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A singlemachine predictive scheduling problem is considered.The primary objective is tominimize the total completion times.The
predictability of the schedule is measured by the completion time deviations between the predictive schedule and realized schedule.
The surrogate measure of predictability is chosen to evaluate the completion time deviations. Both of the primary objective and
predictability are optimized. In order to absorb the effects of disruptions, the predictive schedule is generated by inserting idle times.
Right-shift reschedulingmethod is used as the rescheduling strategy.Threemethods are designed to construct predictive schedules.
The computational experiments show that these algorithms provide high predictability with minor sacrifices in shop performance.

1. Introduction
Production scheduling is a decision making process which is
related to the allocation of resources to tasks on machines
for optimization of one or more scheduling objectives [1,
2]. It plays an important role in most manufacturing and
service systems [3–5]. In traditional scheduling problems,
uncertainties will not be considered [1, 6]. However, in real
cases, disruptions are inherently existent in every manufac-
turing environment. Examples of such disruptions include
machine breakdowns, new job arrivals, rush job arrivals,
jobs cancellation, processing time changes, due date changes,
and unavailability of raw materials or tools. Dealing with
these disruptions in themanufacturing environment is a very
important factor in the design of scheduling algorithms.

McKay et al. [7] classified uncertainties into three main
categories in practical manufacturing environment: (i) com-
plete unknowns, (ii) suspicions about the future, and (iii)
known uncertainties. Complete unknowns are those about
which no advance information is available. They are unpre-
dictable. Suspicions about the future originate from the
experience and intuition of the manager. Both of the two
types of uncertainties are difficult to incorporate into making
production plan. Known uncertainties mean that some infor-
mation is available when the predictive schedule is generated.
For instance, machine breakdowns belong to the known
uncertainties, and their occurrence and duration can be
described using probability distributions. A large number of

theoretical researches and practices indicate that there are lots
of parameters with exponential distributions in the industrial
production and the analysis of the reliability of equipment.
In this paper, we work on the same assumption that the
interval between two consecutive machine breakdowns is
exponentially distributed as in [4, 8–10].

As we know, machine breakdowns are common dis-
ruptions in manufacturing systems. In order to absorb the
machine breakdown disruptions’ effects, a predictive sched-
ule is generated in advance by inserting idle times in the
practical production system [11–13]. The scheduling process
is stated as follows. An initial schedule (called predictive
schedule) is generated according to themachine environment
and the information of the current orders. Then the predic-
tive schedule is executed. When the machine breakdowns
occur, the predictive schedule is modified to improve the
performance and reduce the impacts of the disruptions. The
finial schedule (called realized schedule) is obtained after
all the jobs have been processed. Generating a predictive
schedule without affecting planned activities, the difference
between the predictive schedule and realized schedule should
be controlled while maintaining high shop performance.

We briefly discuss some works related to predictive
scheduling problems. Mehta and Uzsoy [9] presented a
predictive scheduling method which inserted idle times
into the schedule. The scheduling problem was minimizing
maximum lateness in job shop environment with random
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machine breakdowns. The results showed that the predictive
scheduling improved the predictability significantly with
minor sacrifices in the performance. O’Donovan et al. [10]
considered a predictive scheduling problem of a single
machine to minimize total tardiness with stochastic machine
breakdowns. Similar to that in [9, 10], Mehta and Uzsoy
[4] constructed predictive scheduling of a single machine to
minimize maximum lateness with release times and machine
breakdowns. Liu et al. [8] considered a predictive scheduling
of a single machine to minimize the total weighted tardiness
with machine breakdowns.They provided a two-stage multi-
population genetic algorithm. In fact, the idle time inserting
methods of the predictive scheduling are generally two-
stage algorithms. An initial sequence is determined without
considering machine breakdowns in the first stage. The
predictive schedule is generated by inserting some amount of
idle times in the second stage. In this paper, we take the total
completion times as the objective. We construct predictive
schedules by using similar algorithms as in [4, 9, 10] but
introducing the new scheme which considers the feedback of
the idle times’ effects.

The remainder of this paper is organized as follows. In
Section 2, we present the problem formulation of the single
machine scheduling problem to minimize the total comple-
tion times. In Section 3, we provide some preliminaries of
the problem.We choose a surrogate measure of predictability
to evaluate the completion time deviations. In Section 4, we
provide three predictive schedule algorithms by inserting idle
times. In Section 5, extensive experiments are conducted to
compare the performance of the three algorithms. Finally, we
give a summary of the paper and a discussion of future work
in Section 6.

2. Problem Formulation and Notations

The problem is stated as follows. Let 𝑁 = {1, . . . , 𝑛} denote
the set of jobs to be processed on a single machine. We use
𝑝𝑗 to denote the processing time of job 𝑗, 𝑗 = 1, . . . , 𝑛.
The machine can process only one job at the same time
and the jobs are processed without preemption. Once the
processing of the job starts, the machine is occupied until
the process is completed. The machine is subject to random
breakdowns. The primary objective is to minimize the total
completion times. In this model, we should optimize not
only the primary objective, but also the total completion
time deviations between the predictive schedule and realized
schedule. Denote 𝑆𝑝 as the predictive schedule and 𝑆𝑟 as the
realized schedule. Let 𝐶𝑗(𝑆𝑝) denote the completion time
of job 𝑗 in predictive schedule 𝑆𝑝 and let 𝐶𝑗(𝑆𝑟) denote
the completion time of job 𝑗 in realized schedule 𝑆𝑟. We
define ∑

𝑛
𝑗=1 𝐶𝑗(𝑆𝑝) as the total completion times in the

predictive schedule 𝑆𝑝 and∑
𝑛
𝑗=1 𝐶𝑗(𝑆𝑟) as the total completion

times in the realized schedule 𝑆𝑟. Let 𝑆
0
𝑝 be a predictive

schedule to minimize the primary objective without machine
breakdowns and let 𝑆𝑝𝑝 be a predictive schedule by inserting
idle times.

3. Preliminaries
In this section, we develop a surrogatemeasure of predictabil-
ity, which will be used in subsequent sections.

Let the jobs be indexed in the order in which they appear
in the predictive schedule. We evaluate the predictability of a
predictive schedule 𝑆𝑝 by the total completion timedeviations
between the predictive schedule and realized schedule. It is
calculated as

𝑛

∑

𝑗=1

(𝐸𝑗 (𝑆𝑟) + 𝐷𝑗 (𝑆𝑟)) , (1)

where 𝐸𝑗(𝑆𝑟) = max{𝐶𝑗(𝑆𝑝) − 𝐶𝑗(𝑆𝑟), 0} and 𝐷𝑗(𝑆𝑟) =

max{𝐶𝑗(𝑆𝑟) − 𝐶𝑗(𝑆𝑝), 0} [9]. Lower value of total time
deviations means that the schedule has better predictability
performance. Hence, it can generate predictive schedule
with better predictability performance to minimize the total
completion time deviations. However, it is hard to optimize
predictability performance because of the random machine
breakdowns. Mehta and Uzsoy [9] presented five surrogate
measures of predictability to evaluate the completion time
deviations. According to computational experiments, they
showed that surrogate measure 𝑀5 provides significantly
higher correlation with the expected completion time devi-
ations than other measures. Therefore, we choose𝑀5 as the
surrogate measure of predictability. The surrogate measure
𝑀5 is defined as follows:

𝑀5𝑗 (𝑆𝑝) = max {𝐶𝑗 (𝑆
∗
𝑝) − 𝐶𝑗 (𝑆𝑝) , 0} , (2)

where 𝑆∗𝑝 is the schedule formed by increasing the processing
time of job 𝑗 by 𝑝𝑗(𝑅𝑚/𝜆ℎ) while maintaining the same
sequence with 𝑆𝑝, 𝜆ℎ is the mean rate at which machine
breakdowns occur, and 𝑅𝑚 is the mean repair duration.

Adiri et al. [3] and Lee and Liman [14] proved that
the single machine scheduling problem to minimize the
total completion times with a single breakdown under a
deterministic environment is NP-complete. Hence, the pre-
dictive scheduling to optimize the total completion times
and predictability with randommachine breakdowns is fairly
difficult to solve.

4. Heuristic Predictive Scheduling Methods
In this section, three heuristic predictive algorithms are
developed. In Section 4.1, an optimized surrogate measure
heuristic algorithm is designed to construct a predictive
schedule. In Section 4.2, a linear programming based heuris-
tic algorithm for the predictive schedule is provided. In
Section 4.3, a feedback algorithm is presented.

In order to maintain high predictability of the schedule
with minor sacrifices in primary objective performance,
we use the right-shift rescheduling (RSR) method after the
machine breakdowns occur. The right-shift rescheduling
method implies that the jobs’ starting time is right-shift to
the end of the machine breakdown, while keeping the job
sequence in the predictive schedule.

4.1. SPT-OSMH Algorithm. Mehta and Uzsoy [9] provided
an optimized surrogate measure heuristic (OSMH) for
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the predictive scheduling of a job shop to minimize the
maximum lateness. In the OSMH heuristic, a predictive
schedule is generated to minimize the primary objective
assuming no breakdowns. Then keep the same job sequence
and insert idle time into the schedule to minimize𝑀5 with-
out considering the effects on the primary objective. Using
the idea of OSMH, we design the SPT-OSMH algorithm for
the predictive scheduling on a singlemachine tominimize the
total completion times.The SPT-OSMH algorithm is given as
the follows.

Algorithm H1

Step 1. Generate the predictive schedule 𝑆
0
𝑝 to minimize

∑
𝑛
𝑗=1 𝐶𝑗 using shortest processing time first (SPT) rule assum-

ing no machine breakdowns.

Step 2. Calculate the jobs’ idle time 𝑖𝑑𝑗 = 𝑝𝑗(𝑅𝑚/𝜆ℎ).
Generate the predictive schedule 𝑆𝑝𝑝 by inserting the idle time
𝑖𝑑𝑗 into 𝑆

0
𝑝 while keeping the same job sequence as in 𝑆

0
𝑝,

𝑗 = 1, . . . , 𝑛.

Step 3. Use right-shift rescheduling method when machine
breakdown occurs.

4.2. Linear Programming Based Algorithm. Mehta and Uzsoy
[4] presented a linear programming based heuristic for the
predictive scheduling on a single machine with release times
to minimize maximum lateness. In the linear programming
based heuristic, a predictive schedule is also generated to
minimize the primary objective assuming no breakdowns.
But the amount of inserted idle time is constrained by a
linear programming to control the realized schedule primary
objective degradation. Using the idea of linear programming
based algorithm, we provide H2 algorithm for the predictive
schedule to minimize the total completion times.

Algorithm H2

Step 1. Generate the predictive schedule 𝑆
0
𝑝 to minimize

∑
𝑛
𝑗=1 𝐶𝑗 using shortest processing time first (SPT) rule assum-

ing no machine breakdowns.

Step 2.Compute the completion time by linear programming
(LP) while keeping the same sequence as in 𝑆0𝑝.The predictive
schedule 𝑆𝑝𝑝 is obtained.

Step 3. Use right-shift rescheduling method when machine
breakdown occurs:

LP: min
𝑛

∑

𝑗=1

max {𝐶𝑗 (H1) − 𝐶𝑗 (𝑆
𝑝
𝑝) , 0} ,

s.t. 𝐶𝑗 (𝑆
𝑝
𝑝) − 𝐶𝑗−1 (𝑆

𝑝
𝑝) ≥ 𝑝𝑗, 𝑗 = 1, 2, . . . , 𝑛

(3)

𝐶0 (𝑆
𝑝
𝑝) = 0, (4)

𝑛

∑

𝑗=1

𝐶𝑗 (𝑆
𝑝
𝑝)

≤

𝑛

∑

𝑗=1

𝐶𝑗 (𝑆
0
𝑝) + 𝛼(

𝑛

∑

𝑗=1

𝐶𝑗 (H1) −
𝑛

∑

𝑗=1

𝐶𝑗 (𝑆
0
𝑝)) .

(5)

Let 𝐶𝑗(H1) denote the completion time of job 𝑗 in the
schedule which is obtained by Algorithm H1. Constraint
(3) guarantees the precedence relationship. Constraint (5)
controls the degradation in realized schedule. We define 𝛼 as
the control parameter.

4.3. Feedback Algorithm. The initial sequences generated
by Algorithms H1 and H2 are both optimizing the total
completion times without considering the random machine
breakdowns.The sequence of the predictive schedule will not
change after inserting the idle times in the schedule. In order
to consider the feedback effects of the idle time on the initial
sequence, we present the feedback Algorithm H3.

Algorithm H3

Step 1. Generate the predictive schedule 𝑆
0
𝑝 to minimize

∑
𝑛
𝑗=1 𝐶𝑗 using shortest processing time first (SPT) rule assum-

ing no machine breakdowns.

Step 2. Compute the idle time 𝑟𝑒 𝑖𝑑𝑗 of job 𝑗, 𝑗 = 1, 2, . . . , 𝑛

by the LP optimization of Algorithm H2.

Step 3. Insert 𝑟𝑒 𝑖𝑑𝑗 into the schedule 𝑆0𝑝. Schedule the jobs
in nondecreasing order of 𝑝𝑗 + 𝑟𝑒 𝑖𝑑𝑗 and generate the new
predictive schedule 𝑆𝑝𝑝.

Step 4. Use right-shift rescheduling method when machine
breakdown occurs.

In the next section, computational experiments are con-
ducted for the predictive scheduling problem.

5. Experimental Results

In order to examine the performance of the predictive sched-
ule, a series of computational experiments using randomly
generated test problems are conducted. These algorithms
are coded in Matlab and run on an Intel Core Quad PC
with 2.66GHz CPU and 4.0GB RAM. The test instances
are generated as in [4]. There are six levels of job numbers;
𝑛 = 10, 30, 50, 70, 90, 110. The processing times are from
two discrete uniform distributions, where 𝑃1 = uniform
(1,11) and 𝑃2 = uniform (4,8). Therefore, we have a total
of 12 problem parameter combinations. For each problem
parameter combination, 20 instances are generated.There are
a total of 240 instances in the problem set (see Table 1).

The time between machine breakdowns is exponentially
distributedwithmean 𝜃𝐸[𝑝𝑗], where𝐸[𝑝𝑗] is the expected job
processing time and 𝜃 = 10, 5, 3. Higher value of 𝜃 indicates
less frequent machine breakdowns. The machine breakdown
durations are generated from a uniform distribution between



4 Journal of Applied Mathematics

Table 1: Problem parameter.

Parameter Value Number of values
Number of jobs 𝑛 = 10, 30, 50, 70, 90, 110. 6

Processing time 𝑃1 = uniform(1, 11) 2
𝑃2 = uniform(4, 8)
Total combinations 12

Problem combination 20
Total problems 240

Table 2: Type of machine breakdown.

Type of machine
breakdown B

Time between
breakdowns

exponential 𝜃𝐸[𝑝𝑗]

Breakdown
durations uniform
[𝛽1𝐸[𝑝𝑗], 𝛽2𝐸[𝑝𝑗]]

B1 𝜃 = 10 (𝛽1, 𝛽2) = (0.1, 0.5)

B2 𝜃 = 5 (𝛽1, 𝛽2) = (0.1, 0.5)

B3 𝜃 = 3 (𝛽1, 𝛽2) = (0.1, 0.5)

B4 𝜃 = 10 (𝛽1, 𝛽2) = (1, 2)

B5 𝜃 = 5 (𝛽1, 𝛽2) = (1, 2)

B6 𝜃 = 3 (𝛽1, 𝛽2) = (1, 2)

𝛽1𝐸[𝑝𝑗] and 𝛽2𝐸[𝑝𝑗]. Six types of machine breakdown
parameter combinations are generated (see Table 2). Let the
control parameter 𝛼 be 0.5. Therefore, we have 240 instances
subject to 6 types of machine breakdowns and a total of 1440
combinations of the problem and breakdown type.

For each instance, predictive schedules are generated by
Algorithms H1, H2, and H3. We simulate the execution of
each predictive schedule 30 times to calculate the average
completion time deviation and average realized schedule
total completion times using the right-shift rescheduling
method when machine breakdowns occur. Let 𝐴𝐶𝐷(𝐻,𝑄)
and 𝐴𝐶(𝐻,𝑄) denote the average completion time deviation
and average realized schedule ∑𝑗 𝐶𝑗 for problem Q using
predictive Algorithm H. Denote𝐴𝐶𝐷(𝑃𝑅𝑆,𝑄) and𝐴𝐶(𝑃𝑅𝑆,𝑄) as
the average completion time deviation and average realized
schedule∑𝑗 𝐶𝑗 for problem Q using predictive-reactive algo-
rithm (i.e., schedule the jobs in SPT order without inserting
idle times) and right-shift rescheduling method. We define
𝐴𝐶𝐼(𝐻, 𝛿) as the average percentage total completion time
deviation improvement for the same problem class 𝛿 and
𝐴𝐶𝐷(𝐻, 𝛿) as the average percentage total completion times
improvement for the same problem class 𝛿 (the positive
value indicates improvement while the negative value means
degradation). The problem class 𝛿 is defined as a set of
instances, in which some parameter has a fixed value. Let
(𝐵, 𝑛, 𝑃) denote the problem class where 𝐵 represents the
breakdown type, 𝑛 represents the number of jobs, and 𝑃

represents the processing times. Let ∗ denote all possible
values of a parameter. For instance, (∗, ∗, 𝑃1) indicates the
set of all instances with processing time 𝑃1:

𝐴𝐶𝐼 (𝐻, 𝛿) =
∑𝑄∈𝛿 𝐴𝐶𝐷(𝑃𝑅𝑆,𝑄) − ∑𝑄∈𝛿 𝐴𝐶𝐷(𝐻,𝑄)

∑𝑄∈𝛿 𝐴𝐶𝐷(𝑃𝑅𝑆,𝑄)

,

𝐴𝐶𝐷 (𝐻, 𝛿) =
∑𝑄∈𝛿 𝐴𝐶(𝑃𝑅𝑆,𝑄) − ∑𝑄∈𝛿 𝐴𝐶(𝐻,𝑄)

∑𝑄∈𝛿 𝐴𝐶(𝑃𝑅𝑆,𝑄)

.

(6)

Table 3: ACI values for the problem.

𝛿
Algorithm

H1 H2 H3
Breakdown type

(B1, ∗, ∗) 0.9976 0.9457 0.9455
(B2, ∗, ∗) 0.9874 0.7729 0.7720
(B3, ∗, ∗) 0.8603 0.4869 0.4857
(B4, ∗, ∗) 0.9992 0.9858 0.9852
(B5, ∗, ∗) 0.9986 0.9577 0.9563
(B6, ∗, ∗) 0.9961 0.8308 0.8282

Number of jobs
(∗, 10, ∗) 0.8401 0.5859 0.5466
(∗, 30, ∗) 0.9464 0.7515 0.7388
(∗, 50, ∗) 0.9670 0.7976 0.7942
(∗, 70, ∗) 0.9740 0.8108 0.8106
(∗, 90, ∗) 0.9787 0.8332 0.8326
(∗, 110, ∗) 0.9802 0.8350 0.8337

Processing time
(∗, ∗, 𝑃1) 0.9704 0.8181 0.8160
(∗, ∗, 𝑃2) 0.9801 0.8270 0.8257

Overall
(∗, ∗, ∗) 0.9757 0.8229 0.8213

Table 4: ACD values for the problem.

𝛿
Algorithm

H1 H2 H3
Breakdown type

(B1, ∗, ∗) −0.166382 −0.061220 −0.060909
(B2, ∗, ∗) −0.100296 −0.014628 −0.014423
(B3, ∗, ∗) −0.028129 −0.001218 −0.001198
(B4, ∗, ∗) −0.514067 −0.306969 −0.306278
(B5, ∗, ∗) −0.423533 −0.184976 −0.184379
(B6, ∗, ∗) −0.284821 −0.049659 −0.049741

Number of jobs
(∗, 10, ∗) −0.399131 −0.151821 −0.148474
(∗, 30, ∗) −0.416704 −0.135519 −0.133822
(∗, 50, ∗) −0.427604 −0.134320 −0.133558
(∗, 70, ∗) −0.428795 −0.132986 −0.132273
(∗, 90, ∗) −0.431004 −0.129646 −0.129444
(∗, 110, ∗) −0.431383 −0.129731 −0.129434

Processing time
(∗, ∗, 𝑃1) −0.423863 −0.127176 −0.126877
(∗, ∗, 𝑃2) −0.434810 −0.134043 −0.133486

Overall
(∗, ∗, ∗) −0.429880 −0.130951 −0.130510

Tables 3 and 4, respectively, show 𝐴𝐶𝐼(𝐻, 𝛿) and
𝐴𝐶𝐷(𝐻, 𝛿) values for various problem classes. The running
times of the algorithms are not reported since the majority
of the instances are finished in a few seconds. According to
Tables 3 and 4, we can draw the conclusions as follows.
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(i) The predictability of the predictive schedules gen-
erated by Algorithms H1, H2, and H3 improved
significantly over those without inserting idle time.
Meanwhile, inserting idle time sacrifices minor shop
performance.

(ii) The predictive schedule obtained by Algorithm H2
effectively controls the objective degradation, which
is obviously better than that by Algorithm H1. When
the types of machine breakdown are B1, B4, and
B5, the predictive approach H2 yields substantial
predictability improvements over PRS at the cost of
very slight degradation in the performance of realized
schedule ∑𝑗 𝐶𝑗. Moreover, the greater number of
jobs indicates higher predictability of the predictive
schedule.

(iii) The predictability and shop performance generated
by Algorithm H3 are both better than that by H2.
It shows that the predictive schedule constructed
by feedback based algorithm which considers the
effects of idle time on the initial sequence has great
advantages in predictability and shop performance.

6. Conclusions

In this paper, we address a singlemachine predictive schedul-
ing using idle times. From the performance and stability
measure, we optimize both the total completion times and the
predictability of the schedule.

As the predictive schedule plays important role in the
manufacturing system, it should be generated to serve as
a basis for planning activities. We provide three heuristic
predictive scheduling algorithms for the single machine
scheduling problem. The key of the heuristic is the strategies
of inserting idle times. The experiment results show that
predictive schedule provides significant improvement in
predictability withminor sacrifices in shop performance.The
feedback algorithm has advantages in both predictability and
shop performance.

For future research, we can consider several extensions
of the predictive scheduling. First, it is interesting to develop
algorithms for scheduling problems in complex machine
environment, such as flow shop and open shop machine
environment. Second, we can consider other disruptions. It is
possible to deal with new job arrivals, rush job arrivals, pro-
cessing time changes, and due date changes in the predictive
scheduling problems. Furthermore, probabilistic analysis can
be employed to get the length of idle time.
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