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This paper first introduces the allocative and profit efficiency in the presence of the negative data and then presents a new circular
index to measure the productivity change of decision making units (DMUs) for the case that the dataset contains the inputs and/or
outputs with the negative values in data envelopment analysis (DEA). The proposed index is decomposed into four components
in the two stages. The range directional model (RDM) and the proposed efficiencies are used to compute the proposed index and
its components. The interpretations of the components are presented. Finally, a numerical example is organized to illustrate the
proposed index and its components at three successive periods of time.

1. Introduction

The Malmquist productivity index which measures the pro-
ductivity change over time was introduced by Caves et al.
[1]. Fare et al. [2] developed the Malmquist productivity
index that was based on data envelopment analysis (DEA).
The Malmquist index can be applied in many fields [3, 4].
By using Malmquist index, the productivity growth can be
decomposed into the efficiency change and technical change
components.The second componentmeasures the shift in the
technology frontier.

Pastor and Lovell [5] suggested the global Malmquist
productivity index that is circular and can be decomposed
into the circular components.The global index and the meta-
Malmquist index developed in Portela and Thanassoulis [6].
In addition,Hosseinzadeh Lotfi et al. developed the new ideas
about Malmquist index in [7, 8].

Maniadakis and Thanassoulis [9] assumed the input cost
vector is known and suggested the cost Malmquist index.
Tohidi et al. [10] extended the cost Malmquist index into
the profit Malmquist index that is used when the input cost
and the output price vector are available. Then, Tohidi and
Razavyan [11] proposed the global profit Malmquist index.
The cost Malmquist index was also developed in Tohidi et

al. [12] and is called the global cost Malmquist productivity
index.

Sometimes in the process of production negative inputs
and/or outputs may occur. For example, DMUsmay generate
undesirable outputs. In such a case, negative values can
be considered for these undesirable outputs. Instances of
systems with negative inputs and/or outputs are explained
in [13, 14]. The traditional DEA models can be applied to
compute the Malmquist index with the nonnegative data.
They cannot deal with the negative data. Portela et al. [15]
presented an approach named the range directional model
(RDM) and solved this problem. They calculated the meta-
Malmquist index using the RDM model in Portela and
Thanassoulis [16].

To investigate the productivity change of DMUs with the
negative data, this paper defines the profit and allocative
efficiency and introduces an index to measure the productiv-
ity changes of DMUs when some inputs and/or outputs are
negative and the costs of inputs and the prices of outputs are
available.Then, the proposed index is decomposed into some
components in the two stages. The range directional model
(RDM) and the proposed efficiencies are used to compute the
proposed index and its components.
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The current paper unfolds as follows. Section 2 describes
the RDM. In Section 3 the global Malmquist productivity
index is expressed. Section 4 defines the profit and the alloca-
tive efficiency for the DMUs with some negative inputs and
outputs and then suggests a new index. The decomposition
and the theorem of circularity property of the proposed index
and its components are presented in Section 5. Section 6
prepares some DEA models to compute the proposed index
and its components. Section 7 provides a numerical example.
Section 8 concludes.

2. The Range Directional Model

Portela et al. [15] introduced the RDM to compare DMUs
under the negative data. Assume that, in time period 𝑡 (𝑡 =
1, . . . , 𝑇) and 𝑗th unit (𝑗 = 1, . . . , 𝑛) consumes an input
vector 𝑥𝑡

𝑗
= (𝑥
𝑡

1𝑗
, 𝑥
𝑡

2𝑗
, . . . , 𝑥

𝑡
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) to produce an output vector

𝑦
𝑡

𝑗
= (𝑦
𝑡

1𝑗
, 𝑦
𝑡

2𝑗
, . . . , 𝑦

𝑡

𝑠𝑗
). We consider an ideal point (IP) for the

time period 𝑡 with the minimum inputs and the maximum
outputs observed in this time period, where for each input
𝑖 (𝑖 = 1, . . . , 𝑚) and IP

𝑖
is as min

𝑗
{𝑥
𝑡

𝑖𝑗
} and for each output

𝑟 (𝑟 = 1, . . . , 𝑠) throughout IP
𝑟
is as max

𝑗
{𝑦
𝑡

𝑟𝑗
} and the

directional vector is as (𝑔
𝑥
, 𝑔
𝑦
) = (𝑔
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1

, . . . , 𝑔
𝑥
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, 𝑔
𝑦
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1

, . . . , 𝑔
𝑦
𝑡
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).
In the RDM this directional vector for DMU

𝑘
in time period

𝑡 is as 𝑔
𝑥
𝑡

𝑖𝑘

= 𝑅
𝑥
𝑡

𝑖𝑘

= 𝑥
𝑡

𝑖𝑘
− min

𝑗
{𝑥
𝑡
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}; 𝑖 = 1, . . . , 𝑚 and
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= 𝑅
𝑦
𝑡

𝑟𝑘

= max
𝑗
{𝑦
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𝑟𝑗
} − 𝑦
𝑡

𝑟𝑘
; 𝑟 = 1, . . . , 𝑠 that reflects the

ranges of possible improvement for this DMU. The RDM for
DMU

𝑘
in time period 𝑡 for the case of the VRS technology is

as follows (Portela et al., 2004):
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(1)

The value of 𝛽∗
𝑘

in model (1) is an inefficiency
measure and the RDM efficiency measure of unit 𝑘
is RDM𝑡(𝑥𝑡

𝑘
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}) if at the optimal solution

to model (1) a binding constraint corresponds to input 𝑖 or
(max
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∗
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corresponds to output 𝑟. 𝑥𝑡
𝑖𝑘

∗ and 𝑦𝑡
𝑟𝑘

∗ are the target inputs
and target outputs in time 𝑡, respectively. It is clear that the
upper bound of 1 − 𝛽∗

𝑘
is 1.

3. The Global Profit Malmquist
Productivity Index

The global profit Malmquist index (PM𝐺) is applied to
measure the productivity changes of DMUs when the input
costs and output prices are available. Assume that, in time
period 𝑡, (𝑡 = 1, . . . , 𝑇), the input cost vector is 𝑐𝑡 ∈ 𝑅𝑚

+
and

the output price vector is 𝑝𝑡 ∈ 𝑅
𝑠

+
; by using these vectors

the common input cost vector 𝑐𝐺 ∈ 𝑅
𝑚

+
and the common

output price vector 𝑝𝐺 ∈ 𝑅
𝑠

+
can be defined, respectively,

as 𝑐𝐺 = ∑
𝑇
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≥ 0, where the weights 𝜆

𝑗
and

𝜇
𝑗
(𝑗 = 1, . . . , 𝑇) are the decision-makers’ preferences over 𝑐𝑗

and 𝑝𝑗 (𝑗 = 1, . . . , 𝑇), respectively [12].
This paper uses the definition of profit [13] to compute

the global profit and the observed profit of DMU
𝑘
with

the negative data. The observed profit of DMU
𝑗
under the

cost and price vectors of time period 𝑡 can be calculated
as OP𝑡(𝑥𝑡

𝑗
, 𝑦
𝑡

𝑗
) = 𝑝

𝑡
𝑦
𝑡

𝑗
− 𝑐
𝑡
𝑥
𝑡

𝑗
and the maximum profit of

time 𝑡 under the price vector of this time is defined as
MP𝑡(𝑥, 𝑦, 𝑐𝑡, 𝑝𝑡) = max{𝑝𝑡𝑦−𝑐𝑡𝑥 : (𝑥, 𝑦) ∈ 𝑇𝑡, 𝑐𝑡 > 0, 𝑝𝑡 > 0}.
The set of activities (𝑥, 𝑦) ∈ 𝑇

𝑡 which corresponds to the
scalar MP𝑡(𝑥, 𝑦, 𝑐𝑡, 𝑝𝑡) defines the profit boundary of time 𝑡
as MP𝑡 = {(𝑥, 𝑦) : 𝑝𝑡𝑦 − 𝑐𝑡𝑥 = MP𝑡(𝑥, 𝑦, 𝑐𝑡, 𝑝𝑡)}. In this case
the PM𝐺 index for the DMUs with the nonnegative data is
defined as follows:

PM𝐺 =
MP𝐺 (𝑥𝑡+1, 𝑦𝑡+1, 𝑐𝐺, 𝑝𝐺) /OP𝐺 (𝑥𝑡+1, 𝑦𝑡+1)

MP𝐺 (𝑥𝑡, 𝑦𝑡, 𝑐𝐺, 𝑝𝐺) /OP𝐺 (𝑥𝑡, 𝑦𝑡)
, (2)

where MP𝐺(𝑥𝑡, 𝑦𝑡, 𝑐𝐺, 𝑝𝐺) = max{𝑝𝐺𝑦 − 𝑐𝐺𝑥 : (𝑥, 𝑦) ∈

𝑇
𝐺
, 𝑐
𝐺
> 0, 𝑝

𝐺
> 0} and𝑇𝐺 = conv{𝑇1∪⋅ ⋅ ⋅∪𝑇𝑇} is the global

production technology [5]. The term OP𝐺(𝑥𝑡, 𝑦𝑡) = 𝑝𝐺𝑦𝑡 −
𝑐
𝐺
𝑥
𝑡 is the observed profit of (𝑥𝑡, 𝑦𝑡) under the common price

vectors 𝑐𝐺 and 𝑝𝐺. The ratio MP𝐺(𝑥𝑡, 𝑦𝑡, 𝑐𝐺, 𝑝𝐺)/OP𝐺(𝑥𝑡, 𝑦𝑡)
in the denominator of PM𝐺 is the reciprocal to measure
of the profit efficiency introduced in Cooper et al. [13] for
(𝑥
𝑡
, 𝑦
𝑡
) under the common price vectors.This ratio measures

the distance between the observed profit OP𝐺(𝑥𝑡, 𝑦𝑡) and
the common profit boundary and will have a minimum
value of 1. A value greater than 1 of PM𝐺 index indicates
the productivity regress and a value less than 1 implies the
productivity progress between 𝑡 and 𝑡 + 1. A value of 1
indicates that the productivity remains unchanged. Because
of the limitations of the DEAmodels with the negative inputs
and outputs [17, 18], we cannot investigate the productivity
change of DMUs with the negative data by using tradition
Malmquist indices. To this end, the next section proposes an
appropriate global profit Malmquist index when some inputs
or/and outputs are negative.
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4. The Global Profit Malmquist Index with
the Negative Data

In this section we assume that there are some negative
inputs and/or negative outputs and evaluate the productivity
changes of DMUs by using the PM𝐺 index under the VRS
technology. We denote the profit of the ideal point of time
period 𝑡 by IP𝑡 that the superscript 𝑡 on IP𝑡 indicates the profit
is computed under the cost and the price vectors of time 𝑡. By
using the definition of the profit, we will have

OP𝑡 (𝑥𝑡, 𝑦𝑡) ≤ MP𝑡 (𝑥𝑡, 𝑦𝑡, 𝑐𝑡, 𝑝𝑡) ≤ IP𝑡. (3)

Now we define the profit and allocative efficiency of a
DMU with the negative data.

Definition 1. The measure of the profit efficiency for (𝑥𝑡, 𝑦𝑡)
under the price vectors of time 𝑡 is as

PE𝑡 (𝑦𝑡, 𝑥𝑡, 𝑐𝐺, 𝑝𝐺) =
MP𝑡 (𝑥𝑡, 𝑦𝑡, 𝑐𝑡, 𝑝𝑡) − IP𝑡

OP𝑡 (𝑥𝑡, 𝑦𝑡) − IP𝑡
. (4)

By using (3) it is clear that the value of PE𝑡(𝑦𝑡, 𝑥𝑡,
𝑐
𝐺
, 𝑝
𝐺
) is equal to or less than one. As the profit efficiency

is less than 1 it may be because production takes place at the
wrong input and/or output mix in light of the input costs and
the output prices; this is captured by using the measure of the
allocative efficiency which is defined as follows.

Definition 2. Let (𝑥𝑡∗, 𝑦𝑡∗) be the target DMU of (𝑥𝑡, 𝑦𝑡) in
time period 𝑡 using RDM.The allocative efficiency of (𝑥𝑡, 𝑦𝑡)
can be defined as follows:

AE𝑡 (𝑦𝑡, 𝑥𝑡, 𝑤𝑡)

=
MP𝑡 (𝑥𝑡, 𝑦𝑡, 𝑐𝑡, 𝑝𝑡) − IP𝑡

OP𝑡 (𝑥𝑡∗, 𝑦𝑡∗) − IP𝑡

=
MP𝑡 (𝑥𝑡, 𝑦𝑡, 𝑐𝑡, 𝑝𝑡) − IP𝑡

(OP𝑡 (𝑥𝑡, 𝑦𝑡) − IP𝑡)RDM𝑡 (𝑥𝑡
𝑘
, 𝑦
𝑡

𝑘
, 𝑅
𝑥
𝑡

𝑘

, 𝑅
𝑦
𝑡

𝑘

)

=

PE𝑡 (𝑦𝑡, 𝑥𝑡, 𝑐𝐺, 𝑝𝐺)

RDM𝑡 (𝑥𝑡
𝑘
, 𝑦
𝑡

𝑘
, 𝑅
𝑥
𝑡

𝑘

, 𝑅
𝑦
𝑡

𝑘

)

.

(5)

If profit efficiency is less than 1 and it is because produc-
tion is based on excessive input or shortage output usage, we
can capture it by using the RDM efficiency measure that was
denoted by RDM𝑡(𝑥𝑡

𝑘
, 𝑦
𝑡

𝑘
, 𝑅
𝑥
𝑡

𝑘

, 𝑅
𝑦
𝑡

𝑘

).
To define the PM𝐺 index under theVRS technology in the

presence of the negative datawe first consider a global ideal
point (GIP) defined over the global technology that, for input
𝑖 (𝑖 = 1, . . . , 𝑚), and output 𝑟 (𝑟 = 1, . . . , 𝑠), is as GIP

𝑖
=

min
𝑡
{min
𝑗
{𝑥
𝑡

𝑖𝑗
}} and GIP

𝑟
= max

𝑡
{max
𝑗
{𝑦
𝑡

𝑟𝑗
}}, respectively.

This ideal point is used for computing the range 𝑅GF
=

(𝑅
GF
𝑥
𝑡 , 𝑅

GF
𝑦
𝑡 ) for DMU

𝑘
observed in time 𝑡. The 𝑖th component

of 𝑅GF
𝑥
𝑡 is 𝑅GF

𝑥
𝑡

𝑖𝑘

= 𝑥
𝑡

𝑖𝑘
− min

𝑡
{min
𝑗
{𝑥
𝑡

𝑖𝑗
}}, 𝑖 = 1, . . . , 𝑚, and

𝑟th component of 𝑅GF
𝑦
𝑡 is 𝑅GF

𝑦
𝑡

𝑟𝑘

= max
𝑡
{max
𝑗
{𝑦
𝑡

𝑟𝑗
}} − 𝑦

𝑡

𝑟𝑗
, 𝑟 =

1, . . . , 𝑠. Now we define the PM𝐺 index in the presence of the
negative data as follows:

PM𝐺 = (
(MP𝐺 (𝑥𝑡+1, 𝑦𝑡+1, 𝑐𝐺, 𝑝𝐺) − GIP𝐺)

(OP𝐺 (𝑥𝑡+1, 𝑦𝑡+1) − GIP𝐺)
)

× (

(MP𝐺 (𝑥𝑡, 𝑦𝑡, 𝑐𝐺, 𝑝𝐺) − GIP𝐺)

(OP𝐺 (𝑥𝑡, 𝑦𝑡) − GIP𝐺)
)

−1

,

(6)

where GIP𝐺 is the profit of the global ideal point and
the superscript 𝐺 indicates that the profit of this point is
computed under the common price vectors 𝑐𝐺 and 𝑝𝐺. The
ratio (MP𝐺(𝑥𝑡, 𝑦𝑡, 𝑐𝐺, 𝑝𝐺)−GIP𝐺)/(OP𝐺(𝑥𝑡, 𝑦𝑡)−GIP𝐺) is the
profit efficiency defined in Definition 1 under the common
cost and price vectors. When the PM𝐺 index has the value
greater than 1, it means that the productivity of unit 𝑘 has
improved from the time 𝑡 to 𝑡 + 1. The productivity has
declined when the value of the PM𝐺 index is below 1 and
remains unchanged if PM𝐺 = 1. The PM𝐺 index is circular
and it can be decomposed into four circular components as
shown in the next section.

5. Decomposition of the PM𝐺 Index

In the first stage the PM𝐺 index is decomposed into two PEC𝐺

and PTC𝐺 as follows:

PM𝐺 = (
(MP𝑡+1 (𝑥𝑡+1, 𝑦𝑡+1, 𝑐𝑡+1, 𝑝𝑡+1) − GIP𝑡+1)

(OP𝑡+1 (𝑥𝑡+1, 𝑦𝑡+1) − GIP𝑡+1)
)

× (
(MP𝑡(𝑥𝑡, 𝑦𝑡, 𝑐𝑡, 𝑝𝑡) − GIP𝑡)
(OP𝑡(𝑥𝑡, 𝑦𝑡) − GIP𝑡)

)

−1

× [

[

(

(MP𝐺 (𝑥𝑡+1, 𝑦𝑡+1, 𝑐𝐺, 𝑝𝐺) − GIP𝐺)

(OP𝐺 (𝑥𝑡+1, 𝑦𝑡+1) − GIP𝐺)
)

× (

(MP𝑡+1(𝑥𝑡+1, 𝑦𝑡+1, 𝑐𝑡+1, 𝑝𝑡+1) − GIP𝑡+1)
(OP𝑡+1(𝑥𝑡+1, 𝑦𝑡+1) − GIP𝑡+1)

)

−1

× (
(MP𝑡 (𝑥𝑡, 𝑦𝑡, 𝑐𝑡, 𝑝𝑡) − GIP𝑡)
(OP𝑡 (𝑥𝑡, 𝑦𝑡) − GIP𝑡)

)

× (

(MP𝐺 (𝑥𝑡, 𝑦𝑡, 𝑐𝐺, 𝑝𝐺) − GIP𝐺)

(OP𝐺 (𝑥𝑡, 𝑦𝑡) − GIP𝐺)
)

−1

]

]

.

(7)

The termoutside the brackets in the right-hand side of (7)
represents the profit efficiency change (PEC𝐺) component of
the unit under evaluation from 𝑡 to 𝑡 + 1 and the term inside
the brackets provides the profit frontier shift (the technical
change) between the periods 𝑡 and 𝑡 + 1 under the VRS
production technologies oftwo times t and 𝑡 + 1 (PTC𝐺).
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The PEC𝐺 and PTC𝐺 components of the PM𝐺 index can
themselves be decomposed.

TheDecomposition of the𝑃𝐸𝐶𝐺.ThePEC𝐺 component can be
decomposed into two components as follows:

PEC𝐺 =
(MP𝑡+1 (𝑥𝑡+1, 𝑦𝑡+1, 𝑐𝑡+1, 𝑝𝑡+1) − GIP𝑡+1) / (OP𝑡+1 (𝑥𝑡+1, 𝑦𝑡+1) − GIP𝑡+1)RDM𝑡+1 (𝑥𝑡+1, 𝑦𝑡+1, 𝑅GF

𝑥
𝑡+1 , 𝑅

GF
𝑦
𝑡+1)

(MP𝑡 (𝑥𝑡, 𝑦𝑡, 𝑐𝑡, 𝑝𝑡) − GIP𝑡) / (OP𝑡 (𝑥𝑡, 𝑦𝑡) − GIP𝑡)RDM𝑡 (𝑥𝑡, 𝑦𝑡, 𝑅GF
𝑥
𝑡 , 𝑅

GF
𝑦
𝑡 )

×

RDM𝑡+1 (𝑥𝑡+1, 𝑦𝑡+1, 𝑅GF
𝑥
𝑡+1 , 𝑅

GF
𝑦
𝑡+1)

RDM𝑡 (𝑥𝑡, 𝑦𝑡, 𝑅GF
𝑥
𝑡 , 𝑅

GF
𝑦
𝑡 )

,

(8)

whereGIP𝑡 andGIP𝑡+1 are the profit of the global point under
the costs and prices of the periods 𝑡 and 𝑡 + 1, respectively.
The first ratio in the right-hand side of (8) is the allocative
efficiency change (AEC𝐺) components of the PM𝐺 index; and
the second ratio is the RDMwithin-period-efficiency change

(REC𝐺) of the unit that is under evaluation from 𝑡 to 𝑡 + 1;
the RDMwithin-period-efficiency change was introduced by
Portela et al. [15].

The Decomposition of 𝑃𝑇𝐶𝐺. We can decompose the PTC𝐺
into two components as follows:

PTC𝐺 =
RDM𝐺 (𝑥𝑡+1, 𝑦𝑡+1, 𝑅GF

𝑥
𝑡+1 , 𝑅

GF
𝑦
𝑡+1)RDM𝑡 (𝑥𝑡, 𝑦𝑡, 𝑅GF

𝑥
𝑡 , 𝑅

GF
𝑦
𝑡 )

RDM𝑡+1 (𝑥𝑡+1, 𝑦𝑡+1, 𝑅GF
𝑥
𝑡+1
, 𝑅

GF
𝑦
𝑡+1
)RDM𝐺 (𝑥𝑡, 𝑦𝑡, 𝑅GF

𝑥
𝑡 , 𝑅

GF
𝑦
𝑡 )

× [

[

((

MP𝐺 (𝑥𝑡+1, 𝑦𝑡+1, 𝑐𝐺, 𝑝𝐺) − GIP𝐺

(OP𝐺 (𝑥𝑡+1, 𝑦𝑡+1) − GIP𝐺)RDM𝐺 (𝑥𝑡+1, 𝑦𝑡+1, 𝑅GF
𝑥
𝑡+1
, 𝑅

GF
𝑦
𝑡+1
)

)

×(
MP𝑡+1(𝑥𝑡+1, 𝑦𝑡+1, 𝑐𝑡+1, 𝑝𝑡+1) − GIP𝑡+1

(OP𝑡+1(𝑥𝑡+1, 𝑦𝑡+1) − GIP𝑡+1)RDM𝑡+1(𝑥𝑡+1, 𝑦𝑡+1, 𝑅GF
𝑥
𝑡+1
, 𝑅

GF
𝑦
𝑡+1
)

)

−1

)

×((
MP𝑡 (𝑥𝑡, 𝑦𝑡, 𝑐𝑡, 𝑝𝑡) − GIP𝑡

(OP𝑡 (𝑥𝑡, 𝑦𝑡) − GIP𝑡)RDM𝑡 (𝑥𝑡, 𝑦𝑡, 𝑅GF
𝑥
𝑡 , 𝑅

GF
𝑦
𝑡 )

)

×(
MP𝐺(𝑥𝑡, 𝑦𝑡, 𝑐𝐺, 𝑝𝐺) − GIP𝐺

(OP𝐺(𝑥𝑡, 𝑦𝑡) − GIP𝐺)RDM𝐺(𝑥𝑡, 𝑦𝑡, 𝑅GF
𝑥
𝑡 , 𝑅

GF
𝑦
𝑡 )

)

−1

)]

]

.

(9)

The first term in the above decomposition measures the
frontier shift between the VRS frontiers of times 𝑡 and 𝑡 + 1
and the technical change (TC𝐺), along the ray (𝑥𝑡+1

𝑗
, 𝑦
𝑡+1

𝑗
)

[16]. The second term is a residual price effect (PE𝐺) part.
The numerical values of the components of the PM𝐺 index
obtained in this section are interpreted in the similar manner
as the index itself; a value below 1 indicates regress, greater
than 1 indicates progress, and 1 indicates that performance
stayed constant.

5.1. The Circularity Property of 𝑃𝑀𝐺 and All of Its Compo-
nents. Circularity is a prominent property of the PM𝐺 index
and all of its components in the presence of the negative data.
To show this property, the following theorem is stated.

Theorem3. For everyDMUj (𝑗 = 1, . . . , 𝑛), in three successive
periods,

(1) 𝑃𝑀𝐺
𝑡,𝑡+2

= 𝑃𝑀
𝐺

𝑡,𝑡+1
×𝑃𝑀
𝐺

𝑡+1,𝑡+2
(the circularity of PM𝐺),

(2) 𝑃𝐸𝐶𝐺
𝑡,𝑡+2

= 𝑃𝐸𝐶
𝐺

𝑡,𝑡+1
× 𝑃𝐸𝐶

𝐺

𝑡+1,𝑡+2
(the circularity of

PEC𝐺),
(3) 𝑃𝑇𝐶𝐺

𝑡,𝑡+2
= 𝑃𝑇𝐶

𝐺

𝑡,𝑡+1
× 𝑃𝑇𝐶

𝐺

𝑡+1,𝑡+2
(the circularity of

PTC𝐺),
(4) 𝑅𝐸𝐶𝐺

𝑡,𝑡+2
= 𝑅𝐸𝐶

𝐺

𝑡,𝑡+1
× 𝑅𝐸𝐶

𝐺

𝑡+1,𝑡+2
(the circularity of

REC𝐺),
(5) 𝐴𝐸𝐶𝐺

𝑡,𝑡+2
= 𝐴𝐸𝐶

𝐺

𝑡,𝑡+1
× 𝐴𝐸𝐶

𝐺

𝑡+1,𝑡+2
(the circularity of

AEC𝐺),
(6) 𝑇𝐶𝐺

𝑡,𝑡+2
= 𝑇𝐶
𝐺

𝑡,𝑡+1
× 𝑇𝐶
𝐺

𝑡+1,𝑡+2
(the circularity of TC𝐺),

(7) 𝑃𝐸𝐺
𝑡,𝑡+2

= 𝑃𝐸
𝐺

𝑡,𝑡+1
× 𝑃𝐸
𝐺

𝑡+1,𝑡+2
(the circularity of PE𝐺),
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where, for instance, 𝑃𝑀𝐺
𝑝,𝑞

(𝑝 = 𝑡, 𝑡 + 1, 𝑞 = 𝑡 + 1, 𝑡 + 2, 𝑝 ̸= 𝑞)
is the profit Malmquist changes between periods 𝑝 and 𝑞 for
DMU

𝑗
.

Proof. For instance, let PM𝐺
𝑝,𝑞

be the profit Malmquist
changes between periods 𝑝 and 𝑞 for DMU

𝑗
. Therefore,

PM𝐺
𝑡,𝑡+1

× PM𝐺
𝑡+1,𝑡+2

= ((

MP𝐺 (𝑥𝑡+1, 𝑦𝑡+1, 𝑐𝐺, 𝑝𝐺) − GIP𝐺

OP𝐺 (𝑥𝑡+1, 𝑦𝑡+1) − GIP𝐺
)

×(

MP𝐺 (𝑥𝑡, 𝑦𝑡, 𝑐𝐺, 𝑝𝐺) − GIP𝐺

OP𝐺 (𝑥𝑡, 𝑦𝑡) − GIP𝐺
)

−1

)

×((

MP𝐺 (𝑥𝑡+2, 𝑦𝑡+2, 𝑐𝐺, 𝑝𝐺) − GIP𝐺

OP𝐺 (𝑥𝑡+2, 𝑦𝑡+2) − GIP𝐺
)

×(

MP𝐺 (𝑥𝑡+1, 𝑦𝑡+1, 𝑐𝐺, 𝑝𝐺) − GIP𝐺

OP𝐺 (𝑥𝑡+1, 𝑦𝑡+1) − GIP𝐺
)

−1

)

= (

MP𝐺 (𝑥𝑡+2, 𝑦𝑡+2, 𝑐𝐺, 𝑝𝐺) − GIP𝐺

OP𝐺 (𝑥𝑡+2, 𝑦𝑡+2) − GIP𝐺
)

× (

MP𝐺 (𝑥𝑡, 𝑦𝑡, 𝑐𝐺, 𝑝𝐺) − GIP𝐺

OP𝐺 (𝑥𝑡, 𝑦𝑡) − GIP𝐺
)

−1

= MP𝐺
𝑡,𝑡+2

.

(10)

In other words, the global profit Malmquist change from
period 𝑡 to 𝑡 + 2 is the product of the successive global profit
Malmquist change from period 𝑡 to 𝑡 + 1 and from the period
𝑡+1 to 𝑡+2. Similarly, we can show that all of the components
are circular.

The above properties show that in the presence of the neg-
ative data the PM𝐺 index and its components are appropriate
indices in the fact that they link in clear way productivity
change indices over successive time periods.

6. The Computation of the Proposed Index
and Its Components

This section prepares someDEAmodels to compute the PM𝐺

index and its components. The observed profit OP𝐺(𝑥𝑡, 𝑦𝑡)
is computed as ∑𝑠

𝑟=1
𝑝
𝐺

𝑟
𝑦
𝑡

𝑟𝑘
− ∑
𝑚

𝑖=1
𝑐
𝐺

𝑖
𝑥
𝑡

𝑖𝑘
. Similarly, the

observed profits denoted by OP𝐺(𝑥𝑡+1, 𝑦𝑡+1), OP𝑡(𝑥𝑡, 𝑦𝑡), and
OP𝑡+1(𝑥𝑡+1, 𝑦𝑡+1) are, respectively,∑𝑠

𝑟=1
𝑝
𝐺

𝑟
𝑦
𝑡+1

𝑟𝑘
−∑
𝑚

𝑖=1
𝑐
𝐺

𝑖
𝑥
𝑡+1

𝑖𝑘
,

∑
𝑠

𝑟=1
𝑝
𝑡

𝑟
𝑦
𝑡

𝑟𝑘
− ∑
𝑚

𝑖=1
𝑐
𝑡

𝑖
𝑥
𝑡

𝑖𝑘
, and ∑𝑠

𝑟=1
𝑝
𝑡+1

𝑟
𝑦
𝑡+1

𝑟𝑘
− ∑
𝑚

𝑖=1
𝑐
𝑡+1

𝑖
𝑥
𝑡+1

𝑖𝑘
.

We can compute MP𝑡(𝑥𝑡, 𝑦𝑡, 𝑐𝑡, 𝑝𝑡) for unit 𝑘 by using the
following model:

MP𝑡 (𝑥𝑡, 𝑦𝑡, 𝑐𝑡, 𝑝𝑡)

= max
𝑠

∑

𝑟=1

𝑝
𝑡

𝑟
𝑦
𝑟
−

𝑚

∑

𝑖=1

𝑐
𝑡

𝑖
𝑥
𝑖

s.t. 𝑦
𝑟
=

𝑛

∑

𝑗=1

𝜆
𝑗
𝑦
𝑡

𝑟𝑗
≥ 𝑦
𝑡

𝑟𝑘
, 𝑟 = 1, . . . , 𝑠,

𝑥
𝑖
=

𝑛

∑

𝑗=1

𝜆
𝑗
𝑥
𝑡

𝑖𝑗
≤ 𝑥
𝑡

𝑖𝑘
, 𝑖 = 1, . . . , 𝑚,

𝑛

∑

𝑗=1

𝜆
𝑗
= 1,

𝜆
𝑗
≥ 0, 𝑗 = 1, . . . , 𝑛.

(11)

Similarly, we will have

MP𝐺 (𝑥𝑡, 𝑦𝑡, 𝑐𝐺, 𝑝𝐺)

= max
𝑠

∑

𝑟=1

𝑝
𝐺

𝑟
𝑦
𝑟
−

𝑚

∑

𝑖=1

𝑐
𝐺

𝑖
𝑥
𝑖

s.t. 𝑦
𝑟
=

𝑇

∑

𝑡=1

𝑛

∑

𝑗=1

𝜆
𝑡

𝑗
𝑦
𝑡

𝑟𝑗
≥ 𝑦
𝑡

𝑟𝑘
, 𝑟 = 1, . . . , 𝑠,

𝑥
𝑖
=

𝑇

∑

𝑡=1

𝑛

∑

𝑗=1

𝜆
𝑡

𝑗
𝑥
𝑡

𝑖𝑗
≤ 𝑥
𝑡

𝑖𝑘
, 𝑖 = 1, . . . , 𝑚,

𝑇

∑

𝑡=1

𝑛

∑

𝑗=1

𝜆
𝑡

𝑗
= 1,

𝜆
𝑡

𝑗
≥ 0, 𝑗 = 1, . . . , 𝑛, 𝑡 = 1, . . . 𝑇,

MP𝐺 (𝑥𝑡+1, 𝑦𝑡+1, 𝑐𝐺, 𝑝𝐺)

= max
𝑠

∑

𝑟=1

𝑝
𝐺

𝑟
𝑦
𝑟
−

𝑚

∑

𝑖=1

𝑐
𝐺

𝑖
𝑥
𝑖

s.t. 𝑦
𝑟
=

𝑇

∑

𝑡=1

𝑛

∑

𝑗=1

𝜆
𝑡

𝑗
𝑦
𝑡

𝑟𝑗
≥ 𝑦
𝑡+1

𝑟𝑘
, 𝑟 = 1, . . . , 𝑠,

𝑥
𝑖
=

𝑇

∑

𝑡=1

𝑛

∑

𝑗=1

𝜆
𝑡

𝑗
𝑥
𝑡

𝑖𝑗
≤ 𝑥
𝑡+1

𝑖𝑘
, 𝑖 = 1, . . . , 𝑚,

𝑇

∑

𝑡=1

𝑛

∑

𝑗=1

𝜆
𝑡

𝑗
= 1,

𝜆
𝑡

𝑗
≥ 0, 𝑗 = 1, . . . , 𝑛, 𝑡 = 1, . . . 𝑇.

(12)

The termMP𝑡+1(𝑥𝑡+1, 𝑦𝑡+1, 𝑐𝑡+1, 𝑝𝑡+1) can be computed by
using model (11) after replacing the time period 𝑡 with 𝑡 + 1.
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Table 1: Input, outputs, and their cost and prices for 3 successive periods.

DMU 𝑡 = 1 𝑡 = 2 𝑡 = 3

𝐼 𝑐
1

𝑂1 𝑂2 𝑝
1

1
𝑝
1

2
𝐼 𝑐

2
𝑂1 𝑂2 𝑝

2

1
𝑝
2

2
𝐼 𝑐

3
𝑂1 𝑂2 𝑝

3

1
𝑝
3

2

DMU1 3 2 −2 1 1 3 4 2.3 −1 2 1.1 3.2 6.5 3 −1 3 1.4 4
DMU2 7 2 −3 3 1 3 7 2.3 −3 5 1.1 3.2 9 3 −4 5 1.4 4
DMU3 2 2 −4 3.5 1 3 4 2.3 −5 6 1.1 3.2 3 3 −4 7 1.4 4
DMU4 4 2 −1 1 1 3 3 2.3 −2 2 1.1 3.2 6 3 −2 1 1.4 4

Table 2: The results of the global profit Malmquist, profit efficiency change, and profit technical change.

DMU PM𝐺
𝑡,𝑠

PEC𝐺
𝑡,𝑠

PTC𝐺
𝑡,𝑠

PM𝐺
1,2

PM𝐺
2,3

PM𝐺
1,3

PEC𝐺
1,2

PEC𝐺
2,3

PEC𝐺
1,3

PTC𝐺
1,2

PTC𝐺
2,3

PTC𝐺
1,3

DMU1 1.1611 1 1.1611 1 1.1816 1.1816 1.1611 0.8463 0.9827
DMU2 1.3049 0.4695 0.6127 0.9999 0.2704 0.2704 1.3049 1.7366 2.2661
DMU3 0.4978 2.009 1 0.9999 1.4038 1.4038 0.4978 1.431 0.7123
DMU4 1.1555 0.5363 0.6197 0.9997 0.6657 0.6657 1.1555 0.8057 0.931
Avg. 1.0298 1.0037 0.8484 0.9999 0.8804 0.8804 1.0298 1.2049 1.223

For computing RDM𝑡(𝑥𝑡
𝑘
, 𝑦
𝑡

𝑘
, 𝑅

GF
𝑥
𝑡

𝑘

, 𝑅
GF
𝑦
𝑡

𝑘

) that is equal to
1 − 𝛽
∗

𝑘
we first calculate 𝛽∗

𝑘
by using model (1) after replacing

𝑅
𝑥
𝑡

𝑖𝑘

and 𝑅
𝑦
𝑡

𝑟𝑘

with 𝑅
GF
𝑥
𝑡

𝑖𝑘

and 𝑅
GF
𝑦
𝑡

𝑟𝑘

, respectively. Similarly,
we can compute the value of RDM𝑡+1(𝑥𝑡+1

𝑘
, 𝑦
𝑡+1

𝑘
, 𝑅

GF
𝑥
𝑡+1

𝑘

, 𝑅
GF
𝑦
𝑡+1

𝑘

)

after replacing the time period 𝑡with 𝑡+1. In order to compute
RDM𝐺(𝑥𝑡

𝑘
, 𝑦
𝑡

𝑘
, 𝑅

GF
𝑥
𝑡

𝑘

, 𝑅
GF
𝑦
𝑡

𝑘

) = 1 − 𝛽
∗

𝑘
, we first extend model

(1) for the case that the production technology formed from
all DMUs observed in all time periods (𝑇𝐺). The proposed
model is shown in (13). In fact, the optimal value of model
(13),𝛽∗

𝑘
, is an inefficiency of DMU

𝑘
along direction (𝑔

𝑥
, 𝑔
𝑦
) =

(𝑅
GF
𝑥
𝑡

𝑘

, 𝑅
GF
𝑦
𝑡

𝑘

) under the global production technology 𝑇𝐺:

𝛽
∗

𝑘
= max 𝛽

𝑘

s.t.
𝑇

∑

𝑡=1

𝑛

∑

𝑗=1

𝜆
𝑡

𝑗
𝑥
𝑡

𝑖𝑗
≤ 𝑥
𝑡

𝑖𝑘
− 𝛽
𝑘
𝑅
GF
𝑥
𝑡

𝑖𝑘

, 𝑖 = 1, . . . , 𝑚,

𝑇

∑

𝑡=1

𝑛

∑

𝑗=1

𝜆
𝑡

𝑗
𝑦
𝑡

𝑟𝑗
≥ 𝑦
𝑡

𝑟𝑘
+ 𝛽
𝑘
𝑅
GF
𝑦
𝑡

𝑟𝑘

, 𝑟 = 1, . . . , 𝑠,

𝑇

∑

𝑡=1

𝑛

∑

𝑗=1

𝜆
𝑡

𝑗
= 1,

𝜆
𝑡

𝑗
≥ 0, 𝑗 = 1, . . . , 𝑛, 𝑡 = 1, . . . 𝑇.

(13)

RDM𝐺(𝑥𝑡+1
𝑘
, 𝑦
𝑡+1

𝑘
, 𝑅

GF
𝑥
𝑡+1

𝑘

, 𝑅
GF
𝑦
𝑡+1

𝑘

) iscomputed using model
(13) after replacing the time period 𝑡 with 𝑡 + 1.

By replacing the values obtained from the above models
in the formulations of PM𝐺 index and its components, the
values of them can be computed. A value greater than 1 of
PM𝐺 index and its components indicates the regress and a
value less than 1 implies the progress between periods 𝑡 and
𝑡 + 1. A value equal to 1 indicates that there is not any change
between two time periods.

7. Numerical Example

This section illustrates the property of PM𝐺 and its compo-
nents, for example, the circularity property, using a numerical
example. Table 1 shows units DMU1–DMU4 with one input
(I) and two outputs (O1 and O2) and their cost (𝑐𝑡) and prices
(𝑝𝑡
1
and 𝑝𝑡

2
) for 3 successive periods.

To compute the PM𝐺 indices and their components by
using the data in Table 1, suppose that the preferences about
the input costs and output prices are available and have been
specified by decision-makers as 𝜆

𝑗
= 𝜇
𝑗
= (1/3) (𝑗 = 1, 2, 3).

Therefore, the common costs and prices are obtained by using
the decision-makers’ preferences:

𝑐
𝐺
=
1

3
𝑐
1
+
1

3
𝑐
2
+
1

3
𝑐
3
= 2.4333,

𝑝
𝐺
=
1

3
𝑝
1
+
1

3
𝑝
2
+
1

3
𝑝
3
= (1.6667, 3.4) .

(14)

By using the data of periods 1, 2, and 3, the inputs and
the outputs of the global ideal point will be 2, −1, and 7,
respectively.

Table 2 shows PM𝐺
𝑡,𝑠
, PEC𝐺
𝑡,𝑠
, andTEC𝐺

𝑡,𝑠
of all of theDMUs

for 𝑡 = 1, 2, 𝑠 = 2, 3, and 𝑠 ̸= 𝑡. For instance, the columns 2, 3,
and 4 in Table 2 show PM𝐺

1,2
, PM𝐺
2,3
, and PM𝐺

1,3
, respectively.

For DMU2, as an example, we have PMG
1,2
= 1.3049 > 1.

That is, the productivity of DMU2 in period 2 is more than its
productivity in period 1 and hence the productivity has been
improved from the time period 1 to 2.

According to PM𝐺
2,3
= 0.46951 < 1, the productivity of

DMU2 in period 3 is less than its productivity in period 2. By
the circularity property of the profit Malmquist change, we
can conclude that PM𝐺

1,3
= PM𝐺

1,2
×PM𝐺
2,3
= 1.3049×0.4695 =

0.6127.
Looking at the average values in Table 2, for example, we

can see that the average global profit Malmquist index of
all of the DMUs from the first period to the second period
(1.0298) is higher than their average global profit Malmquist
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Table 3: The results of the RDM within-period-efficiency and allocative efficiency change.

DMU REC𝐺
𝑡,𝑠

AEC𝐺
𝑡,𝑠

REC𝐺
1,2

REC𝐺
2,3

REC𝐺
1,3

AEC𝐺
1,2

AEC𝐺
2,3

AEC𝐺
1,3

DMU1 2.1333 1.5 3.2 0.4688 0.7878 0.3693
DMU2 0.9821 0.4156 0.4082 1.0182 0.6506 0.6624
DMU3 1.75 2 3.5 0.5714 0.7019 0.4011
DMU4 1.3333 0.25 0.3333 0.75 2.6627 1.997
Avg. 1.5497 1.0414 1.8604 0.7021 1.2007 0.8574

Table 4: The results of the frontier shift between the VRS frontiers and price effect.

DMU TC𝐺
𝑡,𝑠

PE𝐺
𝑡,𝑠

TC𝐺
1,2

TC𝐺
2,3

TC𝐺
1,3

PE𝐺
1,2

PE𝐺
2,3

PE𝐺
1,3

DMU1 0.6064 0.5063 0.307 1.9147 1.6715 3.2004
DMU2 1.4915 1.5912 2.3733 0.8749 1.0914 0.9549
DMU3 0.45 0.8254 0.3714 1.1062 1.7338 1.9178
DMU4 0.9 1.6234 1.461 1.2839 0.4963 0.6372
Avg. 0.862 1.1366 1.1282 1.2949 1.2483 1.6776

index from the second period to the third period (1.0037).
The average of columns 2, 3, and 4 in Table 2 shows that the
average growth of all of the DMUs from the first period to the
third period is less than their growth from period 1 to period
2 and that from period 2 to period 3. A similar discussion can
be made for the other columns of Table 2.

Tables 3 and 4 illustrate the results from the RDMwithin-
period-efficiency change, allocative efficiency change, the
frontier shift between the VRS frontiers, and residual price
change from different periods to the periods 2 and 3, and the
averages are shown in the last row of these tables.

For example, the frontier shift between the VRS frontiers
along the ray (𝑥2

1
, 𝑦
2

1
) from period 1 to period 2 is 0.6064; that

is, there is a decrease in technical progress for DMU1 from
period 1 to period 2.

Using the average values in Table 4, for example, we can
see that the average frontier shifts between the VRS frontiers
along the rays (𝑥2

1
, 𝑦
2

1
), (𝑥2
2
, 𝑦
2

2
), (𝑥2
3
, 𝑦
2

3
), and (𝑥2

4
, 𝑦
2

4
) of all of

the DMUs from the first period to the second period (0.862)
are less than their average frontier shifts between the VRS
frontiers along the rays (𝑥3

1
, 𝑦
3

1
), (𝑥3
2
, 𝑦
3

2
), (𝑥3
3
, 𝑦
3

3
), and (𝑥3

4
, 𝑦
3

4
)

from the second period to the third period (1.1366).The value
PE𝐺
1,2
= 0.8749 < 1, for DMU2 as an example, for the PE𝐺

component, indicates that the effect of input cost changes
from the first period to the second period is detrimental to
productivity.

8. Conclusions

Under the VRS assumption allocative and profit efficiencies
have been defined for the case that the dataset contains
the inputs and/or outputs with the negative values in data
envelopment analysis. The definitions could be generalized
when the unit cost of the ith input (𝑖 = 1, . . . , 𝑚) or
the unit price of the 𝑟th output (𝑟 = 1, . . . , 𝑠) of all of
DMUs is different. The proposed PM𝐺 index decomposed

into some components in two stages. The RDM and the
defined efficiencies were used to compute the proposed index
and its components. The interpretations of the components
were presented. A numerical example has been presented for
three successive periods of time to illustrate the properties
of PM𝐺 and its components in the presence of the negative
inputs and outputs.
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