.06242 7.4372𝐸 − 6 0.0120
ABC 0.254 0.346 0.200 0.200 0.06222 7.4639𝐸 − 6 0.0119
GA 0.307 0.291 0.202 0.200 0.06228 7.5506𝐸 − 6 0.0119

Table 9: Relative error with 𝜆 = 0.4.

SN MCN Limit 𝑈max Relative error
10 1000 100 0.0159515 0.0357
20 1000 50 0.0159450 0.0765
20 1500 100 0.0159567 0.0031
20 2000 150 0.0159552 0.0125
30 1500 100 0.0159472 0.0627
30 1000 150 0.0159482 0.0564
40 1500 200 0.0159537 0.0219
50 2000 100 0.0159556 0.0100
60 1000 50 0.0159436 0.0852
70 1500 100 0.0159572 0

0 500 1000 1500
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Figure 1: Performance comparison of the modified ABC algorithm,
ABC algorithm, and GA.

Furthermore, in order to test the robustness of the pro-
posed algorithm,we solve the problem by setting the different
parameters in the modified ABC algorithm. We employ the
relative error which is defined by (maximal objective − actual
objective)/maximal objective ×100%, where the maximal
objective is the maximum of all the computational results
obtained and the actual objective is𝑈max. Here we choose 𝜆 =

0.4 and the no-convex-no-concave transaction cost function
𝐶
4

𝑖
(𝑥
𝑖
). The detailed results are shown in Table 9. The results

show that all the relative errors are less than 1%, whichmeans
that the modified ABC algorithm has strong robustness to
parameter variations and resistance disturbances.

Finally, in order to show that themodifiedABC algorithm
is more effective and has a faster convergence speed than
ABC algorithm and GA, the comparison of convergence
characteristic is given in Figure 1. It shows that the modified
ABC algorithm converges within 500 iterations, while ABC
algorithm and GA converge within 1000 iterations. What is
more, the global optimal value obtained by modified ABC
algorithm is the biggest. That is to say, the modified ABC
algorithm converges to the global optimal solution fastest and
is the most effective algorithm among the three algorithms to
solve complex portfolio problems.

6. Conclusion

Based on the possibilistic moments, this paper deals with a
fuzzy portfolio selection model under four kinds of trans-
action costs. Then modified ABC algorithm is applied to
solve the optimal problem. Furthermore, we get the portfolio
proportions for 4 securities under four kinds of transaction
costs. The results show that the portfolio proportions change
with different types of transaction costs. Finally, we compared
the results of modified ABC algorithm with that of ABC
algorithm and GA, which showed that the modified ABC
algorithm is better than ABC algorithm and GA in solving
fuzzy portfolio selection problem.
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