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We address the most general case of multiperiod, multiproduct network planning problems, where we allow spoilage on arcs
and storage at nodes. In our models, all network parameters change over time and products. The minimum-cost flow problem
in the discrete-time model with varying network parameters is investigated when we allow storage and/or spoilage, and some
reformulation techniques employing polyhedrals are developed to obtain optimal solutions for a predefined horizon. Our methods
rely on appropriate definitions of polyhedrals and matrices that lead to LP problems comprising a set of sparse subproblems
with special structures. Knowing that computational expenses of solving such a large-scale planning problem can be decreased
by using decomposition techniques, the special structure of polyhedrals is utilized to develop algorithmic approaches based on
decomposition techniques to handle the global problem aiming to save computational resources.

1. Introduction

Static network flows are very common in the literature [1].
However, they fail to capture the time-varying property of
many practical applications, such as production-distribution
systems, traffic planning, communication networks, and
evacuation planning [2–10]. A static flow cannot properly
consider the evolution of such systems over time.Theneed for
more realistic models led to the development of multiperiod
and dynamic network flow formulations which have been
applied to a variety of applications. In such applications,
flow values on arcs are not constant but may change over
time and not only the amount of flow to be transmitted
but also the time needed for the transmission plays an
essential role. Capacitated dynamic networks arise in a variety
of relevant decision making problems (Aronson [2], Cai
et al. [3], Hoppe [4], Wayne [5], Lozovanu [6], Hosseini [7],
Newman et al. [8], Pantelides [9], Groß and Skutella [10, 11],
and Stefansson et al. [12]). In some practical applications
the network structure and problem parameters may be time-
varying (time-dependent network flow) [11, 13, 14], and there
is no guarantee for the flow to be conserved [5, 15–17].

Motivated by time-dependent multi-item distribution
planning problems, we study an extension of this class
of problems as network problems which generalize the
problems in Hosseini and Saridarq [14, 15] by includ-
ing horizon capacities, time-commodity varying capacities,
time-commodity varying costs, and time-commodity varying
loss/gain factors over a finite horizon. This study focuses on
the minimum cost dynamic flows (MCDF) on multiperiod
multiproduct networks (MMN) where spoilage over arcs and
storage on nodes are allowed. In such networks, an arc is
assigned a nonnegative time-commodity varying gain/loss
factor, two nonnegative time and time-commodity varying
capacity functions, a nonnegative horizon capacity, and a
nonnegative time-commodity varying cost function. In our
setting, a positive time-commodity varying factor represents
the fraction of flow that remains when it is sent at a specific
time period. MMNs have many interesting applications [18–
23].

There are some approaches to address multiperiod net-
work problems such as state-task network [23] and resource-
task network [9], with important differences with respect
to the assumption of continuity or discreteness of the
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time horizon. Jackson et al. [18, 19] use temporal and
spatial Lagrangean decompositions to solve the multisite
multiperiod planning problems. Chen and Pinto [24] use
Lagrangean-based decomposition techniques for solving the
temporal decomposition of a continuous flexible process net-
work; they use subgradientmethods to solve the decomposed
problem. Neiro and Pinto [25] use temporal Lagrangean
decomposition to solve a multiperiod mixed-integer non-
linear programming planning problem under uncertainty
concerning a petroleum refinery.

We consider nonsimultaneous shipment of commodities
from production sites (sources) to markets (sinks) in a dis-
tribution network with known production capacities where
demand should be satisfied from available supply with time-
commodity dependent shipments during a planning horizon
represented in discrete time periods. Hence, the problem is a
decision problem that finds an optimal dynamic flow mini-
mizing a predefined nonnegative distribution cost function.
We formulate a MCDF problem on a MMN with special
structures that permit efficient computation of its solution
and help save storage requirements. Our approach relies
on appropriately defining polyhedral sets. We develop some
decomposition-based approaches to solve theminimum-cost
flow problem employing polyhedral sets embedded within
the underlying network.

The organization of this paper is as follows. We dis-
cuss the necessary notations and time representations in
Section 2; we introduce and analyze the minimum cost flow
problem on multiperiod multiproduct distribution planning
networks including spoilage in Section 3. Section 4 discusses
the same problem while spoilage and/or storage become
the key elements of the problem formulation. In Section 5,
we discuss some special cases of the problem and propose
some alternative approaches. Section 6 reports a real-life
application and presents some computational experiments.

2. Minimum-Cost Flow Problem on
Multiperiod Multiproduct Networks

Many planning problems arising in large-scale systems can
be formulated as a minimum-cost multiperiod (dynamic)
multiproduct network flow problem [2–6]. Towards this goal,
the single-commodity dynamic flow problem formulations
can be extended to consider a multiproduct network. In the
MCDF problem on MMN, there exists a set of products
that are manufactured in several multiproduct production
sites (sources) and shipped to a set of markets (sinks) where
they are sold. The aim is to find a time-dependent distri-
bution plan to nonsimultaneously ship the products from
source nodes to sink nodes through a network honoring the
arc capacities (time-varying, time-commodity varying, and
horizon capacities) at a minimal cost during a finite-length
planning horizon. 𝐺 = (𝑉,𝐴, 𝑇, 𝑘) denotes a distribution
(directed) network where V is the set of production and
demand sites (nodes), A is the set of all possible connections
between sites (arcs), 𝐾 = {1, 2, . . . , 𝑘} is the set of products,
and 𝑇 represents the length of the planning horizon. With
dynamic flow decision variable 𝑥

𝑖𝑗𝑞
(𝑡) as the vector of flow

rates of commodity 𝑞 entering arc (𝑖, 𝑗) at time period 𝑡, the
formulation for the MCDF on MMN becomes

Continuous-Time-MCDF

Min
𝑥𝑖𝑗𝑞(𝑡)

∑

𝑞∈𝐾

∑

(𝑖,𝑗)∈𝐴

∫

𝑇

0

𝑐
𝑖𝑗𝑞 (𝑡) 𝑥𝑖𝑗𝑞 (𝑡) 𝑑𝑡,

(1)

∑

𝑗

∫

𝑇

0

𝑥
𝑖𝑗𝑞 (𝑡) 𝑑𝑡 −∑

𝑗

∫

𝑇

0

𝑥
𝑗𝑖𝑞 (𝑡) 𝑑𝑡 = 𝑉𝑖𝑞 ∀𝑖 ∈ 𝑉, ∀𝑞 ∈ 𝐾,

(2)

∑

𝑞∈𝐾

∫

𝑇

0

𝑥
𝑖𝑗𝑞 (𝑡) 𝑑𝑡 ≤ 𝑢𝑖𝑗 ∀ (𝑖, 𝑗) ∈ 𝐴, (3)

∑

𝑞∈𝐾

𝑥
𝑖𝑗𝑞 (𝑡) ≤ 𝑢𝑖𝑗 (𝑡) ∀ (𝑖, 𝑗) ∈ 𝐴, ∀𝑡 ∈ [0, 𝑇] , (4)

0 ≤ 𝑥
𝑖𝑗𝑞 (𝑡) ≤ 𝑢𝑖𝑗𝑞 (𝑡) ∀ (𝑖, 𝑗) ∈ 𝐴, ∀𝑞 ∈ 𝐾, ∀𝑡 ∈ [0, 𝑇] ,

(5)

where 𝑐
𝑖𝑗𝑞

: [0, 𝑇] → 𝐼𝑅
+ is the nonnegative cost

function with respect to product 𝑞 and 𝑉
𝑖𝑞

denotes the
predefined supply/demand capacities at node 𝑖 over the
entire planning horizon. Constraint (2) involves the flow
conservation constraints for each commodity. We refer to (3)
as horizon capacity constraints; horizon capacity of an arc
limits the amount of total flow (of all commodities) on the
arc throughout the entire planning horizon. Constraint (4)
represents the maximum possible amount of total flow that
can enter (𝑖, 𝑗) at time 𝑡: it is referred to as themoment/period
capacity constraint. Constraint (5) is the time-commodity
varying capacity constraint for each commodity at each
moment.

Theproblem formulation in (1)–(5) representsMCDF in a
continuous-time setting. However, as an approximation to this
setting, time may be represented in discrete increments [25].
The continuous-time problem seeks for the multiproduct
flow distributed continuously over time within period [0, 𝑇]
while the discrete case determines the flow rates over discrete
time periods. For a finite-length planning horizon 𝑇, we
denote the time horizon𝑁 = {0, 1, . . . , 𝑇 − 1} in the discrete-
time model. There is a natural transformation of continuous-
time dynamic (multiproduct) flow 𝑥 to a discrete flow 𝑥 of the
same horizon and vice versa [3, 4]. Let 𝑥

𝑖𝑗𝑞
(𝑡) represent the

total amount of flow sent into arc (𝑖, 𝑗) during time interval
[𝑡, 𝑡 + 1); then

𝑥
𝑖𝑗𝑞 (𝑡) := ∫

𝑡+1

𝑡

𝑥
𝑖𝑗𝑞 (𝜉) 𝑑𝜉, 𝑢

𝑖𝑗𝑞 (𝑡) := ∫

𝑡+1

𝑡

𝑢
𝑖𝑗𝑞 (𝜉) 𝑑𝜉,

𝑐
𝑖𝑗𝑞 (𝑡) := 𝑐𝑖𝑗𝑞 (𝜉𝑡)

∀𝑞 ∈ 𝐾,

(6)

where 𝜉
𝑡
∈ (𝑡, 𝑡 + 1), 𝑡 ∈ 𝑁, and ∫𝑡+1

𝑡
𝑐
𝑖𝑗𝑞
(𝜉)𝑥
𝑖𝑗𝑞
(𝜉)𝑑𝜉 =

𝑐
𝑖𝑗𝑞
(𝜉
𝑡
) ∫
𝑡+1

𝑡
𝑥
𝑖𝑗𝑞
(𝜉)𝑑𝜉 ∀𝑞 ∈ 𝐾.
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The last equality follows as 𝑐 and 𝑥 are nonnegative
continuous functions (see [26–28]). For any discrete time
period 𝑡, any commodity 𝑞, and time horizon 𝑇, it is easy to
verify that flow conservation constraints hold and 𝑥 satisfies
all such constraints and also the flow cost is preserved as

∑

𝑞∈𝐾

∑

(𝑖,𝑗)∈𝐴

∫

𝑇

0

𝑐
𝑖𝑗𝑞 (𝜉) 𝑥𝑖𝑗𝑞 (𝜉) 𝑑𝜉

= ∑

𝑞∈𝐾

∑

(𝑖,𝑗)∈𝐴

𝑇−1

∑

𝑡=0

𝑐
𝑖𝑗𝑞
(𝜉
𝑡
) ∫

𝑡+1

𝑡

𝑥
𝑖𝑗𝑞 (𝜉) 𝑑𝜉

= ∑

𝑞∈𝐾

∑

(𝑖,𝑗)∈𝐴

∑

𝑡∈𝑁

𝑐
𝑖𝑗𝑞 (𝑡) 𝑥𝑖𝑗𝑞 (𝑡) .

(7)

3. Multiperiod Multiproduct Network Flows
with Spoilage (SMMN)

Any of the models discussed up to now has a fundamental
assumption: the flow has to be conserved on any arc with
respect to any commodity. However, some practical applica-
tions do not satisfy such a conservation assumption [1, 17].
In the transmission of a volatile gas, for example, we may
lose some portion of the flow due to evaporation; or, in the
transmission of liquids such as raw petroleum crude, some
flow may be lost due to leakage [5]. The SMMN problem is a
natural generalization of the problems stated in [14, 15].When
spoilage on arcs is also considered, each arc (𝑖, 𝑗) has a time-
commodity varying nonnegative gain/loss factor 𝜆

𝑖𝑗𝑞
(𝑡) with

respect to each time period time 𝑡 and commodity 𝑞. When
𝑥
𝑖𝑗𝑞
(𝑡) units of flow of commodity 𝑞 are sent from node 𝑖 via

arc (𝑖, 𝑗) at time 𝑡, 𝜆
𝑖𝑗𝑞
(𝑡)𝑥
𝑖𝑗𝑞
(𝑡) units of flow arrive at node 𝑗

at the same time. If 𝜆
𝑖𝑗𝑞
(𝑡) < 1, the arc is lossy; if 𝜆

𝑖𝑗𝑞
(𝑡) ≥ 1

the arc is gainy on that time with respect to that commodity.
Therefore, if there is spoilage (loss) of flow on an arc during
all periods with respect to all commodities, the mathematical
model may be modified only by assigning a loss factor to the
related arc. Then,

∑

𝑗

∫

𝑇

0

𝑥
𝑖𝑗𝑞 (𝑡) 𝑑𝑡 −∑

𝑗

∫

𝑇

0

𝜆
𝑗𝑖𝑞 (𝑡) 𝑥𝑗𝑖𝑞 (𝑡) 𝑑𝑡 = 𝑉𝑖𝑞

∀𝑖 ∈ 𝑉, ∀𝑞 ∈ 𝐾.

(8)

Such a production-distribution planning problem in
discrete-time setting has an underlying graph 𝐺 = (𝑉,

𝐴, 𝑇,𝐾) consisting of three capacity functions: 𝑢𝑡
𝑞
: 𝐴 × 𝑁 ×

𝐾 → 𝐼𝑅
+, 𝑢𝑡 : 𝐴 × 𝑁 → 𝐼𝑅

+, and 𝑢 : 𝐴 → 𝐼𝑅
+, a

predefined nonnegative cost function 𝑐𝑡
𝑞
: 𝐴 × 𝑁 × 𝐾 →

𝐼𝑅
+, and a predefined nonnegative time-commodity varying

gain/loss function 𝜆𝑡
𝑞
: 𝐴 × 𝑁 × 𝐾 → 𝐼𝑅

+. Therefore,
a discrete feasible dynamic flow is a nonnegative function

𝑥 = {𝑥
𝑡

𝑖𝑗𝑞
} : 𝐴 × 𝑁 × 𝐾 → 𝐼𝑅

+ satisfying (9)–(13), and the
discrete-timeminimum-cost dynamic flowproblembecomes

Discrete-Time-MCDF Min
𝑥
𝑡

𝑖𝑗𝑞

∑

𝑞∈𝐾

∑

𝑡∈𝑁

∑

(𝑖,𝑗)∈𝐴

𝑐
𝑡

𝑖𝑗𝑞
𝑥
𝑡

𝑖𝑗𝑞
, (9)

∑

𝑗

𝑇−1

∑

𝑡=0

𝑥
𝑡

𝑖𝑗𝑞
−∑

𝑗

𝑇−1

∑

𝑡=0

𝜆
𝑡

𝑗𝑖𝑞
𝑥
𝑡

𝑗𝑖𝑞
= V
𝑖𝑞

∀𝑖 ∈ 𝑉, ∀𝑞 ∈ 𝐾, (10)

∑

𝑞∈𝐾

∑

𝑡∈𝑁

𝑥
𝑡

𝑖𝑗𝑞
≤ 𝑢
𝑖𝑗
∀ (𝑖, 𝑗) ∈ 𝐴, (11)

∑

𝑞∈𝐾

𝑥
𝑡

𝑖𝑗𝑞
≤ 𝑢
𝑡

𝑖𝑗
∀ (𝑖, 𝑗) ∈ 𝐴, ∀𝑡 ∈ 𝑁, (12)

0 ≤ 𝑥
𝑡

𝑖𝑗𝑞
≤ 𝑢
𝑡

𝑖𝑗𝑞
∀ (𝑖, 𝑗) ∈ 𝐴, ∀𝑞 ∈ 𝐾, ∀𝑡 ∈ 𝑁, (13)

where we suppose that the arc capacity 𝑢𝑡
𝑖𝑗𝑞

is an upper bound
on the 𝑞-flow (flow of commodity 𝑞) sent from node 𝑖 at
time period 𝑡, not on the flow that becomes available at node
𝑗. Similarly, 𝑐𝑡

𝑖𝑗𝑞
should be interpreted as the cost for each

unit of flow which is sent from node 𝑖. In order to benefit
from an efficient decomposition-based solution method by
transforming the formulation structure, we introduce an
unrestricted variable V𝑡

𝑖𝑞
, and the formulation becomes

Discrete-Time-MCDF (SMMN)

Min
𝑥
𝑡

𝑖𝑗𝑞
,V𝑡
𝑖𝑞

∑

𝑞∈𝐾

∑

𝑡∈𝑁

∑

(𝑖,𝑗)∈𝐴

𝑐
𝑡

𝑖𝑗𝑞
𝑥
𝑡

𝑖𝑗𝑞
,

(14)

(∑

𝑗

𝑥
𝑡

𝑖𝑗𝑞
−∑

𝑗

𝜆
𝑡

𝑗𝑖𝑞
𝑥
𝑡

𝑗𝑖𝑞
) − V𝑡

𝑖𝑞
= 0

∀𝑖 ∈ 𝑉, ∀𝑞 ∈ 𝐾, ∀𝑡 ∈ 𝑁,

(15)

∑

𝑡∈𝑁

V𝑡
𝑖𝑞
= V
𝑖𝑞

∀𝑖 ∈ 𝑉, ∀𝑞 ∈ 𝐾, (16)

∑

𝑞∈𝐾

∑

𝑡∈𝑁

𝑥
𝑡

𝑖𝑗𝑞
≤ 𝑢
𝑖𝑗
∀ (𝑖, 𝑗) ∈ 𝐴, (17)

∑

𝑞∈𝐾

𝑥
𝑡

𝑖𝑗𝑞
≤ 𝑢
𝑡

𝑖𝑗
∀ (𝑖, 𝑗) ∈ 𝐴, ∀𝑡 ∈ 𝑁, (18)

0 ≤ 𝑥
𝑡

𝑖𝑗𝑞
≤ 𝑢
𝑡

𝑖𝑗𝑞
∀ (𝑖, 𝑗) ∈ 𝐴, ∀𝑞 ∈ 𝐾, ∀𝑡 ∈ 𝑁, (19)

where V𝑡
𝑖𝑞
denotes the difference between the outflow and the

inflow of commodity 𝑞 at node 𝑖 at period 𝑡. It is easy to
check that conditions (15) and (16) together are equivalent to
condition (10). To develop our polyhedral-based approachwe
need to define the node-arc incidence matrix including the
time component of the problem. Given an underlying SMM
network and predefined loss/gain factors, we introduce an
auxiliarymatrix [Φ𝑡

𝑞
]
𝑛×𝑚

for a time period 𝑡 and for a product
𝑞 as

[Φ
𝑡

𝑞
]
𝑛×𝑚

:= [A]𝑛×𝑚 × [Σ
𝑡

𝑞
]
𝑚×𝑚

, (20)

where [A] is the node-arc incidence matrix of the underlying
distribution network (which remains unchanged during the
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planning horizon) and [Σ𝑡
𝑞
] is a𝑚×𝑚-diagonal matrix whose

elements are the predefined arc factors (at time 𝑡with respect
to 𝑞) in the same order that arcs appear in 𝑚-vector [X𝑡

𝑞
]
𝑚×1

(𝑚 is the number of arcs of the network). For a time period 𝑡
and a commodity 𝑞, we construct [B𝑡

𝑞
]
𝑛×𝑚

as

[B𝑡
𝑞
]
𝑖𝑗
:=
{

{

{

[Φ
𝑡

𝑞
]
𝑖𝑗

if [Φ𝑡
𝑞
]
𝑖𝑗
≤ 0,

1 if [Φ𝑡
𝑞
]
𝑖𝑗
> 0,

(21)

where [B𝑡
𝑞
]
𝑖𝑗
and [Φ𝑡

𝑞
]
𝑖𝑗
represent the (𝑖, 𝑗)th elements of

the matrices [B𝑡
𝑞
] and [Φ𝑡

𝑞
], respectively. We refer to matrix

[B𝑡
𝑞
]
𝑛×𝑚

as the t-q-node-arc incidence matrix of the SMM
network, and it represents the node-arc incidence matrix
of SMMN at time 𝑡 for commodity 𝑞. Due to the changes
in arc factors over time and commodity, incident matrices
are not necessarily the same during the complete planning
horizon with respect to each product. However, since the
time-commodity varying gain/loss functions are predefined,
all matrices can be computed off-line.

Substituting V𝑡
𝑖𝑞+
− V𝑡
𝑖𝑞−

for V𝑡
𝑖𝑞

(V𝑡
𝑖𝑞+

≥ 0, V𝑡
𝑖𝑞−

≥ 0),
considering relations (20)-(21), with appropriately vectors
and matrices, the problem formulation, indeed, yields the
following:

Min
X𝑡
𝑞
,V𝑡
𝑞+
,V𝑡
𝑞−

∑

t∈N
[C𝑡
1
C𝑡
2
⋅ ⋅ ⋅ C𝑡

𝐾
] [X𝑡
1
X𝑡
2
⋅ ⋅ ⋅ X𝑡

𝐾
]
trans
,

∑

𝑡∈N
([X𝑡
1
] + ⋅ ⋅ ⋅ + [X𝑡

𝐾
]) ≤ [U]𝑚×1,

∑

𝑡∈N
([V𝑡
𝑞+
] − [V𝑡

𝑞−
]) = [V

𝑞
]
𝑛×1

∀𝑞 ∈ 𝐾,

[B𝑡
𝑞
]
𝑛×𝑚
[X𝑡
𝑞
] − [Ι]𝑛 [V

𝑡

𝑞+
] + [Ι]𝑛 [V

𝑡

𝑞−
] = [0]𝑛×1

∀𝑡 ∈ 𝑁, ∀𝑞 ∈ 𝐾,

[X𝑡
1
] + ⋅ ⋅ ⋅ + [X𝑡

𝐾
] ≤ [U𝑡]

𝑚×1
∀𝑡 ∈ 𝑁,

[0]𝑚×1 ≤ [X
𝑡

𝑞
]
𝑚×1

≤ [U𝑡
𝑞
]
𝑚×1

∀𝑡 ∈ 𝑁, ∀𝑞 ∈ 𝐾,

[V𝑡
𝑞+
]
𝑛×1
≥ [0]𝑛×1, [V𝑡

𝑞−
]
𝑛×1
≥ [0]𝑛×1

∀𝑡 ∈ 𝑁, ∀𝑞 ∈ 𝐾,

(22)

where [V𝑡
𝑞
] and [V

𝑞
] are defined as the vector of free variables

at time 𝑡 with respect to commodity 𝑞 and the vector of
supply/demand numbers with respect to commodity 𝑞. [X𝑡

𝑞
]

and [U𝑡
𝑞
] are the 𝑚-vectors of flow and capacities in 𝑡 for

commodity 𝑞. [U] is the 𝑚-vector of horizon capacities and
[U𝑡] is the 𝑚-vector of period capacities with respect to
period 𝑡. Let [C𝑡

𝑞
] represent the vector of arc costs at 𝑡 ∈ 𝑁

for commodity 𝑞. Please see Appendix A for further details.
With our modeling approach, we can formulate any

MCDF problem on a SMMN as a problem which possesses
the block angular structure. In order to demonstrate this, we
define

[C𝑡] := (C𝑡
1
C𝑡
2
⋅ ⋅ ⋅ C𝑡

𝐾
0 0 0 0 ⋅ ⋅ ⋅ 0 0 0) 𝑡 ∈ {0, 1, . . . , 𝑇} ,

[Y𝑡] := (X𝑡
1
X𝑡
2
⋅ ⋅ ⋅ X𝑡

𝐾
V𝑡
1+

V𝑡
1−

V𝑡
2+

V𝑡
2−
⋅ ⋅ ⋅ V𝑡

𝐾+
V𝑡
𝐾−

S𝑡)trans 𝑡 ∈ {0, 1, . . . , 𝑇} ,

[W𝑡] := (U𝑡
1
U𝑡
2
⋅ ⋅ ⋅ U𝑡

𝐾
V
1
V
1
V
2
V
2
⋅ ⋅ ⋅ V

𝐾
V
𝐾

U𝑡)trans 𝑡 ∈ {0, 1, . . . , 𝑇} ,

[W𝑡] := (0 0 0 ⋅ ⋅ ⋅ 0
... U𝑡)

trans
𝑡 ∈ {0, 1, . . . , 𝑇} ,

[A𝑡] :=

[
[
[
[
[
[
[

[

B𝑡
1

0 ⋅ ⋅ ⋅ 0 −I I 0 0 ⋅ ⋅ ⋅ 0 0 0
0 B𝑡
2
⋅ ⋅ ⋅ 0 0 0 −I I 0 ⋅ ⋅ ⋅ 0 0
d d

0 0 ⋅ ⋅ ⋅ B𝑡
𝐾

0 0 0 0 ⋅ ⋅ ⋅ −I I 0
− − − − − − − − − − − −

I I ⋅ ⋅ ⋅ I 0 0 0 0 ⋅ ⋅ ⋅ 0 0 I

]
]
]
]
]
]
]

]

𝑡 ∈ {0, 1, . . . , 𝑇} ,

[M] :=
[
[
[
[
[

[

I I ⋅ ⋅ ⋅ I 0 0 0 0 ⋅ ⋅ ⋅ 0 0 0
0 0 ⋅ ⋅ ⋅ 0 I −I 0 0 ⋅ ⋅ ⋅ 0 0 0
0 0 ⋅ ⋅ ⋅ 0 0 0 I −I 0 ⋅ ⋅ ⋅ 0 0

d d
0 0 ⋅ ⋅ ⋅ 0 0 0 0 0 0 I −I 0

]
]
]
]
]

]

.

(master matrix)

(23)



Journal of Applied Mathematics 5

According to the newly introduced notation, the LP formu-
lation of the problem becomes

Min∑
𝑡∈N
[C𝑡] [Y𝑡]

[M] [Y0] + [M] [Y1] + ⋅ ⋅ ⋅ + [M] [Y𝑇−1] + [M] [Y𝑇]

= (U V
1
⋅ ⋅ ⋅ V

𝐾)
trans
,

[A0] [Y0] = [W0] ,

[A1] [Y1] = [W1] ,

[A2] [Y2] = [W2] ,

...

[A𝑇] [Y𝑇] = [W𝑇] ,

[0] ≤ [Y𝑡] ≤ [W𝑡] 𝑡 ∈ {0, 1, . . . , 𝑇} .

(24)

Block diagonal structure is desired to speed up the
solution of a sparse linear programming problem [29]. We
may also conveniently exploit decomposition procedures or
generalized upper bounding (GUB) techniques to solve such
problems efficiently [30–34]. Interestingly enough, in our
approach, the master constraint has the same matrix for any
set of variables (X𝑡

1
X𝑡
2
⋅ ⋅ ⋅ X𝑡

𝐾
V𝑡
1+

V𝑡
1−

V𝑡
2+

V𝑡
2−

⋅ ⋅ ⋅

V𝑡
𝐾+

V𝑡
𝐾−

S𝑡)trans. In order to use the Dantzig-Wolfe decom-
position in our problem, the constraint matrix should be
exploited by splitting the original problem into smaller
subproblems and a connecting constraint, master constraint
(the one containing the master matrix M). The structure
of the time-varying block-angular system admits a natural
decomposition into a set of𝑇+1 independent well-structured
smaller parts instead of solving the original problem whose
size and complexity are beyond what can be solved within
a reasonable amount of time and then adjust the solution
to take into account the interconnections. In general, it
is not necessary for either set of constraints to have a
special structure, but when available, it helps speed up the
solution method. Thus, we may apply the block diagonal
decomposition techniques to solve the foregoing problem
to achieve the desired effect. Let us consider an application
of a decomposition algorithm to the problem: define 𝑇 + 1
polyhedral sets 𝜒𝑡 for each 𝑡 ∈ {0, 1, . . . , 𝑇} as

𝜒
𝑡
:= {[Y𝑡] : [A𝑡] [Y𝑡] = [W𝑡] , [0] ≤ [Y𝑡] ≤ [W𝑡]} .

(25)

Considering Minkowski’s representation theorem, any
[Y𝑡] ∈ 𝜒𝑡 can be expressed as a convex combination of a finite
number of extreme points of 𝜒𝑡 as

(X𝑡
1
X𝑡
2
⋅ ⋅ ⋅ X𝑡

𝐾
V𝑡
1+

V𝑡
1−

V𝑡
2+

V𝑡
2−
⋅ ⋅ ⋅ V𝑡

𝐾+
V𝑡
𝐾−

S𝑡)

∈ 𝜒
𝑡
⇐⇒ [Y𝑡] =

𝑘
𝑡

∑

𝑖=1

𝛼
𝑡

𝑖
[y𝑡
𝑖
] +

𝑙
𝑡

∑

𝑗=1

𝜇
𝑡

𝑗
[d𝑡
𝑗
] ,

𝑘
𝑡

∑

𝑖=1

𝛼
𝑡

𝑖
= 1, 𝛼

𝑡

𝑖
≥ 0 for 𝑖 = 1, . . . , 𝑘𝑡,

𝜇
𝑡

𝑗
≥ 0 for 𝑗 = 1, . . . , 𝑙𝑡,

(26)

where [y𝑡
1
], [y𝑡
2
], . . . , [y𝑡

𝑘
𝑡] and [d𝑡1], [d

𝑡

2
], . . . , [d𝑡

𝑘
𝑡] are extreme

points and extreme directions (if any) of polyhedral 𝜒𝑡. The
original problem can be reformulated as the master problem
under Minkowski’s mapping as follows:

Min
𝛼
𝑡

𝑖
,𝜇
𝑡

𝑗

∑

𝑡∈𝑁

𝑘
𝑡

∑

𝑖=1

𝛼
𝑡

𝑖
[C𝑡] [y𝑡

𝑖
] + ∑

𝑡∈𝑁

𝑙
𝑡

∑

𝑗=1

𝜇
𝑡

𝑗
[C𝑡] [d𝑡

𝑗
] ,

[M]
𝑘
0

∑

𝑖=0

𝛼
0

𝑖
[y0
𝑖
] + [M]

𝑙
𝑡

∑

𝑗=1

𝜇
0

𝑗
[d0
𝑗
] + ⋅ ⋅ ⋅ + [M]

𝑘
𝑇

∑

𝑖=1

𝛼
𝑇

𝑖
[x𝑇
𝑖
]

+ [M]
𝑙
𝑡

∑

𝑗=1

𝜇
𝑇

𝑗
[d𝑇
𝑗
] = (U V

1
V
2
⋅ ⋅ ⋅ V

𝐾)
trans
,

𝑘
𝑡

∑

𝑖=1

𝛼
𝑡

𝑖
= 1 ∀𝑡 ∈ 𝑁 ∪ {𝑇} ,

𝛼
𝑡

𝑖
≥ 0 ∀𝑡 ∈ 𝑁 ∪ {𝑇} 𝑖 = 1, . . . , 𝑘

𝑡
,

𝜇
𝑡

𝑗
≥ 0 ∀𝑡 ∈ 𝑁 ∪ {𝑇} 𝑗 = 1, . . . , 𝑙

𝑡
.

(27)

Due to having a huge number of extreme points for
each polyhedron, enumerating all the extreme points and
solving this problem directly seem to be impossible. Rather,
we should find a reasonable approach without enumerating
all the extreme points. This is where we suggest the use
of decomposition techniques, especially due to the special
structure of our problem that greatly intensifies the efficiency
of the decomposition methods. Next, we develop the most
general form of theminimum-cost flow problem formulation
for a SMMN as

(Condensed Master Problem)

Min
𝛼
𝑡

𝑖
,𝜇
𝑡

𝑗

∑

𝑡∈𝑁∪{𝑇}

[C𝑡](
𝑘
𝑡

∑

𝑖=1

𝛼
𝑡

𝑖
[y𝑡
𝑖
] +

𝑙
𝑡

∑

𝑗=1

𝜇
𝑡

𝑗
[d𝑡
𝑗
]) ,
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[M] ∑

𝑡∈𝑁∪{𝑇}

(

𝑘
𝑡

∑

𝑖=1

𝛼
𝑡

𝑖
[y𝑡
𝑖
] +

𝑙
𝑡

∑

𝑗=1

𝜇
𝑡

𝑗
[d𝑡
𝑗
])

= (U V
1
V
2
⋅ ⋅ ⋅ V

𝐾)
trans
,

𝑘
𝑡

∑

𝑖=1

𝛼
𝑡

𝑖
= 1 ∀𝑡 ∈ 𝑁 ∪ {𝑇} ,

𝛼
𝑡

𝑖
≥ 0 ∀𝑡 ∈ 𝑁 ∪ {𝑇} 𝑖 = 1, . . . , 𝑘

𝑡
,

𝜇
𝑡

𝑗
≥ 0 ∀𝑡 ∈ 𝑁 ∪ {𝑇} 𝑗 = 1, . . . , 𝑙

𝑡
.

(28)

The formulation of the SMMN problem shows a much
simpler constraint structure than the usual matrix form. It
possesses only 𝑚 + 𝐾𝑛 + 𝑇 + 1 constraints rather than
(𝑇 + 2)(𝑚 + 𝐾𝑛) in the earlier formulation. Problems
of this type are well amenable by many decomposition
algorithms and column generation methods [35–37]. As a
result, the computational advantage of the algorithmdepends
on the efficiency of the decomposition methods. We propose
Dantzig-Wolf decomposition (or Benders algorithm for the
dual) and so, the same analysis is applied for this case. For
more information, one may refer to [38]. When the problem
hasmany thousands of rows and is unsolvable in a reasonable
amount of time, however, our approach suggests a method to
convert the large-scale problem (high dimensional problem)
into one or more appropriately coordinated smaller sparse
problems of manageable sizes.

Considering Minkowski’s mapping and feasibility of the
problem, it follows that any obtained optimal basis will detect
one arc set for every time step 𝑡 and for each commodity 𝑞 that
transports a positive amount of flow. Moreover, the values of
V𝑡
𝑖𝑞
for each 𝑖, 𝑡, and 𝑞 will be determined at any basis. It is

immediately understood that the optimal arc sets for every
time step and for any commodity are not necessarily the same.
In other words, the optimal solution (corresponding to the
optimal basis) determines a set of original variables of form
[X𝑡
1
X𝑡
2
⋅ ⋅ ⋅ X𝑡

𝐾
V𝑡
1+

V𝑡
1−

V𝑡
2+

V𝑡
2−
⋅ ⋅ ⋅ V𝑡

𝐾+
V𝑡
𝐾−

S𝑡]
for each time step with respect to each commodity conveying
a positive flow [35, 38, 39].

4. A Solution Approach for MM Networks
with Storage

In certain practical problems, the intermediate storage policy
is another important issue that has to be considered in
the models. It may be necessary that the 𝑞-flow (flow of
commodity 𝑞) is delayed at some nodes in various appli-
cations such as batch process scheduling, traffic routing,
evacuation planning, energy transmission, inventory, and
telecommunications [2]. This affects the complexity of the
problem. When there are no storage equipments, noninter-
mediate storage policy is assumed. It is also common in
the industry for a process to have different storage policies
for different intermediates that is called mixed intermediate
storage policy. In our model, we let the 𝑞-flow be stored

Figure 1: A typical MMN with flow storage at nodes.

at some (or all) intermediate nodes (or demand nodes) for
only one time period with finite (or infinite) storage capacity
depending on a predefined capacity function for each 𝑡, 𝑞,
and 𝑖. Time and commodity dependent capacity functions
allow different storage policies in different time periods
with respect to different products, keeping the time lag as
one period. However, the staircase structure, which will be
discussed later, may have longer time lags. We represent the
storage of flow by introducing loops as shown in Figure 1.

Flow storage leads to a slightly different notion of flow
conservation. If we decompose the set of vertices𝑉 into three
subsets as 𝑉𝑆𝑄, 𝑉𝐼𝑄, and 𝑉𝐷𝑄, respectively, comprising
source nodes, intermediate nodes, and sink nodes with
respect to each 𝑞, 𝑥(𝑡) : 𝐴 → 𝐼𝑅

+ is a dynamic feasible flow
if and only if it satisfies constraints (2)–(5) together with

∑

𝑗

∫

𝜃

0

𝑥
𝑖𝑗𝑞 (𝑡) 𝑑𝑡 −∑

𝑗

∫

𝜃

0

𝑥
𝑗𝑖𝑞 (𝑡) 𝑑𝑡 ≤ 0

∀𝑖 ∈ 𝑉 \ 𝑉𝑆𝑄, ∀𝑞 ∈ 𝐾, ∀𝜃 ∈ (0, 𝑇) .

(29)

We may allow limited (or unlimited) flow storage at nodes
but prohibit any deficit by constraint (29). As earlier, all 𝑞-
demands must be met, and flow must not remain on the
network after time𝑇while each source/sin 𝑘must not exceed
its forecasted supply/demand. A discrete-time dynamic flow
on 𝐺 denoted by 𝑥 : {𝐴 ∪ 𝑉} × 𝑁 × 𝐾 → 𝐼𝑅

+ is said to be
feasible if it satisfies the following constraints:

∑

𝑗

𝑇−1

∑

𝑡=0

𝑥
𝑖𝑗𝑞 (𝑡) − ∑

𝑗

𝑇−1

∑

𝑡=0

𝑥
𝑗𝑖𝑞 (𝑡) = 𝑉𝑖𝑞 ∀𝑖 ∈ 𝑉, ∀𝑞 ∈ 𝐾,

∑

𝑗

𝑥
𝑖𝑗𝑞 (𝑡) − ∑

𝑗

𝑥
𝑗𝑖𝑞 (𝑡) ≤ 0 ∀𝑖 ∈ 𝑉 \ 𝑉𝑆, ∀𝑡 ∈ 𝑁, ∀𝑞 ∈ 𝐾,

∑

𝑞∈𝐾

∑

𝑡∈𝑁

𝑥
𝑖𝑗𝑞 (𝑡) ≤ 𝑢𝑖𝑗 ∀ (𝑖, 𝑗) ∈ 𝐴,

∑

𝑞∈𝐾

𝑥
𝑖𝑗𝑞 (𝑡) ≤ 𝑢𝑖𝑗 (𝑡) ∀ (𝑖, 𝑗) ∈ 𝐴, ∀𝑡 ∈ 𝑁,

0 ≤ 𝑥
𝑖𝑗𝑞 (𝑡) ≤ 𝑢𝑖𝑗𝑞 (𝑡) ∀ (𝑖, 𝑗) ∈ 𝐴, ∀𝑡 ∈ 𝑁, ∀𝑞 ∈ 𝐾.

(30)
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If 𝑐
𝑖𝑖𝑞
(𝑡) is the cost of storage at node 𝑖 at period 𝑡with respect

to 𝑞, the total cost of a discrete dynamic flow 𝑥 is defined by

∑

𝑞∈𝐾

∑

𝑡∈𝑁

∑

(𝑖,𝑗)∈𝐴

𝑐
𝑖𝑗𝑞 (𝑡) 𝑥𝑖𝑗𝑞 (𝑡)

+ ∑

𝑞∈𝐾

∑

𝑖∈𝑉

∑

𝑡∈𝑁

𝑐
𝑖𝑖𝑞 (𝑡)(∑

𝑗

𝑥
𝑗𝑖𝑞 (𝑡) − ∑

𝑗

𝑥
𝑖𝑗𝑞 (𝑡)) .

(31)

With V
𝑖𝑞
(𝑡) denoting the difference between 𝑞-outflow and

𝑞-inflow at node 𝑖 at time period 𝑡, we may reformulate the
problem as

Min
𝑥𝑖𝑗𝑞(𝑡),𝑥𝑖𝑖𝑞(𝑡),V𝑖𝑞(𝑡)

∑

𝑞∈𝐾

∑

𝑡∈𝑁

∑

(𝑖,𝑗)∈𝐴

𝑐
𝑖𝑗𝑞 (𝑡) 𝑥𝑖𝑗𝑞 (𝑡)

+ ∑

𝑞∈𝐾

∑

𝑡∈𝑁

∑

𝑖∈𝑉

𝑐
𝑖𝑖𝑞 (𝑡) 𝑥𝑖𝑖𝑞 (𝑡) ,

∑

𝑗

𝑥
𝑖𝑗𝑞 (𝑡) − ∑

𝑗

𝑥
𝑗𝑖𝑞 (𝑡) + [𝑥𝑖𝑖𝑞 (𝑡) − 𝑥𝑖𝑖𝑞 (𝑡 − 1)]

− V
𝑖𝑞 (𝑡) = 0 ∀𝑖 ∈ 𝑉, ∀𝑡 ∈ 𝑁, ∀𝑞 ∈ 𝐾,

∑

𝑡∈𝑁

V
𝑖𝑞 (𝑡) = V

𝑖𝑞
∀𝑖 ∈ 𝑉, ∀𝑞 ∈ 𝐾,

∑

𝑞∈𝐾

∑

𝑡∈𝑁

𝑥
𝑖𝑗𝑞 (𝑡) ≤ 𝑢𝑖𝑗 ∀ (𝑖, 𝑗) ∈ 𝐴,

∑

𝑞∈𝐾

𝑥
𝑖𝑗𝑞 (𝑡) ≤ 𝑢𝑖𝑗 (𝑡) ∀ (𝑖, 𝑗) ∈ 𝐴, ∀𝑡 ∈ 𝑁,

0 ≤ 𝑥
𝑖𝑖𝑞 (𝑡) ≤ 𝑢𝑖𝑖𝑞 (𝑡) ∀𝑖 ∈ 𝑉 \ 𝑉𝑆𝑄, ∀𝑡 ∈ 𝑁, ∀𝑞 ∈ 𝐾,

0 ≤ 𝑥
𝑖𝑗𝑞 (𝑡) ≤ 𝑢𝑖𝑗𝑞 (𝑡) ∀ (𝑖, 𝑗) ∈ 𝐴, ∀𝑡 ∈ 𝑁, ∀𝑞 ∈ 𝐾,

(32)

where 𝑥
𝑖𝑖𝑞
(𝑡) and 𝑐

𝑖𝑖𝑞
(𝑡) denote the amount and cost of stored

flow at node 𝑖 in period 𝑡 of product 𝑞. By setting V
𝑖𝑞
(𝑡) = V𝑡

𝑖𝑞+
−

V𝑡
𝑖𝑞−

, our problem formulation is reduced to a standard LP
formulation in matrix form as shown in Appendix B, whose

special structure enables efficient solution of the problem.The
resulting formulation is as follows:

Min
[X𝑡
𝑞
],[X𝑡
𝑠𝑞
],[V𝑡
𝑞+
],[V𝑡
𝑞−
]

∑

𝑞∈K
∑

t∈N
[C𝑡
𝑞
] [X𝑡
𝑞
] + ∑

𝑞∈K
∑

t∈N
[C𝑡
𝑠𝑞
] [X𝑡
𝑠𝑞
] ,

∑

𝑡∈N
([X𝑡
1
] + ⋅ ⋅ ⋅ + [X𝑡

𝐾
]) ≤ [U]𝑚×1,

∑

𝑡∈N
([V𝑡
𝑞+
] − [V𝑡

𝑞−
]) = [V

𝑞
]
𝑛×1

∀𝑞 ∈ 𝐾,

[A𝑡
𝑞
]
𝑛×𝑚
[X𝑡
𝑞
] + [I]𝑛×𝑛[X

𝑡

𝑠𝑞
]
𝑛×1
+ [−I]𝑛×𝑛[X

𝑡−1

𝑠𝑞
]
𝑛×1

− ([V𝑡
𝑞+
] − [V𝑡

𝑞−
]) = [0]𝑛×1 ∀𝑡 ∈ 𝑁, ∀𝑞 ∈ 𝐾,

[X𝑡
1
] + ⋅ ⋅ ⋅ + [X𝑡

𝐾
] ≤ [U𝑡]

𝑚×1
∀𝑡 ∈ 𝑁,

[0]𝑚×1 ≤ [X
𝑡

𝑞
]
𝑚×1

≤ [U𝑡
𝑞
]
𝑚×1

∀𝑡 ∈ 𝑁, ∀𝑞 ∈ 𝐾,

[0]𝑛×1 ≤ [X
𝑡

𝑠𝑞
]
𝑛×1
≤ [U𝑡
𝑠𝑞
]
𝑛×1

∀𝑡 ∈ 𝑁, ∀𝑞 ∈ 𝐾,

[V𝑡
𝑞+
]
𝑛×1
≥ [0]𝑛×1, [V𝑡

𝑞−
]
𝑛×1
≥ [0]𝑛×1

∀𝑡 ∈ 𝑁, ∀𝑞 ∈ 𝐾,

(33)

where [X𝑡
𝑞
] = {𝑥

𝑖𝑗𝑞
(𝑡)} = {𝑥

𝑡

𝑖𝑗𝑞
} and [X𝑡

𝑠𝑞
] = {𝑥

𝑖𝑖𝑞
(𝑡)} = {𝑥

𝑡

𝑖𝑖𝑞
}

are the vectors of flow and storage at time period 𝑡 and [U𝑡
𝑞
] =

{𝑢
𝑖𝑗𝑞
(𝑡)} = {𝑢

𝑡

𝑖𝑗
} and [U𝑡

𝑠𝑞
] = {𝑢

𝑖𝑖𝑞
(𝑡)} = {𝑢

𝑡

𝑖𝑖𝑞
} are the vectors

of flow capacities and storage at 𝑡 ∈ 𝑁, respectively. [U], [U𝑡],
[C𝑡
𝑞
], and [V𝑡

𝑞
] are defined as earlier. [C𝑡

𝑠𝑞
] = {𝑐
𝑖𝑖𝑞
(𝑡)} = {𝑐

𝑡

𝑖𝑖𝑞
} is

the vector of predefined storage costs and [A]
𝑛×𝑚

is the node-
arc incidence matrix of the underlying network. A standard
LP problem formulation is obtained by decomposing [V𝑡

𝑞
]

into nonnegative vectors [V𝑡
𝑞+
] and [V𝑡

𝑞−
]. [V
𝑞
] = {V

𝑖𝑞
} is the

vector of predefined supply/demand of nodes with respect
to commodity 𝑞. A further refinement of the matrix-form
formulation shows that we can formulate a minimum-cost
problem on amultiperiod dynamic network (with storage) in
a staircase structured matrix form. For this purpose, we define

[Y𝑡] := (X𝑡
1
X𝑡
2
⋅ ⋅ ⋅ X𝑡

𝐾
X𝑡
𝑠1

X𝑡
𝑠2
⋅ ⋅ ⋅ X𝑡

𝑠𝐾
V𝑡
1+

V𝑡
1−

V𝑡
2+

V𝑡
2−
⋅ ⋅ ⋅ V𝑡

𝐾+
V𝑡
𝐾−

S𝑡)trans 𝑡 ∈ {0, 1, . . . , 𝑇} ,

[C𝑡] := (C𝑡
1
C𝑡
2
⋅ ⋅ ⋅ C𝑡

𝐾
C𝑡
𝑠1

C𝑡
𝑠2
⋅ ⋅ ⋅ C𝑡

𝑠𝐾
0 0 0 0 ⋅ ⋅ ⋅ 0 0 0) 𝑡 ∈ {0, 1, . . . , 𝑇} ,

[W𝑡] := (U𝑡
1
U𝑡
2
⋅ ⋅ ⋅ U𝑡

𝐾
U𝑡
𝑠1

U2
𝑠2
⋅ ⋅ ⋅ U𝑡

𝑠𝐾
V
1
V
1
V
2
V
2
⋅ ⋅ ⋅ V

𝐾
V
𝐾

U𝑡)trans 𝑡 ∈ {0, 1, . . . , 𝑇} ,

[W𝑡] := (0 0 0 ⋅ ⋅ ⋅ 0
... U)

trans
𝑡 ∈ {0, 1, . . . , 𝑇}
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[M] :=

[
[
[
[
[
[
[
[

[

I I ⋅ ⋅ ⋅ I 0 0 ⋅ ⋅ ⋅ 0 0 0 0 0 ⋅ ⋅ ⋅ 0 0 0
0 0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0 I −I 0 0 0 ⋅ ⋅ ⋅ 0 0
... d d

...
0 0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0 0 0 0 0 ⋅ ⋅ ⋅ I −I 0
− − − − − − − − − − − − − − − −

0 0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0 0 0 0 0 ⋅ ⋅ ⋅ 0 0 0

]
]
]
]
]
]
]
]

]

(master matrix)

[A] = [A𝑡] :=

[
[
[
[
[
[
[

[

A𝑡
1

0 ⋅ ⋅ ⋅ 0 I 0 ⋅ ⋅ ⋅ 0 −I I 0 0 ⋅ ⋅ ⋅ 0 0 0
0 A𝑡
2
⋅ ⋅ ⋅ 0 0 I 0 0 0 0 −I I 0 ⋅ ⋅ ⋅ 0 0
d d

0 0 ⋅ ⋅ ⋅ A𝑡
𝐾

0 0 ⋅ ⋅ ⋅ I 0 0 0 0 ⋅ ⋅ ⋅ −I I 0
− − − − − − − − − − − − − − − −

I I ⋅ ⋅ ⋅ I 0 0 ⋅ ⋅ ⋅ 0 0 0 0 0 ⋅ ⋅ ⋅ 0 0 I

]
]
]
]
]
]
]

]

𝑡 ∈ {0, 1, . . . , 𝑇} ,

[M] :=

[
[
[
[
[
[
[

[

0 0 ⋅ ⋅ ⋅ 0 −I 0 ⋅ ⋅ ⋅ 0 0 0 0 0 ⋅ ⋅ ⋅ 0 0 0
0 0 ⋅ ⋅ ⋅ 0 0 −I 0 0 0 0 0 0 0 ⋅ ⋅ ⋅ 0 0

d d
0 0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ −I 0 0 0 0 ⋅ ⋅ ⋅ 0 0 0
− − − − − − − − − − − − − − − −

0 0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0 0 0 0 0 ⋅ ⋅ ⋅ 0 0 0

]
]
]
]
]
]
]

]

.

(34)

Accordingly, we obtain the formulation as

Min∑
𝑡∈N
[C𝑡] [Y𝑡]

[M] [Y−1] + [M] [Y0] + [M] [Y1] + ⋅ ⋅ ⋅ + [M] [Y𝑇−1]

+ [M] [Y𝑇] = (U V
1
⋅ ⋅ ⋅ V

𝐾
0)trans,

[M] [Y−1] + [A] [Y0] = [W0] ,

[M] [Y0] + [A] [Y1] = [W1] ,

[M] [Y1] + [A] [Y2] = [W2] ,

[M] [Y2] + [A] [Y3] = [W3] ,

...

[M] [Y𝑇−1] + [A] [Y𝑇] = [W𝑇] ,

[0] ≤ [Y𝑡] ≤ [W𝑡] 𝑡 ∈ {0, 1, . . . , 𝑇} .

(35)
We may now generalize the problem to consider MMN

with storage at nodes and spoilage in arcs (SSMM), by
allowing the 𝑞-flow to leak and be stored at the same time.
The continuous time setting is then formulated as

Min ∑
𝑞∈𝐾

∑

(𝑖,𝑗)∈𝐴

∫

𝑇

0

𝑐
𝑖𝑗𝑞 (𝑡) 𝑥𝑖𝑗𝑞 (𝑡) 𝑑𝑡

− ∑

𝑞∈𝐾

∑

𝑖

∫

𝑇

0

𝑐
𝑖𝑞 (𝑡)∑

𝑗

[𝑥
𝑖𝑗𝑞 (𝑡) − 𝜆𝑗𝑖𝑞 (𝑡) 𝑥𝑗𝑖𝑞 (𝑡)] 𝑑𝑡,

∑

𝑗

∫

𝑇

0

𝑥
𝑖𝑗𝑞 (𝑡) 𝑑𝑡 −∑

𝑗

∫

𝑇

0

𝜆
𝑗𝑖𝑞 (𝑡) 𝑥𝑗𝑖𝑞 (𝑡) 𝑑𝑡 = V

𝑖𝑞

∀𝑖 ∈ 𝑉, ∀𝑞 ∈ 𝐾.

∑

𝑗

∫

𝜃

0

𝑥
𝑖𝑗𝑞 (𝑡) 𝑑𝑡 −∑

𝑗

∫

𝜃

0

𝜆
𝑗𝑖𝑞 (𝑡) 𝑥𝑗𝑖𝑞 (𝑡) 𝑑𝑡 ≤ 0

∀𝜃 ∈ [0, 𝑇[ , ∀𝑖 ∈ 𝑉 \ 𝑉𝑆𝑄, ∀𝑞 ∈ 𝐾,

∑

𝑞∈𝐾

∫

𝑇

0

𝑥
𝑖𝑗 (𝑡) 𝑑𝑡 ≤ 𝑢𝑖𝑗 ∀ (𝑖, 𝑗) ∈ 𝐴,

∑

𝑞∈𝐾

𝑥
𝑖𝑗𝑞 (𝑡) ≤ 𝑢𝑖𝑗 (𝑡) ∀ (𝑖, 𝑗) ∈ 𝐴, ∀𝑡 ∈ [0, 𝑇] ,

0 ≤ 𝑥
𝑖𝑗𝑞 (𝑡) ≤ 𝑢𝑖𝑗𝑞 (𝑡) ∀ (𝑖, 𝑗) ∈ 𝐴, ∀𝑡 ∈ [0, 𝑇] , ∀𝑞 ∈ 𝐾.

(36)

The discrete time setting formulation is obtained by replacing
(14) and (15), respectively, by

Min
𝑥
𝑡

𝑖𝑗
,𝑥
𝑡

𝑖𝑖
,V𝑡
𝑖

∑

𝑞∈𝐾

∑

𝑡∈𝑁

∑

(𝑖,𝑗)∈𝐴

𝑐
𝑡

𝑖𝑗𝑞
𝑥
𝑡

𝑖𝑗𝑞
+ ∑

𝑞∈𝐾

∑

𝑡∈𝑁

∑

𝑖∈𝑉

𝑐
𝑡

𝑖𝑖𝑞
𝑥
𝑡

𝑖𝑖𝑞
,

𝑥
𝑡

𝑖𝑖𝑞
− 𝑥
𝑡−1

𝑖𝑖𝑞
+∑

𝑗

𝑥
𝑡

𝑖𝑗𝑞
−∑

𝑗

[𝜆
𝑡

𝑗𝑖𝑞
𝑥
𝑡

𝑗𝑖𝑞
] − V𝑡
𝑖𝑞
= 0

∀𝑡 ∈ 𝑁, ∀𝑖 ∈ 𝑉, ∀𝑞 ∈ 𝐾.

(37)

To develop the matrix form of the formulation, we
again use the 𝑡-𝑞-node-arc incidence matrix introduced in
(20)-(21). As earlier, we let [B𝑡

𝑞
]
𝑛×𝑚

denote the 𝑞-𝑡-node-
arc incidence matrix at step 𝑡 with respect to 𝑞. With
similar transformations, the minimum-cost SSMMN flow
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problem can be formulated by replacing each [𝐴𝑡
𝑞
]
𝑛×𝑚

with
the corresponding [B𝑡

𝑞
]
𝑛×𝑚

.

5. An Alternative Approach for MMN without
Period Capacities

To formulate MMN flow problem without period capacities,
we slightly change the definition of the master matrix and
decision variable vectors. Our approach brings more flexi-
bility to modify the problem setting in various ways, but at
the same time, it increases the number of subproblems (to be
obtained by a decomposition) from (𝑇 + 1) to 𝐾(𝑇 + 1).

Case 1 (MMN with spoilage). We define decision variable
vectors [Y𝑡

𝑞
] be time-commodity dependent; each will consist

of one set of nonnegative variables X𝑡
𝑞
in the 𝑞th position for

each 𝑡 and V𝑡
𝑞+

and V𝑡
𝑞
in the (𝐾 + 2𝑞 − 1)th and (𝐾 + 2𝑞)th

position, respectively, as

[Y𝑡
𝑞
] := [

0 0 ⋅ ⋅ ⋅ X𝑡
𝑞⏟⏟⏟⏟⏟⏟⏟
𝑞

0 ⋅ ⋅ ⋅ V𝑡
𝑞+⏟⏟⏟⏟⏟⏟⏟

(𝐾+2𝑞−1)

V𝑡
𝑞−⏟⏟⏟⏟⏟⏟⏟

(𝐾+2𝑞)

0 0 0
]

trans

∀𝑞 ∈ 𝐾, ∀𝑡 ∈ 𝑁.

(38)

Analogously, we redefine the node-arc incidence matrices
with respect to each 𝑡 and 𝑞 as

[A𝑡
𝑞
] := [0 0 ⋅ ⋅ ⋅ B𝑡

𝑞
0 ⋅ ⋅ ⋅ −I I 0 0 0]

∀𝑞 ∈ 𝐾, ∀𝑡 ∈ 𝑁.

(39)

We also need to redefine our master matrix as

[M] :=
[
[
[
[
[

[

I I ⋅ ⋅ ⋅ I 0 0 0 0 ⋅ ⋅ ⋅ 0 0
0 0 ⋅ ⋅ ⋅ 0 I −I 0 0 ⋅ ⋅ ⋅ 0 0
0 0 ⋅ ⋅ ⋅ 0 0 0 I −I ⋅ ⋅ ⋅ 0 0

d d
0 0 ⋅ ⋅ ⋅ 0 0 0 0 0 0 I −I

]
]
]
]
]

]

. (40)

We can extract a block-angular structure with each block rep-
resenting the constraintmatrix for each time and commodity.
In this respect, the flow conservation conditions turn out to
have the following from:

[M]

(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

X0
1

0
...
0

V0
1+

V0
1−

0
0
...
0
0

)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

+[M]

(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

0
X0
2

...
0
0
0

V0
2+

V0
2−

...
0
0

)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

+⋅ ⋅ ⋅+[M]

(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

0
0
...

X0
𝐾

0
0
0
0
...

V0
𝐾+

V0
𝐾−

)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

+ [M]

(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

X1
1

0
...
0

V1
1+

V1
1−

0
0
...
0
0

)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

+ [M]

(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

0
X1
2

...
0
0
0

V1
2+

V1
2−

...
0
0

)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

+ ⋅ ⋅ ⋅ + [M]

(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

0
0
...

X1
𝐾

0
0
0
0
...

V1
𝐾+

V1
𝐾−

)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

+ ⋅ ⋅ ⋅ + [M]

(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

X𝑇
1

0
...
0

V𝑇
1+

V𝑇
1−

0
0
...
0
0

)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

+ ⋅ ⋅ ⋅ + [M]

(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

0
0
...

X𝑇
𝐾

0
0
0
0
...

V𝑇
𝐾+

V𝑇
𝐾−

)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

=
(
(

(

U
V
1

V
2

V
3

...
V
𝐾

)
)

)

,

[A0
1
] [X0
1
0 ⋅ ⋅ ⋅ 0 V0

1+
V0
1−

0 0 ⋅ ⋅ ⋅ 0 0]trans

= [0]𝑛×1,

[A0
2
] [0 X0

2
⋅ ⋅ ⋅ 0 0 0 0 V0

2+
V0
2−

0 0]trans

= [0]𝑛×1,
...

[A0
𝐾
] [0 0 ⋅ ⋅ ⋅ X0

𝐾
0 0 0 0 ⋅ ⋅ ⋅ V0

𝐾+
V0
𝐾−
]
trans

= [0]𝑛×1,

[A𝑇
1
] [X𝑇
1

0 ⋅ ⋅ ⋅ 0 V𝑇
1+

V𝑇
1−

0 0 ⋅ ⋅ ⋅ 0 0]
trans

= [0]𝑛×1,
...
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[A𝑇
𝐾
] [0 0 ⋅ ⋅ ⋅ X𝑇

𝐾
0 0 0 0 ⋅ ⋅ ⋅ V𝑇

𝐾+
V𝑇
𝐾−
]
trans

= [0]𝑛×1,

[0] ≤ [0 0 ⋅ ⋅ ⋅ X𝑡
𝑞
0 ⋅ ⋅ ⋅ V𝑡

𝑞+
V𝑡
𝑞−

0 0 0]

≤ [0 0 ⋅ ⋅ ⋅ U𝑡
𝑞
0 ⋅ ⋅ ⋅ V

𝑞
V
𝑞
0 0 0]

∀𝑞 ∈ 𝐾, ∀𝑡 ∈ 𝑁.

(41)

We define the following two matrices:

[C𝑡] := [0 0 ⋅ ⋅ ⋅ C𝑡
𝑞
0 ⋅ ⋅ ⋅ 0 0 0 0 0]

∀𝑞 ∈ 𝐾, ∀𝑡 ∈ 𝑁,

[W𝑡
𝑞
] := [0 0 ⋅ ⋅ ⋅ U𝑡

𝑞
0 ⋅ ⋅ ⋅ V

𝑞
V
𝑞
0 0 0]

∀𝑞 ∈ 𝐾, ∀𝑡 ∈ 𝑁.

(42)

Then, the formulation for the minimum-cost MMN flow
problem with spoilage is

Min ∑
𝑞∈𝐾

∑

𝑡∈N
[C𝑡
𝑞
] [Y𝑡
𝑞
]

[M] [Y0
1
] + ⋅ ⋅ ⋅ + [M] [Y0

𝐾
] + [M] [Y1

1
] + ⋅ ⋅ ⋅ + [M] [Y1

𝐾
]

+ ⋅ ⋅ ⋅ + [M] [Y𝑇
1
] + ⋅ ⋅ ⋅ + [M] [Y𝑇

𝐾
]

= [U V
1
⋅ ⋅ ⋅ V

𝐾]
trans
,

[A0
1
] [Y0
1
] = [0] ,

...

[A0
𝐾
] [Y0
𝐾
] = [0] ,

[A1
1
] [Y1
1
] = [0] ,

...

[A1
𝐾
] [Y1
𝐾
] = [0] ,

...

[A𝑇
1
] [Y𝑇
1
] = [0] ,

...

[A𝑇
𝐾
] [Y𝑇
𝐾
] = [0] ,

[0] ≤ [Y𝑡
𝑞
] ≤ [W𝑡

𝑞
] ∀𝑞 ∈ 𝐾, ∀𝑡 ∈ 𝑁.

(43)

We now define𝐾(𝑇+1) time-commodity dependent polyhe-
drals and use Minkowski’s mapping as

∀𝑞 ∈ 𝐾, ∀𝑡 ∈ 𝑁, 𝜒
𝑡

𝑞
:= {[Y𝑡

𝑞
] : [A𝑡

𝑞
] [Y𝑡
𝑞
] = [0] ,

[0] ≤ [Y𝑡
𝑞
] ≤ [W𝑡

𝑞
]}

[Y𝑡
𝑞
] ∈ 𝜒
𝑡

𝑞
⇐⇒ [Y𝑡

𝑞
] =

𝑘
𝑡

𝑞

∑

𝑖=1

𝛼
𝑡

𝑖𝑞
[y𝑡
𝑖𝑞
] +

𝑙
𝑡

𝑞

∑

𝑗=1

𝜇
𝑡

𝑗𝑞
[d𝑡
𝑗𝑞
]

∀𝑞 ∈ 𝐾, ∀𝑡 ∈ 𝑁,

𝑘
𝑡

𝑞

∑

𝑖=1

𝛼
𝑡

𝑖𝑞
= 1, 𝛼

𝑡

𝑖𝑞
≥ 0, 𝜇

𝑡

𝑗𝑞
≥ 0 ∀𝑞 ∈ 𝐾, ∀𝑡 ∈ 𝑁,

(44)

where [y𝑡
1𝑞
], [y𝑡
2𝑞
], . . . , [y𝑡

𝑘
𝑡

𝑞
𝑞
] and [d𝑡

1𝑞
], [d𝑡
2𝑞
], . . . , [d𝑡

𝑘
𝑡

𝑞
𝑞
] are

extreme points and extreme directions (if any). Then, the
same analysis as that in Section 3 can be applied.

Case 2 (MMN with storage). To formulate the flow problem
with storage, we redefine the time-commodity varying deci-
sion variable vectors [Y𝑡

𝑞
] as

[Y𝑡
𝑞
] := [

0 0 ⋅ ⋅ ⋅ X𝑡
𝑞⏟⏟⏟⏟⏟⏟⏟
𝑞

0 ⋅ ⋅ ⋅ 0 X𝑡
𝑠𝑞⏟⏟⏟⏟⏟⏟⏟

(𝐾+𝑞)

0 ⋅ ⋅ ⋅ V𝑡
𝑞−⏟⏟⏟⏟⏟⏟⏟

(2𝐾+2𝑞−1)

V𝑡
𝑞−⏟⏟⏟⏟⏟⏟⏟

(2𝐾+2𝑞)

0 ⋅ ⋅ ⋅ 0
]

trans

, ∀𝑞 ∈ 𝐾, ∀𝑡 ∈ 𝑁. (45)

Similarly, we change our node-arc incidence matrices with
respect to each 𝑡 and 𝑞 as

[C] := [A𝑡
𝑞
]

:= [0 0 ⋅ ⋅ ⋅ A 0 ⋅ ⋅ ⋅ 0 I 0 ⋅ ⋅ ⋅ −I I 0 ⋅ ⋅ ⋅ 0] ,

∀𝑞 ∈ 𝐾, ∀𝑡 ∈ 𝑁,

[C] := [0 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0 −I 0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0] ,

∀𝑞 ∈ 𝐾, ∀𝑡 ∈ 𝑁.

(46)

We should redefine our master matrix as follows:

[M] :=
[
[
[
[
[
[

[

I I ⋅ ⋅ ⋅ I 0 0 ⋅ ⋅ ⋅ 0 0 0 0 0 ⋅ ⋅ ⋅ 0 0

0 0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0 I −I 0 0 0 ⋅ ⋅ ⋅ 0

d d
0 0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0 0 0 0 0 ⋅ ⋅ ⋅ I −I

]
]
]
]
]
]

]

.

(47)
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Then, the flow conservation constraints are written as
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∀𝑡 ∈ 𝑁,

[0]

≤ [0 0 ⋅ ⋅ ⋅ X𝑡
𝑞
0 ⋅ ⋅ ⋅ 0 X𝑡

𝑠𝑞
0 ⋅ ⋅ ⋅ V𝑡

𝑞−
V𝑡
𝑞−

0 ⋅ ⋅ ⋅ 0]

≤ [0 0 ⋅ ⋅ ⋅ U𝑡
𝑞
0 ⋅ ⋅ ⋅ 0 U𝑡

𝑠𝑞
0 ⋅ ⋅ ⋅ V

𝑞
V
𝑞
0 ⋅ ⋅ ⋅ 0] .

(48)

To obtain the staircase structure form, we again define

[C𝑡
𝑞
]

:= [
0 0 ⋅ ⋅ ⋅ C𝑡

𝑞⏟⏟⏟⏟⏟⏟⏟
𝑞

0 ⋅ ⋅ ⋅ 0 C𝑡
𝑠𝑞⏟⏟⏟⏟⏟⏟⏟

(𝐾+𝑞)

0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0
]

∀𝑞 ∈ 𝐾, ∀𝑡 ∈ 𝑁,

[W𝑡
𝑞
]

:= [0 0 ⋅ ⋅ ⋅ U𝑡
𝑞
0 ⋅ ⋅ ⋅ 0 U𝑡

𝑠𝑞
0 ⋅ ⋅ ⋅ V

𝑞
V
𝑞
0 ⋅ ⋅ ⋅ 0]

∀𝑞 ∈ 𝐾, ∀𝑡 ∈ 𝑁.

(49)

Then the formulation for MMN flow problem with storage
becomes

Min∑
𝑞∈K
∑

𝑡∈N
[C𝑡
𝑞
] [Y𝑡
𝑞
]

[M] [Y0
1
] + [M] [Y0

2
] + ⋅ ⋅ ⋅ + [M] [Y0

𝐾
] + [M] [Y1

1
]

+ [M] [Y1
2
] + ⋅ ⋅ ⋅ + [M] [Y1

𝐾
] + ⋅ ⋅ ⋅ + [M] [Y𝑇

1
]

+ ⋅ ⋅ ⋅ + [M] [Y𝑇
𝐾
] = [U V

1
⋅ ⋅ ⋅ V

𝐾]
trans
,

[C] [Y0
𝑞
] = [0] ∀𝑞 ∈ 𝐾,

[C] [Y0
𝑞
] + [C] [Y1

𝑞
] = [0] ∀𝑞 ∈ 𝐾,

[C] [Y1
𝑞
] + [C] [Y2

𝑞
] = [0] ∀𝑞 ∈ 𝐾,

...

[C] [Y𝑇−1
𝑞
] + [C] [Y𝑇

𝑞
] = [0] ∀𝑞 ∈ 𝐾,

[0] ≤ [Y𝑡
𝑞
] ≤ [W𝑡

𝑞
] ∀𝑞 ∈ 𝐾, ∀𝑡 ∈ 𝑁.

(50)

Note that we assume [C] = [A𝑡
𝑞
] for every 𝑡 and 𝑞 as the

network is static over time with respect to any product. If
that is not the case, we can use incidence matrix [A𝑡

𝑞
] for time

period 𝑡 (for any 𝑞) in the staircase form formulation.

Case 3 (MMN with storage and spoilage (SS networks)).
To formulate the MMN flow problem with both storage
and spoilage, we define [B𝑡

𝑞
] as the 𝑞-𝑡-node-arc incidence

matrix at time 𝑡 with respect to commodity 𝑞. Following
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the approach for Case 2, it is sufficient to do the following
replacement with respect to each 𝑡 and 𝑞 as

[0 0 ⋅ ⋅ ⋅ A 0 ⋅ ⋅ ⋅ 0 I 0 ⋅ ⋅ ⋅ −I I 0 ⋅ ⋅ ⋅ 0]

→ [0 0 ⋅ ⋅ ⋅ B𝑡
𝑞
0 ⋅ ⋅ ⋅ 0 I 0 ⋅ ⋅ ⋅ −I I 0 ⋅ ⋅ ⋅ 0] .

(51)

6. On Applications, Computational
Tuning-Testing, and Analysis

To exploit decomposition methods as practical solution
approaches, identifying block structures is a building block
for our modeling approaches. One method is to plot the
nonzero elements in the constraint matrix of a problem
instance. One may expect that it would be easy to identify
a block structure from a constraint matrix of an arbitrary
problem instance, but this is not the case. Even for a relatively
small problem instance, it is impossible to pick out a block
structure visually from a plot of the nonzero elements, when
the rows and columns are not arranged to expose it. A
second approach could be to pose the problem of identifying
block structure as an optimization problem itself and use
optimization software to identify a structure. Various studies
have been conducted in this line, but with limited success.
One of the other efficient ways to obtain a block structure
for an LP model for use is to study the algebraic formulation
and generate block structures from the index sets of the
model. Structures that rely on the algebraic formulation,
rather than a specific data instance, have the key advantage
of being scalable, that is, applicable to any data instance
of the problem. One may consult Borndörfer et al. [40],
Kernighan and Lin [41], andWeil andKettler [42] to getmore
information on this matter.

Given an arbitrary matrix 𝐴, let us consider a pair of
partitions of the rows and columns: suppose the rows are
divided into𝑇+1 sets {𝐼

0
, 𝐼
1
, . . . , 𝐼

𝑇
} and the columns into𝑇+

1 sets {𝐽
0
, 𝐽
1
, . . . , 𝐽

𝑇
}. The rows (columns, resp.) in each set 𝐼

𝑡

(𝐽
𝑡
 , resp.) need not be adjacent in the matrix. The partitions

of the rows and columns clearly impose a partition on the
matrix elements.We say that the elements are partitioned into
blocks 𝐴

𝑡,𝑡
 = {𝑎

𝑡,𝑡
 | 𝑡 ∈ 𝐼

𝑡
and 𝑡 ∈ 𝐽

𝑡
}, and we refer

to the partition of the matrix elements as a block structure.
A block structure is thus defined by a pair of partitions on
the rows {𝐼

0
, 𝐼
1
, . . . , 𝐼

𝑇
} and columns {𝐽

0
, 𝐽
1
, . . . , 𝐽

𝑇
}. Given

the constraint matrix 𝐴 from a large sparse LP problem (like
MCDF), it is often possible to choose a pair of partitions so
that the nonzero elements of 𝐴 are connected to relatively
few of the blocks in the block structure (and normally these
blocks will themselves be sparse).

6.1. Block-Angular Structured Systems. The matrix has a set
of rows 𝐼

0
that connect with all sets of columns and sets of

rows 𝐼
𝑡
that each connect with a single set of columns 𝐽

𝑡
.

In some practical applications, there is usually an additional
set of columns 𝐽

0
that interacts solely with the row set

𝐼
0
. The block angular structure is one of the most widely

recognized structures in decomposition, as it is the basis for
the original decomposition method developed by DW. The
structuremay typically arise where the system beingmodeled
splits naturally into a set of subsystems, for example, a set
of facilities/periods, independent apart from a number of
global constraints. The variables and constraints referring to
a single subsystem 𝑡 correspond to the rows and columns
in sets 𝐼

𝑡
and 𝐽

𝑡
. The constraints that link the subsystems,

corresponding to rows 𝐼
0
, may express limits of system-wide

scarce resources or ensure that materials balance correctly
between the subsystems (e.g., facilities or time periods) and
are referred to as global, common, or linking constraints [30–
32, 43].

6.2. Staircase-Structured Systems. The block staircase struc-
ture is best explained as a dynamic (time stage) structure.
Let column set 𝐽

𝑡
comprise the columns of variables related

directly to time period 𝑡. Row set 𝐼
𝑡
comprises of the rows

for constraints linking the decisions made in period 𝑡 with
those made in the previous period 𝑡 − 1. It is usually the
case that staircase structure has a time lag of one, as activities
in period 𝑡 are related directly to those in period 𝑡 − 1, but
not to those from earlier periods. However, we mentioned
that the production/storage policy of the current period may
only be affected by the previous step, and so this attribute
(time lag of one) well describe the storage policy needed for
MMNF. In general, the staircase structure may have longer
time lags. These types of structure can be exploited by nested
DW decomposition [30–32, 43].

Dantzig-Wolfe decomposition (delayed column genera-
tion method), however, is often the best method of choice
when dealing with large scale sparse problems of foregoing
structures, especially in terms of storage requirements and
good-quality suboptimal solutions. It is possible to solve
problems of this type by Dantzig-Wolf decomposition using
much less memory, without giving up on the solution time,
when compared to revised simplex technique [37, 44]. To
better illustrate, let us assume an MMN problem with 𝑇
subproblems, eachwith 𝑛 conservation constraints andwith a
master condition of 𝑛

0
constraints (all in standard form).The

storage requirement of the revised simplex method for the
original problemwill be𝑂((𝑛

0
+ 𝑇𝑛)

2
), which is the size of the

revised simplex tableau. In contrast, the storage requirements
of the decomposition method for the same problem turn out
to be 𝑂((𝑛

0
+ 𝑇)
2
) for the tableau of the master problem and

𝑇 × 𝑂(𝑛
2
) for the revised simplex tableau of subproblems

(that are easy to solve). Moreover, applying decomposition
on a MMN problemmaintains only one tableau stored in the
main memory at any time. For instance, let 𝑇 = 1000 and 𝑛 =
𝑛
0
≫ 𝑇. In this case, the main memory requirement of the

decomposition method will be 1, 000, 000 times smaller than
those of the revised simplex method. Therefore, while the
memory is a key bottleneck in handling very large LPs, like
MMN problems, the decomposition approach dramatically
enlarges the range of problem instances that can be solved
practically.

Note that our approach is a two-phase method. In the
first phase, we get the 𝑡-𝑞-node-arc incidence matrices, and
the second phase is an application of DWmethod. Evidently,
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Table 1: Sizes and computational results for some MMNs with |𝐾| = 1 (𝑇 = 13, 20, 23, 31, 37, 41, 50).

Number of polyhedrals Number of variables Number of constraints Number of nonzeros Computational time (sec)
Dataset 1 14 5070 4758 677 12.05
Dataset 2 21 17600 16840 1601 17.10
Dataset 3 24 26450 25438 2117 19.80
Dataset 4 32 63426 61566 3845 26.90
Dataset 5 38 106782 104118 5477 32.50
Dataset 6 42 144566 141286 6725 37.10
Dat set 7 51 260000 255100 10001 48.60

the performance of our algorithm highly depends on the first
phase. The overall complexity of the first phase is 𝑂(𝑇𝐾𝑛𝑚2)
if a simple data structure is used to maintain the factors for
each time periodwith respect to each product. Asmentioned,
although we consider time-commodity varying network
parameters, all the 𝑡-𝑞-incidence matrices/transformations
can be updated/run off-line and in parallel. Therefore, if the
solutions of the first phase are calculated in parallel, we can
expect to obtain the optimal solution for any minimum-cost
MMN problem in a reasonable amount of time.

We demonstrate the computational efficiency of the
proposed methods on electricity distribution-transmission
networks. The topology of this class of network models has
been described in detail in Hosseini [14, 43], so we only
give a brief description here. The objective is to determine
the production circuit and shipping electricity within the
time period so as to minimize the daily cost (the planning
horizon time is a day). To illustrate the performance of our
approach, we conducted a series of experiments using a set of
real data from our case study on real and random complete-
bipartite MMNs. We mainly consider a distribution network
that is a local, low-voltage part of the electricity system that
connects the customers to the long-distance, high-voltage
transmission system which, in turn, connects to generating
plants. Electric power transmission is the bulk transfer of
electrical energy, from generating power plants to electrical
substations located near demand centers. This is distinct
from the local wiring between high-voltage substations and
customers, which is typically referred to as electric power
distribution. Transmission lines, when interconnected with
each other, become transmission networks. The combined
transmission and distribution network is known as the
“power grid” or just “the grid.” A wide area synchronous grid,
also known as an “interconnection” directly connects a large
number of generators delivering AC power with the same
relative phase, to a large number of consumers.

The distribution network may be viewed as connecting
to the transmission system, via a substation, at a single point
or source (in reality, it may connect to several points). We
consider a number of customers (cities, factories, etc.) with
demand for a certain product (that may vary over time) over
a specified time period, for example, demand for electricity
in our case study. We assume that demand is satisfied by
shipping electricity in a fixed number of wires from a number
of supply/production sites, where the cost of production is
assumed to be time varying (or fixed for each time period).

We restrict our attention to the case in which each wire must
unload all of its goods (electricity) at the demand site upon
arrival.

Several parameters must be specified in order to generate
theMMN topology, arc capacities and costs, losses and gains,
and node storage capacities (if desired).These parameters are
random seed, number of periods 𝑇, number of products 𝐾,
number of supply/demand nodes, indegree and outdegree of
each node, minimum and maximum values of arc capacities
for each 𝑞 and 𝑡, losses, gains, and costs associated with the
arcs, which must be all nonnegative. The cost on each arc
(for each time period for each product) is randomly chosen
from a uniform distribution between user defined parameter
𝑐min and 𝑐max, and gain/loss factors for each commodity and
period are also chosen from a [0, 𝜆max]-uniform distribution
where 𝜆max should be given for each 𝑞. The user also sets the
number of time periods, supply nodes, and demand nodes.
The demand for each time step with respect to each product
𝑞 is to be randomly chosen from a uniform distribution
between V

𝑞min and V
𝑞max, and likewise for supply, storage

capacity, spoilage, and arc capacities.
The experiments are conducted on random multiperiod

transportation networks with 26, 40, 46, 62, 74, 82, and 100
nodes and time horizon 13, 20, 23, 31, 37, 41, and 50 for
the first two cases (Tables 1 and 2) and random networks
with 6, 10, 14, 22, 26, 30, and 34 nodes and time horizon
3, 5, 7, 11, 13, 15, and 17 for the last case (Table 3). For each
value of 𝑛 (𝑛 = 𝑛

1
+ 𝑛
2
is the total number of generating

plants and demand sites), we create distribution networks
with different indegree and outdegree in a range from 1
to max{𝑛

1
, 𝑛
2
}. We denote by 𝛿 the density of the network

(𝛿 = 𝑚/𝑛). The minimum and maximum loss/gains are
set to 0.999 and 1.100; 𝑟th capacities are set to 50 and 70
and are set to 10 and 100, respectively. For each specific
setting of 𝑛 and𝑚, we have performed several computational
tests and analyzed decomposition approach’s sensitivity on a
variety of minimum-cost MMN problem instances. We have
investigated different implementation ideas and sensitivity of
the method to various data parameters, such as the number
of arcs, number of time increments, and the congestion in the
multiperiod network. We generated many MMN of various
sizes, different number of time periods, and different levels of
congestion.

A plot for each different network parameter, 𝛿 and 𝑇,
helps us visualize the effects of time splitting and density
on the growth of the problem or the average CPU time.
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Table 2: Sizes and computational results for some MMNs with |𝐾| = 7 (𝑇 = 13, 20, 23, 31, 37, 41, 50).

Number of polyhedrals Number of variables Number of constraints Number of nonzeros Computational time (sec)
Dataset 1 98 35490 19110 677 70.9
Dataset 2 147 123200 67480 1601 119.2
Dataset 3 168 185150 101890 2117 142.9
Dataset 4 224 443982 246450 3845 225.1
Dataset 5 266 747474 416694 5477 319.9
Dataset 6 294 1011962 565390 3362 764.7
Dataset 7 357 1820000 1020700 10001 2510.2

Table 3: Sizes and computational results for some MMNs with |𝑁| = 2|𝐾| = 2𝑇 (𝑇 = 3, 5, 7, 11, 13, 15, 17).

Number of polyhedrals Number of variables Number of constraints Number of nonzeros Computational time (sec)
Dataset 1 12 270 162 37 14.7
Dataset 2 30 1750 950 101 37.8
Dataset 3 56 6174 3234 197 68.6
Dataset 4 132 34606 17666 485 134.2
Dataset 5 182 65910 33462 677 114.6
Dataset 6 240 114750 58050 901 145.3
Dataset 7 306 186694 94214 1157 557.3

Moreover, Figure 2 shows that execution time increases
exponentially in denser networks. The same sensitivity is
also observed with respect to the number of products.
This behavior is generally related to the increase in the
number of subproblems, since any increase in the num-
ber of time periods or products will directly affect the
numbers/complexity of subproblems, and consequently, the
algorithm’s running time increases. Our linear programming
models and decomposition methods were implemented in
GAMS and solved using CPLEX 7.0 on a personal computer
with a 2.13 GHz processor and 4GB physical RAM. The
results of a very small number of runs are summarized in
Tables 1–3. Computational experiences shown in the first four
rows in any table correspond to some electricity transmission
MMNs from our case study.

DW also provides a bound on the value of the objective
function at each iteration, which allows the quality of the
current solution to be assessed, so that the tradeoff between
time and quality can be quantified. As a result, the procedure
can be terminated, prior to finding an exact optimal solution,
with a good estimate of the gap between the value of the
current solution and the optimal value.

Practical experience suggests that when decomposition is
applied on an MCDF problem on an MMN, the algorithm
makes substantial progress in the beginning, but the cost
improvement becomes very slow later on. However, in spite
of possible ill-conditioning of a decomposed problem, it
usually turns out that its optimal solution is close to the true
optimal solution, and so we may terminate it having a very
good suboptimal solution. Figure 3 plots the progress of a
typical problem when we apply the decomposition method
and Figure 4 represents the relative duality gap observed
solving some other MMN. The plots show how the objective
values and dual bounds converge as the number of iterations
(time) increases. Since we are dealing with minimum-cost
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Figure 2: Sensitivity to density of two sample problems: dataset 1
and dataset 2 from Table 1.
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Figure 3: Objective and dual bound progress of some decomposi-
tion application for a distribution MMN corresponding to dataset 2
from Table 2 (the objective value descends from above and the dual
bound ascends from below).
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Figure 4: The relative duality gap observed solving the sample
problem in dataset 7 in Table 3 (density = 8.5, 𝑇 = 17, 𝐾 = 17).

flow problems, the objective value descends from above and
the dual bound ascends from below.

7. Conclusion

This paper addresses discrete-time dynamic minimum-cost
network flow problem on multiperiod multiproduct distri-
bution networks under the generalization of node storage
or/and arc spoilage. We develop some decomposition-based
approaches to solve theminimum-cost flowproblem employ-
ing polyhedral sets hidden in the underlying distribution
network. Having appropriately defined some matrices, the
original problems are reformulated into a series of struc-
turally similar sparse LP subproblems (polyhedrals), which
are utilized to develop decomposition-based techniques to
decrease storage requirements.

Appendices

A. The Transformation Procedure Mentioned
in Section 3

Substituting V𝑡
𝑖𝑞+
− V𝑡
𝑖𝑞−

for unrestricted variable V𝑡
𝑖𝑞
, consid-

ering relations (20)-(21), the problem formulation stated in
discrete-time-MCDF (SMMN) becomes

Min
X𝑡
𝑞
,V𝑡
𝑞+
,V𝑡
𝑞−

∑

t∈N
[C𝑡
1
C𝑡
2
⋅ ⋅ ⋅ C𝑡

𝐾
] [X𝑡
1
X𝑡
2
⋅ ⋅ ⋅ X𝑡

𝐾
]
trans
,

([X0
1
] + ⋅ ⋅ ⋅ + [X0

𝐾
]) + ([X1

1
] + ⋅ ⋅ ⋅ + [X1

𝐾
])

+ ⋅ ⋅ ⋅ + ([X𝑇−1
1
] + ⋅ ⋅ ⋅ + [X𝑇−1

𝐾
]) ≤ [U]𝑚×1,

([V0
1+
] − [V0

1−
]) + ([V1

1+
] − [V1

1−
])

+ ⋅ ⋅ ⋅ + ([V𝑇−1
1+
] − [V𝑇−1

1−
]) = [V

1
]
𝑛×1

([V0
2+
] − [V0

2−
]) + ([V1

2+
] − [V1

2−
])

+ ⋅ ⋅ ⋅ + ([V𝑇−1
2+
] − [V𝑇−1

2−
]) = [V

2
]
𝑛×1

...

([V0
𝐾+
] − [V0

𝐾−
]) + ([V1

𝐾+
] − [V1

𝐾−
])

+ ⋅ ⋅ ⋅ + ([V𝑇−1
𝐾+
] − [V𝑇−1

𝐾−
]) = [V

𝐾
]
𝑛×1
,

[B0
1
]
𝑛×𝑚
[X0
1
] − [Ι]𝑛 [V

0

1+
] + [Ι]𝑛 [V

0

1−
] = [0]𝑛×1

[B0
2
]
𝑛×𝑚
[X0
2
] − [Ι]𝑛 [V

0

2+
] + [Ι]𝑛 [V

0

2−
] = [0]𝑛×1

...

[B0
𝐾
]
𝑛×𝑚
[X0
𝐾
] − [Ι]𝑛 [V

0

𝐾+
] + [Ι]𝑛 [V

0

𝐾−
] = [0]𝑛×1

[B1
1
]
𝑛×𝑚
[X1
1
] − [Ι]𝑛 [V

1

1+
] + [Ι]𝑛 [V

1

1−
] = [0]𝑛×1

[B1
2
]
𝑛×𝑚
[X1
2
] − [Ι]𝑛 [V

1

2+
] + [Ι]𝑛 [V

1

2−
] = [0]𝑛×1

...

[B1
𝐾
]
𝑛×𝑚
[X1
𝐾
] − [Ι]𝑛 [V

1

𝐾+
] + [Ι]𝑛 [V

1

𝐾−
] = [0]𝑛×1,

...

[B𝑇−1
1
]
𝑛×𝑚
[X𝑇−1
1
] − [Ι]𝑛 [V

𝑇−1

1+
] + [Ι]𝑛 [V

𝑇−1

1−
] = [0]𝑛×1

[B𝑇−1
2
]
𝑛×𝑚
[X𝑇−1
2
] − [Ι]𝑛 [V

𝑇−1

2+
] + [Ι]𝑛 [V

𝑇−1

2−
] = [0]𝑛×1

...

[B𝑇−1
𝐾
]
𝑛×𝑚
[X𝑇−1
𝐾
] − [Ι]𝑛 [V

𝑇−1

𝐾+
] + [Ι]𝑛 [V

𝑇−1

𝐾−
] = [0]𝑛×1,

[X0
1
] + ⋅ ⋅ ⋅ + [X0

𝐾
] ≤ [U0]

𝑚×1

[X1
1
] + ⋅ ⋅ ⋅ + [X1

𝐾
] ≤ [U1]

𝑚×1

...

[X𝑇−1
1
] + ⋅ ⋅ ⋅ + [X𝑇−1

𝐾
] ≤ [U𝑇−1]

𝑚×1
,

[0]𝑚×1 ≤ [X
𝑡

𝑞
]
𝑚×1

≤ [U𝑡
𝑞
]
𝑚×1

∀𝑡 ∈ 𝑁, ∀𝑞 ∈ 𝐾,

[V𝑡
𝑞+
]
𝑛×1
≥ [0]𝑛×1, [V𝑡

𝑞−
]
𝑛×1
≥ [0]𝑛×1

∀𝑡 ∈ 𝑁, ∀𝑞 ∈ 𝐾.

(A.1)

Matrix properties allow us to express the following matrix
form as a linear programming problem whose special struc-
ture provides an advantage for exploiting efficient algorithms.
If we set [V𝑇

𝑞+
] = [V𝑇

𝑞−
] = [0] and let [U𝑇] = [0]

without loss of generality while [X𝑇
1
], [X𝑇
2
], . . . , [X𝑇

𝐾
] and

[S0], [S1], . . . , [S𝑇] denote the slack variables, then the above
LP problem can be rewritten as
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Min
X𝑡
𝑞
,V𝑡
𝑞+
,V𝑡
𝑞−

∑

t∈N
[C𝑡
1
C𝑡
2
⋅ ⋅ ⋅ C𝑡

𝐾
0 0 0 0 ⋅ ⋅ ⋅ 0 0 0] [X𝑡

1
X𝑡
2
⋅ ⋅ ⋅ X𝑡

𝐾
V𝑡
1+

V𝑡
1−

V𝑡
2+

V𝑡
2−
⋅ ⋅ ⋅ V𝑡

𝐾+
V𝑡
𝐾−

S𝑡]trans

[
[
[
[
[

[

I
𝑚

I
𝑚
⋅ ⋅ ⋅ I
𝑚

0 0 0 0 ⋅ ⋅ ⋅ 0 0 0
0 0 ⋅ ⋅ ⋅ 0 I

𝑛
−I
𝑛

0 0 ⋅ ⋅ ⋅ 0 0 0
0 0 ⋅ ⋅ ⋅ 0 0 0 I

𝑛
−I
𝑛

0 ⋅ ⋅ ⋅ 0 0
d d

0 0 ⋅ ⋅ ⋅ 0 0 0 0 0 0 I
𝑛
−I
𝑛

0

]
]
]
]
]

]

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(
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1

X0
2

...
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𝐾
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1+

V0
1−

V0
2+
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2−

...
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)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
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[
[
[
[
[

[

I
𝑚

I
𝑚
⋅ ⋅ ⋅ I
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0 0 0 0 ⋅ ⋅ ⋅ 0 0 0
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𝑛
−I
𝑛
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𝑛
−I
𝑛
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d d
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𝑛
−I
𝑛

0

]
]
]
]
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]

(
(
(
(
(
(
(
(
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(
(
(
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(
(
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(
(
(
(
(
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(
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...
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𝐾
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V1
2−

...
V1
𝐾+

V1
𝐾−

S1

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

+ ⋅ ⋅ ⋅

+

[
[
[
[
[

[

I
𝑚

I
𝑚
⋅ ⋅ ⋅ I
𝑚

0 0 0 0 ⋅ ⋅ ⋅ 0 0 0
0 0 ⋅ ⋅ ⋅ 0 I

𝑛
−I
𝑛

0 0 ⋅ ⋅ ⋅ 0 0 0
0 0 ⋅ ⋅ ⋅ 0 0 0 I

𝑛
−I
𝑛

0 ⋅ ⋅ ⋅ 0 0
d d

0 0 ⋅ ⋅ ⋅ 0 0 0 0 0 0 I
𝑛
−I
𝑛

0

]
]
]
]
]

]
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(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
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1

X𝑇−1
2

...
X𝑇−1
𝐾

V𝑇−1
1+

V𝑇−1
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V𝑇−1
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+

[
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𝑚
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𝑚
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𝑛
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𝑛
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...
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𝐾
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≤
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...
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𝐾
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...
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𝐾
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)
(𝑚𝑘+2𝑛𝑘+𝑚)×1

∀𝑡 ∈ 𝑁 ∪ {𝑇} .

(A.2)

B. The Transformation Procedure Mentioned
in Section 4

The MCDF problem on MM networks with storage, intro-
duced in Section 4, is reduced to the following matrix form
as an LP, with special structure, provided that we introduce
the vectors of flow and storage at time period 𝑡 as [X𝑡

𝑞
] =

{𝑥
𝑖𝑗𝑞
(𝑡)} = {𝑥

𝑡

𝑖𝑗𝑞
}, [X𝑡
𝑠𝑞
] = {𝑥

𝑖𝑖𝑞
(𝑡)} = {𝑥

𝑡

𝑖𝑖𝑞
}, the vectors of flow

capacities and storage capacities at 𝑡 ∈ 𝑁 as [U𝑡
𝑞
] = {𝑢

𝑖𝑗𝑞
(𝑡)} =

{𝑢
𝑡

𝑖𝑗
} and [U𝑡

𝑠𝑞
] = {𝑢

𝑖𝑖𝑞
(𝑡)} = {𝑢

𝑡

𝑖𝑖𝑞
}, and the node-arc incidence

matrix of the network as [A]
𝑛×𝑚

.
By setting V

𝑖𝑞
(𝑡) = V𝑡

𝑖𝑞+
− V𝑡
𝑖𝑞−

, our problem becomes

Min
[X𝑡
𝑞
],[X𝑡
𝑠𝑞
],[V𝑡
𝑞+
],[V𝑡
𝑞−
]

∑

𝑞∈𝐾

∑

t∈N
[C𝑡
𝑞
] [X𝑡
𝑞
] + ∑

𝑞∈𝐾

∑

t∈N
[C𝑡
𝑠𝑞
] [X𝑡
𝑠𝑞
] ,

([X0
1
] + ⋅ ⋅ ⋅ + [X0

𝐾
]) + ([X1

1
] + ⋅ ⋅ ⋅ + [X1

𝐾
])

+ ⋅ ⋅ ⋅ + ([X𝑇−1
1
] + ⋅ ⋅ ⋅ + [X𝑇−1

𝐾
]) ≤ [U]𝑚×1,

([V0
1+
] − [V0

1−
]) + ([V1

1+
] − [V1

1−
])

+ ⋅ ⋅ ⋅ + ([V𝑇−1
1+
] − [V𝑇−1

1−
]) = [V

1
]
𝑛×1

([V0
2+
] − [V0

2−
]) + ([V1

2+
] − [V1

2−
])

+ ⋅ ⋅ ⋅ + ([V𝑇−1
2+
] − [V𝑇−1

2−
]) = [V

2
]
𝑛×1

...

([V0
𝐾+
] − [V0

𝐾−
]) + ([V1

𝐾+
] − [V1

𝐾−
])

+ ⋅ ⋅ ⋅ + ([V𝑇−1
𝐾+
] − [V𝑇−1

𝐾−
]) = [V

𝐾
]
𝑛×1
,

[A0
1
]
𝑛×𝑚
[X0
1
] + [I]𝑛×𝑛[X

0

𝑠1
]
𝑛×1
+ [−I]𝑛×𝑛[X

−1

𝑠1
]
𝑛×1

− ([V0
1+
] − [V0

1−
]) = [0]𝑛×1

[A0
2
]
𝑛×𝑚
[X0
2
] + [I]𝑛×𝑛[X

0

𝑠2
]
𝑛×1
+ [−I]𝑛×𝑛[X

−1

𝑠2
]
𝑛×1

− ([V0
2+
] − [V0

2−
]) = [0]𝑛×1

...

[A0
𝐾
]
𝑛×𝑚
[X0
𝐾
] + [I]𝑛×𝑛[X

0

𝑠𝐾
]
𝑛×1
+ [−I]𝑛×𝑛[X

−1

𝑠𝐾
]
𝑛×1

− ([V0
𝐾+
] − [V0

𝐾−
]) = [0]𝑛×1,
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[A1
1
]
𝑛×𝑚
[X1
1
] + [I]𝑛×𝑛[X

1

𝑠1
]
𝑛×1
+ [−I]𝑛×𝑛[X

0

𝑠1
]
𝑛×1

− ([V1
1+
] − [V1

1−
]) = [0]𝑛×1

[A1
2
]
𝑛×𝑚
[X1
2
] + [I]𝑛×𝑛[X

1

𝑠2
]
𝑛×1
+ [−I]𝑛×𝑛[X

0

𝑠2
]
𝑛×1

− ([V1
2+
] − [V1

2−
]) = [0]𝑛×1

...

[A1
𝐾
]
𝑛×𝑚
[X1
𝐾
] + [I]𝑛×𝑛[X

1

𝑠𝐾
]
𝑛×1
+ [−I]𝑛×𝑛[X

0

𝑠𝐾
]
𝑛×1

− ([V1
𝐾+
] − [V1

𝐾−
]) = [0]𝑛×1,

...

[A𝑇−1
1
]
𝑛×𝑚
[X𝑇−1
1
] + [I]𝑛×𝑛[X

𝑇−1

𝑠1
]
𝑛×1
+ [−I]𝑛×𝑛[X

𝑇−2

𝑠1
]
𝑛×1

− ([V𝑇−1
1+
] − [V𝑇−1

1−
]) = [0]𝑛×1

[A𝑇−1
2
]
𝑛×𝑚
[X𝑇−1
2
] + [I]𝑛×𝑛[X

𝑇−1

𝑠2
]
𝑛×1
+ [−I]𝑛×𝑛[X

𝑇−2

𝑠2
]
𝑛×1

− ([V𝑇−1
2+
] − [V𝑇−1

2−
]) = [0]𝑛×1

...

[A𝑇−1
𝐾
]
𝑛×𝑚
[X𝑇−1
𝐾
] + [I]𝑛×𝑛[X

𝑇−1

𝑠𝐾
]
𝑛×1
+ [−I]𝑛×𝑛[X

𝑇−2

𝑠𝐾
]
𝑛×1

− ([V𝑇−1
𝐾+
] − [V𝑇−1

𝐾−
]) = [0]𝑛×1,

[X0
1
] + ⋅ ⋅ ⋅ + [X0

𝐾
] ≤ [U0]

𝑚×1

[X1
1
] + ⋅ ⋅ ⋅ + [X1

𝐾
] ≤ [U1]

𝑚×1

...

[X𝑇−1
1
] + ⋅ ⋅ ⋅ + [X𝑇−1

𝐾
] ≤ [U𝑇−1]

𝑚×1
,

[0]𝑚×1 ≤ [X
𝑡

𝑞
]
𝑚×1

≤ [U𝑡
𝑞
]
𝑚×1

∀𝑡 ∈ 𝑁, ∀𝑞 ∈ 𝐾,

[0]𝑛×1 ≤ [X
𝑡

𝑠𝑞
]
𝑛×1
≤ [U𝑡
𝑠𝑞
]
𝑛×1

∀𝑡 ∈ 𝑁, ∀𝑞 ∈ 𝐾,

[V𝑡
𝑞+
]
𝑛×1
≥ [0]𝑛×1, [V𝑡

𝑞−
]
𝑛×1
≥ [0]𝑛×1

∀𝑡 ∈ 𝑁, ∀𝑞 ∈ 𝐾.

(B.1)

Let [X−1
𝑠𝑞
] = 0 be the vector of initial storage and [S] be

the vector of slack variables. Without any loss of generality,
let [S] := [X𝑇

1
] ≥ [0], [X𝑇

2
] = [0], . . . , [X𝑇

𝐾
] = [0], [V𝑇

𝑞+
] =

[V𝑇
𝑞−
] = [0], and [U𝑇] = [0] (since we do not need any

flow in the last period). Then, we can convert the model into
the following form by manipulating and introducing some
matrices:

Min∑
t∈N
[C𝑡
1
,C𝑡
2
, . . . ,C𝑡

𝐾
,C𝑡
𝑠1
,C𝑡
𝑠2
, . . . ,C𝑡

𝑠𝐾
, 0, 0, 0, 0, . . . , 0, 0, 0]

× [X𝑡
1
,X𝑡
2
, . . . ,X𝑡

𝐾
,X𝑡
𝑠1
,X𝑡
𝑠2
, . . . ,X𝑡

𝑠𝐾
,V𝑡
1+
,V𝑡
1−
,V𝑡
2+
,V𝑡
2−
, . . . ,V𝑡

𝐾+
,V𝑡
𝐾−
, S𝑡]

trans
,

[
[
[
[
[
[
[
[

[

I I ⋅ ⋅ ⋅ I 0 0 ⋅ ⋅ ⋅ 0 0 0 0 0 ⋅ ⋅ ⋅ 0 0 0
0 0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0 I −I 0 0 0 ⋅ ⋅ ⋅ 0 0
... d d

...
0 0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0 0 0 0 0 ⋅ ⋅ ⋅ I −I 0
− − − − − − − − − − − − − − − −

0 0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0 0 0 0 0 ⋅ ⋅ ⋅ 0 0 0

]
]
]
]
]
]
]
]

]

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

X0
1

X0
2

...
X0
𝐾

X0
𝑠1

X0
𝑠2

...
X0
𝑠𝐾

V0
1+

V0
1−

V0
2+

V0
2−

...
V0
𝐾+

V0
𝐾−

S0

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)
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+

[
[
[
[
[
[
[
[

[

I I ⋅ ⋅ ⋅ I 0 0 ⋅ ⋅ ⋅ 0 0 0 0 0 ⋅ ⋅ ⋅ 0 0 0
0 0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0 I −I 0 0 0 ⋅ ⋅ ⋅ 0 0
... d d

...
0 0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0 0 0 0 0 ⋅ ⋅ ⋅ I −I 0
− − − − − − − − − − − − − − − −

0 0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0 0 0 0 0 ⋅ ⋅ ⋅ 0 0 0

]
]
]
]
]
]
]
]

]

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

X1
1

X1
2

...
X1
𝐾

X1
𝑠1

X1
𝑠2

...
X1
𝑠𝐾

V1
1+

V1
1−

V1
2+

V1
2−

...
V1
𝐾+

V1
𝐾−

S1

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

+ ⋅ ⋅ ⋅

+

[
[
[
[
[
[
[
[

[

I I ⋅ ⋅ ⋅ I 0 0 ⋅ ⋅ ⋅ 0 0 0 0 0 ⋅ ⋅ ⋅ 0 0 0
0 0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0 I −I 0 0 0 ⋅ ⋅ ⋅ 0 0
... d d

...
0 0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0 0 0 0 0 ⋅ ⋅ ⋅ I −I 0
− − − − − − − − − − − − − − − −

0 0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0 0 0 0 0 ⋅ ⋅ ⋅ 0 0 0

]
]
]
]
]
]
]
]

]

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

X𝑇−1
1

X𝑇−1
2...

X𝑇−1
𝐾

X𝑇−1
𝑠1

X𝑇−1
𝑠2

...
X𝑇−1
𝑠𝐾

V𝑇−1
1+

V𝑇−1
1−

V𝑇−1
2+

V𝑇−1
2−

...
V𝑇−1
𝐾+

V𝑇−1
𝐾−

S𝑇−1

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

+

[
[
[
[
[
[
[
[

[

I I ⋅ ⋅ ⋅ I 0 0 ⋅ ⋅ ⋅ 0 0 0 0 0 ⋅ ⋅ ⋅ 0 0 0
0 0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0 I −I 0 0 0 ⋅ ⋅ ⋅ 0 0
... d d

...
0 0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0 0 0 0 0 ⋅ ⋅ ⋅ I −I 0
− − − − − − − − − − − − − − − −

0 0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0 0 0 0 0 ⋅ ⋅ ⋅ 0 0 0

]
]
]
]
]
]
]
]

]

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

X𝑇
1

X𝑇
2

...
X𝑇
𝐾

X𝑇
𝑠1

X𝑇
𝑠2

...
X𝑇
𝑠𝐾

V𝑇
1+

V𝑇
1−

V𝑇
2+

V𝑇
2−

...
V𝑇
𝐾+

V𝑇
𝐾−

S𝑇

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

=

(
(
(
(

(

U
V
1

V
2

V
3

...
V
𝐾

0

)
)
)
)

)

,
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[
[
[
[
[
[
[
[

[

A0
1

0 ⋅ ⋅ ⋅ 0 I
𝑛

0 ⋅ ⋅ ⋅ 0 −I
𝑛

I
𝑛

0 0 ⋅ ⋅ ⋅ 0 0 0
0 A0
2
⋅ ⋅ ⋅ 0 0 I

𝑛
0 0 0 0 −I

𝑛
I
𝑛

0 ⋅ ⋅ ⋅ 0 0
... d d

...
0 0 ⋅ ⋅ ⋅ A0

𝐾
0 0 ⋅ ⋅ ⋅ I

𝑛
0 0 0 0 ⋅ ⋅ ⋅ −I

𝑛
I
𝑛

0
− − − − − − − − − − − − − − − −

I
𝑚

I
𝑚
⋅ ⋅ ⋅ I
𝑚

0 0 ⋅ ⋅ ⋅ 0 0 0 0 0 ⋅ ⋅ ⋅ 0 0 I
𝑚

]
]
]
]
]
]
]
]

]

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

X0
1

X0
2

...
X0
𝐾

X0
𝑠1

X0
𝑠2

...
X0
𝑠𝐾

V0
1+

V0
1−

V0
2+

V0
2−

...
V0
𝐾+

V0
𝐾−

S0

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

=

(
(
(
(

(

0
𝑛

0
𝑛

0
𝑛

...
0
𝑛

−−

U0

)
)
)
)

)(𝑛𝑘+𝑚)×1

,

[
[
[
[
[
[
[

[

0 0 ⋅ ⋅ ⋅ 0 −I
𝑛

0 ⋅ ⋅ ⋅ 0 0 0 0 0 ⋅ ⋅ ⋅ 0 0 0
0 0 ⋅ ⋅ ⋅ 0 0 −I

𝑛
0 0 0 0 0 0 0 ⋅ ⋅ ⋅ 0 0

d d
0 0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ −I

𝑛
0 0 0 0 ⋅ ⋅ ⋅ 0 0 0

− − − − − − − − − − − − − − − −

0 0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0 0 0 0 0 ⋅ ⋅ ⋅ 0 0 0

]
]
]
]
]
]
]

]

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

X0
1

X0
2

...
X0
𝐾

X0
𝑠1

[1𝑝𝑡]X0
𝑠2

...
X0
𝑠𝐾

V0
1+

V0
1−

V0
2+

V0
2−

...
V0
𝐾+

V0
𝐾−

S0

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

+

[
[
[
[
[
[
[

[

A1
1

0 ⋅ ⋅ ⋅ 0 I
𝑛

0 ⋅ ⋅ ⋅ 0 −I
𝑛

I
𝑛

0 0 ⋅ ⋅ ⋅ 0 0 0
0 A1
2
⋅ ⋅ ⋅ 0 0 I

𝑛
0 0 0 0 −I

𝑛
I
𝑛

0 ⋅ ⋅ ⋅ 0 0
d d

0 0 ⋅ ⋅ ⋅ A1
𝐾

0 0 ⋅ ⋅ ⋅ I
𝑛

0 0 0 0 ⋅ ⋅ ⋅ −I
𝑛

I
𝑛

0
− − − − − − − − − − − − − − − −

I
𝑚

I
𝑚
⋅ ⋅ ⋅ I
𝑚

0 0 ⋅ ⋅ ⋅ 0 0 0 0 0 ⋅ ⋅ ⋅ 0 0 I
𝑚

]
]
]
]
]
]
]

]

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

X1
1

X1
2

...
X1
𝐾

X1
𝑠1

X1
𝑠2

...
X1
𝑠𝐾

V1
1+

V1
1−

V1
2+

V1
2−

...
V1
𝐾+

V1
𝐾−

S1

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

=

(
(
(
(

(

0
𝑛

0
𝑛

0
𝑛

...
0
𝑛

−−

U1

)
)
)
)

)

,
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[
[
[
[
[
[
[

[

0 0 ⋅ ⋅ ⋅ 0 −I
𝑛

0 ⋅ ⋅ ⋅ 0 0 0 0 0 ⋅ ⋅ ⋅ 0 0 0
0 0 ⋅ ⋅ ⋅ 0 0 −I

𝑛
0 0 0 0 0 0 0 ⋅ ⋅ ⋅ 0 0

d d
0 0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ −I

𝑛
0 0 0 0 ⋅ ⋅ ⋅ 0 0 0

− − − − − − − − − − − − − − − −

0 0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0 0 0 0 0 ⋅ ⋅ ⋅ 0 0 0

]
]
]
]
]
]
]

]

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

X1
1

X1
2

...
X1
𝐾

X1
𝑠1

X1
𝑠2

...
X1
𝑠𝐾

V1
1+

V1
1−

V1
2+

V1
2−

...
V1
𝐾+

V1
𝐾−

S1

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

+

[
[
[
[
[
[
[

[

A2
1

0 ⋅ ⋅ ⋅ 0 I
𝑛

0 ⋅ ⋅ ⋅ 0 −I
𝑛

I
𝑛

0 0 ⋅ ⋅ ⋅ 0 0 0
0 A2
2
⋅ ⋅ ⋅ 0 0 I

𝑛
0 0 0 0 −I

𝑛
I
𝑛

0 ⋅ ⋅ ⋅ 0 0
d d

0 0 ⋅ ⋅ ⋅ A2
𝐾

0 0 ⋅ ⋅ ⋅ I
𝑛

0 0 0 0 ⋅ ⋅ ⋅ −I
𝑛

I
𝑛

0
− − − − − − − − − − − − − − − −

I
𝑚

I
𝑚
⋅ ⋅ ⋅ I
𝑚

0 0 ⋅ ⋅ ⋅ 0 0 0 0 0 ⋅ ⋅ ⋅ 0 0 I
𝑚

]
]
]
]
]
]
]

]

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

X2
1

X2
2

...
X2
𝐾

X2
𝑠1

X2
𝑠2

...
X2
𝑠𝐾

V2
1+

V2
1−

V2
2+

V1
2−

...
V2
𝐾+

V2
𝐾−

S2

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

=

(
(
(
(

(

0
𝑛

0
𝑛

0
𝑛

...
0
𝑛

−−

U2

)
)
)
)

)

,
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[
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𝑛
0 0 0 0 0 0 0 ⋅ ⋅ ⋅ 0 0

d d
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𝑛
0 0 0 0 ⋅ ⋅ ⋅ 0 0 0

− − − − − − − − − − − − − − − −

0 0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0 0 0 0 0 ⋅ ⋅ ⋅ 0 0 0
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0 ⋅ ⋅ ⋅ 0 I
𝑛

0 ⋅ ⋅ ⋅ 0 −I
𝑛

I
𝑛

0 0 ⋅ ⋅ ⋅ 0 0 0
0 A𝑇
2
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𝑛
0 0 0 0 −I

𝑛
I
𝑛
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𝐾
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𝑛
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𝑛

I
𝑛

0
− − − − − − − − − − − − − − − −

I
𝑚

I
𝑚
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𝑚

0 0 ⋅ ⋅ ⋅ 0 0 0 0 0 ⋅ ⋅ ⋅ 0 0 I
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∀𝑡 ∈ 𝑁 ∪ {𝑇} .
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