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Cross-efficiency evaluation is an effective and widely used method for ranking decision making units (DMUs) in data envelopment
analysis (DEA). Gap minimization criterion is introduced in aggressive and benevolent cross-efficiency methods to avoid possible
extreme efficiency from peer-evaluation and to get equitable results. On the basis of this criterion, a weighted cross-efficiency
method with similarity distance that, respectively, considers the aggressive and the benevolent formulations is proposed to
determine cross-efficiency. The weights of the cross-evaluation determined by this method are positively influenced by self-
evaluation and thus are propitious to resolving conflict. Numerical demonstration reveals the feasibility of the proposed method.

1. Introduction

Data envelopment analysis (DEA) is an effective and widely
used nonparametric method for assessing the relative effi-
ciency of a set of decision making units (DMUs) with struc-
tures of multiple inputs and outputs. Using the traditional
DEA models like CCR model proposed by Charnes et al.
[1] and BCC model by Banker et al. [2], DMUs can be
divided into efficient and inefficient groups. DEA is a typical
application of linear programming and has already been
widely used for solving many real world problems [3–6].
While in practice, there is often a need to discriminate
efficientDMUs. Besides,DEAmay result in unrealisticweight
distribution, thus leading to the efficiency results being not
equitable and acceptable in some cases. A series of approaches
have been proposed to rank DMUs and to overcome the
shortcomings of traditional DEA methods [7–17].

Cross-efficiency method originated by Sexton et al. [18]
extends the basic DEA methods and thus can rank DMUs
according to their efficiency scores. In addition, it can
avoid unrealistic DEA weighting schemes by incorporating
additional weight restrictions into DEA. The core idea of
the cross-efficiency is to evaluate each DMU according to
both its and peers’ optimal input and output weights. The
efficiency scores of a DMU will thus be calculated 𝑛 times

and the average score of self- and peer-evaluations will be
chosen as its ranking score. However, this may fall into a
dilemma of multiple solutions [19]. Doyle and Green [20]
propose an aggressive cross-efficiency method and a benev-
olent one to avoid the problem. They introduce secondary
objective functions to select the optimal weights minimizing
and maximizing the sum of the outputs of other DMUs,
respectively. Wang and Chin [16] propose a neutral cross-
efficiency method to reduce the number of zero weights of
the outputs. The cross-efficiency scores are determined by
the profiles of weights that are used. To effectively select
weights from multiple optimal solutions, goal programming
formulations are considered to be an effective method in
recent literature (e.g., SWAT proposed by Jahanshahloo et al.
[21] and the novel secondary objective function proposed by
Hosseinzadeh-Lotfi et al. [22]). Many alternative secondary
goals for the purpose of cross-efficiency are proposed in the
literature, where minimizing the summation of deviations
from the ideal point and minimizing the maximum quantity
among all deviation variables are typically applied in [23,
24]. In addition, multicriteria method proposed by Li and
Reeves [23] and its extensions like preemptive programming
formulation by Bal and Örkcü [8] and weighted program-
ming formulation by [9] have the ability to select weights
with realistic weight distribution. Örkcü and Bal [14] refine
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goal programming models in the cross-efficiency evaluation.
Recently,Wang et al. [17] propose a simultaneously input- and
output-orientedweight determination cross-efficiencymodel
for reducing the number of zero weights of the inputs.

In this paper, we mainly focus on the promotion of
the acceptance of the cross-efficiency ranking results for
each DMU. We introduce a regularization term to mini-
mize the gap between the upper and lower bounds of the
peer-evaluation scores. In addition, we evaluate DMUs in
a more neutral manner both considering the pessimistic
and optimistic attitudes from the aggressive and benevolent
methods and propose a weighted neutral cross-efficiency
method to determine the cross-efficiency scores according
to the similarity distances between DMUs. Our method has
a greater ability to discriminate DEA-efficient and DEA-
inefficient DMUs compared to the extant cross-efficiency
methods. In addition, the gapminimization criterion and the
manner of determining the weights for each cross-efficiency
score in our method are propitious to resolving conflict
among DMUs during cross-evaluation process.

The rest of this paper is organized as follows. Section 2
briefly introduces the aggressive and benevolent cross-
efficiency models. Section 3 proposes a secondary goal to
minimize the gap between the upper and lower bounds
of the peer-evaluation scores and a new weighted method
for neutral DEA cross-efficiency evaluation based on the
similarity distance between pairs of DMUs. Then Section 4
demonstrates the feasibility of proposed method with a
numerical example. Section 5 finally summarizes the con-
cluding remarks.

2. Aggressive and Benevolent
Cross-Efficiency Models

Let there be 𝑛 DMUs where DMU𝑗 (𝑗 = 1, 2, . . . , 𝑛) uses
𝑚 inputs 𝑥𝑖𝑗 (𝑖 = 1, 2, . . . , 𝑚) to produce 𝑠 outputs 𝑦𝑟𝑗 (𝑟 =

1, 2, . . . , 𝑠). And suppose that all input and output indices are
nonnegative constant numbers.Then for a given DMU𝑝 (1 ≤
𝑝 ≤ 𝑛), the relative efficiency score under the CCR model is
determined by solving the following linear programming [1]:

max 𝜃𝑝𝑝 :=

𝑠

∑

𝑟=1

𝑢𝑟𝑝𝑦𝑟𝑝

s.t.
𝑚

∑

𝑖=1

V𝑖𝑝𝑥𝑖𝑝 = 1

𝑚

∑

𝑖=1

V𝑖𝑝𝑥𝑖𝑗 −
𝑠

∑

𝑟=1

𝑢𝑟𝑝𝑦𝑟𝑗 ≥ 0, 𝑗 = 1, 2, . . . , 𝑛

𝑢𝑟𝑝 ≥ 0, V𝑖𝑝 ≥ 0, 𝑟 = 1, 2, . . . , 𝑠; 𝑖 = 1, 2, . . . , 𝑚,

(1)

where V𝑖𝑝 (𝑖 = 1, 2, . . . , 𝑚) and 𝑢𝑟𝑝 (𝑟 = 1, 2, . . . , 𝑠) are the
weights assigned to 𝑖th input and 𝑟th output, respectively. Let
V∗𝑖𝑝 and 𝑢

∗
𝑟𝑝 be the optimal solutions to model (1); then 𝜃∗𝑝𝑝 =

∑
𝑠
𝑟=1 𝑢
∗
𝑟𝑝𝑦𝑟𝑝 is the CCR-efficiency of DMU𝑝 and reflects the

self-evaluation of this unit.DMU𝑝 is considered to be efficient
if 𝜃∗𝑝𝑝 = 1; otherwise, it is referred to as nonefficient.

As an extension to basic DEA models, cross-efficiency
evaluation not only generates a ranking among the DMUs
according to their efficiency but also removes unrealistic
DEA weighting schemes without requiring any additional
information on weight restrictions. The cross-efficiency
𝜃

∗

𝑝 of DMU𝑝 which contains DMU𝑗’s peer-evaluation to
DMU𝑝 (𝑗 = 1, . . . , 𝑛; 𝑗 ̸= 𝑝) is obtained as

𝜃
∗
𝑗𝑝 =

∑
𝑠
𝑟=1 𝑢
∗
𝑟𝑗𝑦𝑟𝑝

∑
𝑚
𝑖=1 V
∗
𝑖𝑗𝑥𝑖𝑝

, 𝑗 = 1, . . . , 𝑛; 𝑗 ̸= 𝑝, (2)

𝜃

∗

𝑝 =
1

𝑛

(

𝑛

∑

𝑗=1,𝑗 ̸=𝑝

𝜃
∗
𝑗𝑝 + 𝜃

∗
𝑝𝑝) . (3)

Using the average cross-efficiency values, all of the DMUs
can be compared and ranked. However, a factor that possibly
reduces the usefulness of the cross-efficiency evaluation
method is that the cross-efficiency results may not be unique
due to the presence of alternate optima. To resolve the
problem of having multiple optimal solutions frommodel (1)
so as to keep 𝜃

∗
𝑗𝑝 unchanged, Sexton et al. [18] introduce a

secondary goal to select the optimal input and output weights
from multiple optimal solutions while keeping the CCR
efficiency 𝜃∗𝑝𝑝 unchanged.Themost representative secondary
goals are shown in the following models [18, 20]:

min ormax
𝑠

∑

𝑟=1

(𝑢𝑟𝑝

𝑛

∑

𝑗=1,𝑗 ̸=𝑝

𝑦𝑟𝑗)

s.t.
𝑚

∑

𝑖=1

V𝑖𝑝(
𝑛

∑

𝑗=1,𝑗 ̸=𝑝

𝑥𝑖𝑗) = 1

𝑠

∑

𝑟=1

𝑢𝑟𝑝𝑦𝑟𝑝 − 𝜃
∗
𝑝𝑝

𝑚

∑

𝑖=1

V𝑖𝑝𝑥𝑖𝑝 = 0

𝑚

∑

𝑖=1

V𝑖𝑝𝑥𝑖𝑗 −
𝑠

∑

𝑟=1

𝑢𝑟𝑝𝑦𝑟𝑗 ≥ 0,

𝑗 = 1, 2, . . . , 𝑛; 𝑗 ̸= 𝑝

𝑢𝑟𝑝, V𝑖𝑝 ≥ 0, 𝑟 = 1, 2, . . . , 𝑠; 𝑖 = 1, 2, . . . , 𝑚,

(4)

where 𝜃∗𝑝𝑝 is the efficiency value for DMU𝑝 obtained from
model (1). Model (4) with a min-objective function is
known as the aggressive efficiency model, which minimizes
the cross-efficiencies of other DMUs while preserving the
efficiency of itself under evaluation. Model (4) with a max-
objective function is known as the benevolent efficiency
model, which maximizes the cross-efficiencies of other
DMUs while preserving the efficiency of itself under evalu-
ation.
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3. A Weighted Neutral
Cross-Efficiency Method

3.1. Gap Minimization Criterion for Peer-Evaluation. In the
case of the benevolent model, the idea is to identify the
optimal weights that not only maximize the efficiency of
a particular DMU under evaluation but, at the same time,
maximize the average efficiency of other DMUs. In the case
of the aggressive model, one seeks weights that minimize
the average efficiency of those other units. Although these
two goals have been proposed as a remedy for the issue of
nonuniqueness, they only focus on maximizing or minimiz-
ing the value of the efficiencies of self- and peer-evaluations
but never consider the rationality of possible extreme results
of peer-evaluation, for example, selecting weights making the
value of peer-evaluation for a certain DMU too small or too
large. This may result in dispute and impair the rationality
of the selected weights and the corresponding peer-efficiency
scores, especially for the DMUs in a cooperative mode. To
this end, the objective function of the cross-efficiency model
should not only consider the issue of nonuniqueness but
also take into account the rationality of the results of peer-
evaluation. For the aggressive and the benevolent models, the
extreme results of peer-evaluation can be partially avoided
by introducing an additional goal or a regularization term
focusing on such issue. In this paper, we try to avoid the
extreme positions by means of minimizing the gap between
the extreme large value and the extreme small one of the peer-
evaluation. This can be formed as

min( max
𝑗=1,...,𝑛,𝑗 ̸=𝑝

𝑠

∑

𝑟=1

𝑢𝑟𝑝𝑦𝑟𝑗 − min
𝑘=1,...,𝑛,𝑘 ̸=𝑝

𝑠

∑

𝑟=1

𝑢𝑟𝑝𝑦𝑟𝑘) . (5)

Hence, we apply (5) as the regularization term and add it as
a part of the objective function for both the aggressive and
the benevolent models.We show themodified aggressive and
benevolent models, respectively, as

min
𝑠

∑

𝑟=1

(𝑢𝑟𝑝

𝑛

∑

𝑗=1,𝑗 ̸=𝑝

𝑦𝑟𝑗)

+𝜌 ⋅ ( max
𝑗=1,...,𝑛,𝑗 ̸=𝑝

𝑠

∑

𝑟=1

𝑢𝑟𝑝𝑦𝑟𝑗− min
𝑘=1,...,𝑛,𝑘 ̸=𝑝

𝑠

∑

𝑟=1

𝑢𝑟𝑝𝑦𝑟𝑘)

s.t.
𝑚

∑

𝑖=1

V𝑖𝑝(
𝑛

∑

𝑗=1,𝑗 ̸=𝑝

𝑥𝑖𝑗) = 1

𝑠

∑

𝑟=1

𝑢𝑟𝑝𝑦𝑟𝑝 − 𝜃
∗
𝑝𝑝

𝑚

∑

𝑖=1

V𝑖𝑝𝑥𝑖𝑝 = 0

𝑚

∑

𝑖=1

V𝑖𝑝𝑥𝑖𝑗 −
𝑠

∑

𝑟=1

𝑢𝑟𝑝𝑦𝑟𝑗 ≥ 0,

𝑗 = 1, 2, . . . , 𝑛; 𝑗 ̸= 𝑝

𝑢𝑟𝑝, V𝑖𝑝 ≥ 0, 𝑟 = 1, 2, . . . , 𝑠; 𝑖 = 1, 2, . . . , 𝑚,

(6)

max
𝑠

∑

𝑟=1

(𝑢𝑟𝑝

𝑛

∑

𝑗=1,𝑗 ̸=𝑝

𝑦𝑟𝑗)

− 𝜌 ⋅ ( max
𝑗=1,...,𝑛,𝑗 ̸=𝑝

𝑠

∑

𝑟=1

𝑢𝑟𝑝𝑦𝑟𝑗− min
𝑘=1,...,𝑛,𝑘 ̸=𝑝

𝑠

∑

𝑟=1

𝑢𝑟𝑝𝑦𝑟𝑘)

s.t.
𝑚

∑

𝑖=1

V𝑖𝑝(
𝑛

∑

𝑗=1,𝑗 ̸=𝑝

𝑥𝑖𝑗) = 1

𝑠

∑

𝑟=1

𝑢𝑟𝑝𝑦𝑟𝑝 − 𝜃
∗
𝑝𝑝

𝑚

∑

𝑖=1

V𝑖𝑝𝑥𝑖𝑝 = 0

𝑚

∑

𝑖=1

V𝑖𝑝𝑥𝑖𝑗 −
𝑠

∑

𝑟=1

𝑢𝑟𝑝𝑦𝑟𝑗 ≥ 0, 𝑗 = 1, 2, . . . , 𝑛; 𝑗 ̸= 𝑝

𝑢𝑟𝑝, V𝑖𝑝 ≥ 0, 𝑟 = 1, 2, . . . , 𝑠; 𝑖 = 1, 2, . . . , 𝑚,

(7)

where 𝜌 ∈ [0, +∞) is the importance weight of the
regularization term (5) in the objective functions of models
(6) and (7). Note that 𝜌 = 0 makes models (6) and (7)
the same as the original aggressive model and the original
benevolent one, respectively. If 𝜌 is large enough, (6) and (7)
are equivalent to the model that always focuses on the gap
between extremes.

Models (6) and (7) can be expressed equivalently in the
following forms, respectively:

min
𝑠

∑

𝑟=1

(𝑢𝑟𝑝

𝑛

∑

𝑗=1,𝑗 ̸=𝑝

𝑦𝑟𝑗) + 𝜌 ⋅ (𝜆 − 𝜆)

s.t.
𝑚

∑

𝑖=1

V𝑖𝑝(
𝑛

∑

𝑗=1,𝑗 ̸=𝑝

𝑥𝑖𝑗) = 1

𝑠

∑

𝑟=1

𝑢𝑟𝑝𝑦𝑟𝑝 − 𝜃
∗
𝑝𝑝

𝑚

∑

𝑖=1

V𝑖𝑝𝑥𝑖𝑝 = 0

𝑚

∑

𝑖=1

V𝑖𝑝𝑥𝑖𝑗 −
𝑠

∑

𝑟=1

𝑢𝑟𝑝𝑦𝑟𝑗 ≥ 0, 𝑗 = 1, 2, . . . , 𝑛; 𝑗 ̸= 𝑝

𝜆 −

𝑠

∑

𝑟=1

𝑢𝑟𝑝𝑦𝑟𝑗 ≥ 0, 𝑗 = 1, 2, . . . , 𝑛; 𝑗 ̸= 𝑝

𝑠

∑

𝑟=1

𝑢𝑟𝑝𝑦𝑟𝑗 − 𝜆 ≥ 0, 𝑗 = 1, 2, . . . , 𝑛; 𝑗 ̸= 𝑝

𝑢𝑟𝑝, V𝑖𝑝 ≥ 0, 𝑟 = 1, 2, . . . , 𝑠; 𝑖 = 1, 2, . . . , 𝑚,

(8)
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max
𝑠

∑

𝑟=1

(𝑢𝑟𝑝

𝑛

∑

𝑗=1,𝑗 ̸=𝑝

𝑦𝑟𝑗) − 𝜌 ⋅ (𝜆 − 𝜆)

s.t.
𝑚

∑

𝑖=1

V𝑖𝑝(
𝑛

∑

𝑗=1,𝑗 ̸=𝑝

𝑥𝑖𝑗) = 1

𝑠

∑

𝑟=1

𝑢𝑟𝑝𝑦𝑟𝑝 − 𝜃
∗
𝑝𝑝

𝑚

∑

𝑖=1

V𝑖𝑝𝑥𝑖𝑝 = 0

𝑚

∑

𝑖=1

V𝑖𝑝𝑥𝑖𝑗 −
𝑠

∑

𝑟=1

𝑢𝑟𝑝𝑦𝑟𝑗 ≥ 0, 𝑗 = 1, 2, . . . , 𝑛; 𝑗 ̸= 𝑝

𝜆 −

𝑠

∑

𝑟=1

𝑢𝑟𝑝𝑦𝑟𝑗 ≥ 0, 𝑗 = 1, 2, . . . , 𝑛; 𝑗 ̸= 𝑝

𝑠

∑

𝑟=1

𝑢𝑟𝑝𝑦𝑟𝑗 − 𝜆 ≥ 0, 𝑗 = 1, 2, . . . , 𝑛; 𝑗 ̸= 𝑝

𝑢𝑟𝑝, V𝑖𝑝 ≥ 0, 𝑟 = 1, 2, . . . , 𝑠; 𝑖 = 1, 2, . . . , 𝑚,

(9)

where 𝜆 and 𝜆 are the upper and lower bounds of∑𝑠𝑟=1 𝑢𝑟𝑝𝑦𝑟𝑗,
respectively.

3.2. A Neutral Method for Peer-Efficiency Determination. In
order to eliminate bias to other DMUs brought by both of
the aggressive goal and the benevolent one as well as keep
the objectivity of the evaluation process, we try to evaluate
DMUs in a more neutral manner and to reduce conflict and
disputes by applying both of the models. That is, we can
make compromised results between the aggressive and the
benevolent formulations if the final peer-efficiency scores are
determined in terms of such two formulations. To illustrate
this, for DMU𝑝, we denote its self- and peer-efficiency scores
𝛾
∗
𝑝𝑝 and 𝛾

∗
𝑗𝑝 (𝑗 = 1, . . . , 𝑛, 𝑗 ̸= 𝑝), respectively, by solving

models (8) and (3) and self- andpeer-efficiency scores 𝛿∗𝑝𝑝 and
𝛿
∗
𝑗𝑝 (𝑗 = 1, . . . , 𝑛, 𝑗 ̸= 𝑝), respectively, by solving models (9)
and (3). We hence have the following convex combinatorial
expression for peer-efficiency score 𝜃∗𝑗𝑝:

𝜃
∗
𝑗𝑝 = 𝛼 ⋅ 𝛾

∗
𝑗𝑝 + 𝛽 ⋅ 𝛿

∗
𝑗𝑝, 1 ≤ 𝑗 ≤ 𝑛, (10)

where the convex combinatorial coefficients 𝛼 and 𝛽 satisfy
𝛼 + 𝛽 = 1 and 𝛼 ≥ 0, 𝛽 ≥ 0. Such a combination effectively
balances the two extreme attitudes from the aggressive and
the benevolent formulations and thus results in a more
“neutral” peer-efficiency score.Thus proposedmethod can be
taken as a neutral cross-efficiency method. For 𝜃∗𝑗𝑝, we have
the following proposition.

Proposition 1. 𝜃∗𝑗𝑝 ≤ 𝜃
∗
𝑝𝑝 (𝑗 = 1, . . . , 𝑛).

Proof. Let the optimum solutions of DMU𝑗 from model (8)
be V∗𝑖𝑗 (𝑖 = 1, 2, . . . , 𝑚) and 𝑢∗𝑟𝑗 (𝑟 = 1, 2, . . . , 𝑠), respectively,
and let those from model (9) be ]∗𝑖𝑗 (𝑖 = 1, 2, . . . , 𝑚) and
𝜇
∗
𝑟𝑗 (𝑟 = 1, 2, . . . , 𝑠), respectively. Note that both the optimum

solutions from models (8) and (9) satisfy the following
constraint:

𝑠

∑

𝑟=1

𝑢𝑟𝑝𝑦𝑟𝑝 − 𝜃
∗
𝑝𝑝

𝑚

∑

𝑖=1

V𝑖𝑝𝑥𝑖𝑝 = 0. (11)

Recall that 𝜃∗𝑝𝑝 denotes the optimum value of the CCRmodel
(i.e., model (1)). This constraint can be rewrite as

∑
𝑠
𝑟=1 𝑢𝑟𝑝𝑦𝑟𝑝

∑
𝑚
𝑖=1 V𝑖𝑝𝑥𝑖𝑝

= 𝜃
∗
𝑝𝑝. (12)

Hence, feasible solutions from models (8) and (9) are always
optimum to the CCR model. Thus we have

𝛾
∗
𝑗𝑝 =

∑
𝑠
𝑟=1 𝑢
∗
𝑟𝑗𝑦𝑟𝑝

∑
𝑚
𝑖=1 V
∗
𝑖𝑗𝑥𝑖𝑝

≤

∑
𝑠
𝑟=1 𝑢
∗
𝑟𝑝𝑦𝑟𝑝

∑
𝑚
𝑖=1 V
∗
𝑖𝑝𝑥𝑖𝑝

= 𝜃
∗
𝑝𝑝, 𝑗 = 1, . . . , 𝑛,

𝛿
∗
𝑗𝑝 =

∑
𝑠
𝑟=1 𝜇
∗
𝑟𝑗𝑦𝑟𝑝

∑
𝑚
𝑖=1 ]
∗
𝑖𝑗𝑥𝑖𝑝

≤

∑
𝑠
𝑟=1 𝜇
∗
𝑟𝑝𝑦𝑟𝑝

∑
𝑚
𝑖=1 ]
∗
𝑖𝑝𝑥𝑖𝑝

= 𝜃
∗
𝑝𝑝, 𝑗 = 1, . . . , 𝑛.

(13)

Meanwhile, 𝜃∗𝑗𝑝 = 𝛼 ⋅ 𝛾
∗
𝑗𝑝 + 𝛽 ⋅ 𝛿

∗
𝑗𝑝 (𝛼 + 𝛽 = 1) implies

min (𝛾∗𝑗𝑝, 𝛿
∗
𝑗𝑝) ≤ 𝜃

∗
𝑗𝑝 ≤ max (𝛾∗𝑗𝑝, 𝛿

∗
𝑗𝑝) . (14)

With (13) and (14), we have 𝜃∗𝑗𝑝 ≤ 𝜃
∗
𝑝𝑝 (𝑗 = 1, . . . , 𝑛).

To reduce inconsistency between peer-evaluation and
self-evaluation, we determine 𝛼 and 𝛽 from the viewpoint
of efficiency distance between pairs of DMUs. From an
individual’s viewpoint, DMUs with more similar efficiency
scores are more important to be referred during the cross-
efficiency evaluation process. More specifically, for DMU𝑗
andDMU𝑝, themore 𝛾∗𝑗𝑝 (𝛿

∗
𝑗𝑝) is similar to 𝜃∗𝑝𝑝, themore likely

the profile of weights of inputs and outputs of DMU𝑗 is to be
accepted by DMU𝑝. Thus, we define the distance from 𝛾

∗
𝑗𝑝 to

𝜃
∗
𝑝𝑝 as

𝑑𝛾 (𝑗, 𝑝) =





𝛾
∗
𝑗𝑝 − 𝜃

∗
𝑝𝑝







(15)

and that from 𝛿
∗
𝑗𝑝 to 𝜃

∗
𝑝𝑝 as

𝑑𝛿 (𝑗, 𝑝) =





𝛿
∗
𝑗𝑝 − 𝜃

∗
𝑝𝑝






. (16)

Note that 𝑑𝛾(𝑗, 𝑝) ̸= 𝑑𝛾(𝑝, 𝑗) and 𝑑𝛿(𝑗, 𝑝) ̸= 𝑑𝛿(𝑝, 𝑗) in
most cases. Since small (large) value of 𝑑𝛾(𝑗, 𝑝) implies strong
(weak) similarity between DMU𝑗 and DMU𝑝, we hence
introduce a total distance 𝑑total(𝑗, 𝑝) as

𝑑total (𝑗, 𝑝) = 𝑑𝛾 (𝑗, 𝑝) + 𝑑𝛿 (𝑗, 𝑝) , (17)

and conflict reductionmay be implemented by keeping 𝛼 and
𝛽 in proportion to [𝑑total(𝑗, 𝑝) − 𝑑𝛾(𝑗, 𝑝)] and [𝑑total(𝑗, 𝑝) −
𝑑𝛿(𝑗, 𝑝)], respectively; that is,

𝛼 ∝ 𝑑𝛿 (𝑗, 𝑝) ,

𝛽 ∝ 𝑑𝛾 (𝑗, 𝑝) .

(18)
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To determine the value of 𝛼 and 𝛽, normalization is needed
to make them satisfy 𝛼 + 𝛽 = 1. Hence we have

𝛼 =

𝑑𝛿 (𝑗, 𝑝)

𝑑total (𝑗, 𝑝)
=






𝛿
∗
𝑗𝑝 − 𝜃

∗
𝑝𝑝












𝛾
∗
𝑗𝑝 − 𝜃

∗
𝑝𝑝






+






𝛿
∗
𝑗𝑝 − 𝜃

∗
𝑝𝑝







,

𝛽 =

𝑑𝛾 (𝑗, 𝑝)

𝑑total (𝑗, 𝑝)
=






𝛾
∗
𝑗𝑝 − 𝜃

∗
𝑝𝑝












𝛾
∗
𝑗𝑝 − 𝜃

∗
𝑝𝑝






+






𝛿
∗
𝑗𝑝 − 𝜃

∗
𝑝𝑝







.

(19)

With Proposition 1, it is easy to find that (19) can be trans-
ferred into easy-to-solve forms as follows:

𝛼 =

𝜃
∗
𝑝𝑝 − 𝛿

∗
𝑗𝑝

2𝜃
∗
𝑝𝑝 − 𝛿

∗
𝑗𝑝 − 𝛾

∗
𝑗𝑝

,

𝛽 =

𝜃
∗
𝑝𝑝 − 𝛾

∗
𝑗𝑝

2𝜃
∗
𝑝𝑝 − 𝛿

∗
𝑗𝑝 − 𝛾

∗
𝑗𝑝

.

(20)

3.3. Cross-Evaluation Based on Similarity Distance. To fur-
ther reduce the inconsistency between peer-evaluation and
self-evaluation, we also determine the weight for cross-
evaluation 𝜔𝑗𝑝 from the viewpoint of efficiency distance
between pairs of DMUs. We define the cross-evaluation-
based distance from 𝜃

∗
𝑗𝑝 to 𝜃

∗
𝑝𝑝 as

𝑑 (𝑗, 𝑝) =






𝜃
∗
𝑗𝑝 − 𝜃

∗
𝑝𝑝






, 1 ≤ 𝑗 ≤ 𝑛. (21)

Let 𝑑max = max𝑗𝑑(𝑗, 𝑝); the cross-efficiency weight of 𝜃∗𝑗𝑝
should be proportional to (𝑑max − 𝑑(𝑗, 𝑝)). Taking normal-
ization into consideration, we apply

𝜔𝑗𝑝 =
𝑑max − 𝑑 (𝑗, 𝑝)

∑
𝑛
𝑖=1 (𝑑max − 𝑑 (𝑖, 𝑝))

(22)

as the cross-efficiency weight of 𝜃∗𝑗𝑝. To make (22) easy to
solve, we have (with Proposition 1)

𝑑max = max
𝑗






𝜃
∗
𝑗𝑝 − 𝜃

∗
𝑝𝑝






= 𝜃
∗
𝑝𝑝 −min

𝑗
𝜃
∗
𝑗𝑝. (23)

Let 𝜃∗min = min𝑗𝜃
∗
𝑗𝑝, (22) be equivalent to

𝜔𝑗𝑝 =

𝜃
∗
𝑗𝑝 − 𝜃

∗
min

∑
𝑛
𝑖=1 𝜃
∗
𝑖𝑝 − 𝑛𝜃

∗
min

. (24)

And finally we have

𝜔𝑗𝑝 =

𝜃
∗
𝑗𝑝 − 𝜃

∗
min

∑
𝑛
𝑖=1 𝜃
∗
𝑖𝑝 − 𝑛𝜃

∗
min

, 𝑗 = 1, . . . , 𝑛, (25)

𝜃

∗

𝑝 =

𝑛

∑

𝑗=1

𝜔𝑗𝑝𝜃
∗
𝑗𝑝. (26)

We use (10) in neither aggressive nor benevolentmanners but
a more neutral way to calculate peer-evaluation and use (26)
to get the weighted cross-efficiency according to the distance

Table 1: Description of the inputs and the outputs of 14 passenger
airlines.

Indices Description

Inputs
𝑥1 Aircraft capacity in ton kilometers
𝑥2 Operating cost
𝑥3 Nonflight assets

Outputs 𝑦1 Passenger kilometers
𝑦2 Nonpassenger revenue

between the currently evaluated DMU and peers. Peers’
evaluation with different weights according to the distance
can partially mitigate conflict among DMUs because the
evaluation perspective of peers with short distance is more
likely to be accepted by the currently evaluated DMU.We use
a numeric example in the following section to illustrate the
advantages of our method.

4. An Illustrative Example

In this section, our method is illustrated with a numerical
example. In the example, fourteen major international pas-
senger airlines (DMUs) are needed to be evaluated in terms
of three inputs (𝑥1, 𝑥2, 𝑥3) and two outputs (𝑦1, 𝑦2) [25].
Description of the inputs and the outputs is shown in Table 1.
We apply in this section the aggressive and benevolentmodels
(shown in model (4)) as the comparison models. We also
apply CCR model as the basic DEA model and report their
CCR-efficiency scores for some necessary analysis. Recall
that the importance weight 𝜌 in models (8) and (9) reflects
the magnitude of the gap minimization goal (see (5)) and
thus may result in various solutions if its value changes.
To balance the importance of the gap minimization goal, 𝜌
should be neither too large nor too small. In this example, we
heuristically set 𝜌 = 0.2.

Table 2 shows the input and output data, proposed
neutral weighted cross-efficiency results, the aggressive and
benevolent cross-efficiency results (shown in “𝜃

∗
” and “#”

columns), and the CCR-efficiency results (shown in “𝜃∗CCR”
column) of the fourteen passenger airlines. Efficiency scores
from proposed method, aggressive and benevolent methods,
and CCR are also shown in Figure 1. It can be seen that
seven DMUs are CCR-efficient (i.e., the 5th, 7th, and 10–
14th DMUs). For these CCR-efficient DMUs, three of the
cross-efficiency methods all fully rank them with peer- and
self-evaluation scores. Compared with the aggressive and
benevolent methods, proposed method produces different
efficiency rankings for 14 international passenger airlines.
Specifically speaking, all CCR-efficient DMUs are top-ranked
from top 1 to top 7, respectively, using proposed method,
whereas neither aggressive nor benevolent methods can
achieve this. For example, at least one CCR-inefficient DMU
(e.g., DMU4 evaluated by both aggressive and benevolent
methods) is ranked as one of the top 7 DMUs while at least
one CCR-efficient DMU (e.g., DMU7 evaluated by aggressive
method and DMU10 evaluated by benevolent method) is
out of them. For CCR-efficient DMUs, proposed method is
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Table 2: Data, efficiency scores, and ranks for 14 passenger airlines using different cross-efficiency models.

DMU 𝑥1 𝑥2 𝑥3 𝑦1 𝑦2 𝜃
∗
CCR

Aggressive Benevolent Proposed
𝜃

∗
# 𝜃

∗
# 𝜃

∗
#

1 5723 3239 2003 26667 697 0.8681 0.5990 12 0.7541 12 0.7175 13
2 5895 4225 4557 3081 539 0.3379 0.1652 14 0.1894 14 0.2328 14
3 24099 9560 6267 124055 1266 0.9475 0.6226 11 0.7678 9 0.7549 11
4 13565 7499 3213 64734 1563 0.9581 0.6734 7 0.8222 6 0.7848 9
5 5183 1880 783 23604 513 1 0.7983 1 0.8912 3 0.8831 4
6 19080 8032 3272 95011 572 0.9766 0.6385 9 0.7554 11 0.7909 8
7 4603 3457 2360 22112 969 1 0.6478 8 0.8214 7 0.8442 6
8 12097 6779 6474 52363 2001 0.8588 0.5855 13 0.7242 13 0.7356 12
9 6587 3341 3581 26504 1297 0.9477 0.6309 10 0.7590 10 0.7818 10
10 5654 1878 1916 19277 972 1 0.6813 6 0.7803 8 0.8176 7
11 12559 8098 3310 41925 3398 1 0.7742 2 0.9193 1 0.9391 1
12 5728 2481 2254 27754 982 1 0.7314 5 0.8850 4 0.8906 3
13 4715 1792 2485 31332 543 1 0.7503 3 0.9190 2 0.9076 2
14 22793 9874 4145 122528 1404 1 0.7316 4 0.8659 5 0.8795 5
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Figure 1: Efficiency scores from proposed, aggressive, benevolent
model and CCR methods.

flexible in balancing the different attitudes from aggressive
and benevolent methods, for example, the results of DMU10.
For CCR-inefficient DMUs, it is less likely that proposed
method regards them to be more efficient than CCR-efficient
ones. This illustrates that proposed method is effective to
discriminate CCR-efficient from CCR-inefficient DMUs and
to evaluate and rank DMUs from a more neutral perspective.
We believe that our method is more equitable and reliable
than the methods that rank DMUs according to either the
aggressive or the benevolent cross-efficiency scores, for the
gap minimization goal to avoid extreme efficiency scores
is more acceptable and an integration of both pessimistic
and optimistic attitudes is more effective to mitigate conflict
especially for DMUs in a cooperative mode.

5. Conclusions

Cross-efficiency evaluation is an important method for
comparing and ranking DMUs. Extant research has made
efforts to tackle the shortcomings of cross-efficiency but
seldom considers how to effectively discriminate DEA-
efficient from DEA-inefficient DMUs and to reduce conflict
during the cross-evaluation process. Based on two typical
cross-efficiency methods, we propose a secondary goal to
minimize the gap between the upper and lower bounds of
the peer-evaluation scores and a weighted neutral cross-
efficiencymethod to determine cross-efficiency of eachDMU
with a combination of its aggressive and benevolent cross-
efficiency. A numerical example is conducted to illustrate
the proposed method. The results show that the proposed
method has the ability to discriminate DEA-efficient from
DEA-inefficient DMUs and rank DMUs from a more neutral
perspective. In addition, the gap minimization criterion to
reduce extreme peer-evaluation results and the weights of the
cross-efficiency positively influenced by the DEA-efficiency
scores of the currently evaluated DMU are also beneficial to
conflictmitigation.The results also indicate that the proposed
method is compatible with typical cross-efficiency models
and makes valid contributions to cross-efficiency evaluation.
Future work may focus on how to determine the importance
weight 𝜌 of the gapminimization goal in different application
contexts.
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