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We consider an auction design problem under network flow constraints. We focus on pricing mechanisms that provide fair
solutions, where fairness is defined in absolute and relative terms. The absolute fairness is equivalent to “no individual losses”
assumption.The relative fairness can be verbalized as follows: no agent can be treatedworse than any other in similar circumstances.
Ensuring the fairness conditionsmakes only part of the social welfare available in the auction to be distributed on puremarket rules.
The rest of welfare must be distributed without market rules and constitutes the so-called price of fairness. We prove that there exists
the minimum of price of fairness and that it is achieved when uniform unconstrained market price is used as the base price. The
price of fairness takes into account costs of forced offers and compensations for lost profits. The final payments can be different
than locational marginal pricing. That means that the widely applied locational marginal pricing mechanism does not in general
minimize the price of fairness.

1. Introduction

Classical auction (through the whole paper by “auction”
we mean closed double sealed exchange-like mechanism;
in other words an “auction” is a set of trading rules for
an exchange) mechanisms are based on the supply/demand
curves intersection which sets accepted and rejected offers
and determines the uniformmarket price. However, in many
real-world infrastructure economies, a commodity flow is
limited by the resources of somenetwork system.This leads to
a concept of the networked auctions [1]. Some examples come
from electricity [2], gas [3, 4], water [5], telecommunication
[6], and transportmarkets. Determination of auctionwinners
not only must be based on economic grounds, but also
must be aligned with network system resources, for example,
transmission grid, water transmission network, telecommu-
nication network, and road network resources.

In [1] the network winner determination problem
(NWDP), an extension of classical winner determination
problem (WDP)with consideration of network resources, has
been introduced.Thismodel solves only the problemof social
welfare maximization, but there is still the question of how
social welfare should be distributed between the market par-
ticipants. In classical auctions, the marginal pricing principle
is usually applied, which provides the solution acknowledged

to be fair. In case of networked auctions the fairness condi-
tions can be disrupted and uniformmarket pricing cannot be
used.

To address fairness in the electricity markets, the loca-
tional marginal pricing (LMP) was introduced by Schweppe
[7] and further developed by Hogan [8]. LMP sets the
marginal prices at each node. Although this approach is
widely recognized in a context of electricitymarkets, the LMP
and similarmarginal nodal pricing policies are also addressed
for other markets [3, 5, 9]. The LMP has several flaws [10].
One of the main shortcomings is only partial distribution
of social welfare between market participants. This means
that there is some price that is paid to restore the fairness
conditions.

In this paper we introduce the price of fairness (PoF) for
networked auctions. We focus on multicommodity sealed-
bids auctions. Our main theorem proves that the minimal
PoF can be achieved if the unconstrainedmarket price is used
for settlements and some additional nodal components are
paid at each node. This means that widely used locational
marginal pricing approach does not minimize the PoF. Till
now, there is very little literature devoted to fair networked
auctions, and business is focused on LMP-like mechanisms.
We think that our main result is to show that there is
a wide interesting spectrum of fair auction mechanisms
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for networked systems. This spectrum should be further
investigated including also aspects other than the PoF.

The paper is organised as follows. A discussion of related
works is provided in Section 2. In Section 3, we introduce
basic notions: the general model of networked auction with
its components (a special case of winner determination
problem and value mechanism) and the problem of finding
the best value mechanism. The concept of fairness in the
context of networked auction is introduced in Section 4. The
main results of the paper are presented in Section 5.We define
the price of fairness and analyze it in the space of possible
valuemechanisms.We conclude andpresent some interesting
future directions in Section 6.

2. Related Literature

The concept of fairness plays an important role in resource
allocation problems [11–13]. Although fairness is a subjective
notion, it implies equity and impartiality [14]. To achieve
these conditions several ways of specifying the fairness
are considered in the literature. Usually, some measure of
inequality is to be minimized [15, 16]. The simplest measures
are based on the absolute measurement of the spread of out-
comes, for example, mean or maximum absolute difference,
or measurement relative to the mean outcome, for example,
mean absolute deviation or Gini coefficients [17, 18]. Unfor-
tunately, direct minimization of typical inequality measures
is in contradiction with optimization of individual outcomes
[19]. One can use an aggregation function to solve the prob-
lem; however this function should satisfy several require-
ments [20]. Various solution concepts can be achieved
when logarithmic function is used to obtain fair aggregation
[20]. The concept of equitably efficient solution is another
approach, which was formalized in [21].

Unfortunately, all of these concepts of fairness and their
underlying axiomatisation cannot be applied directly when
the allocation is performed via auction mechanism. In this
case, the fairness concept must take into consideration the
prices of bids and thus different utility of bidders. Moreover,
the incompleteness of information possessed by each bidder
is also important.

Auction has been widely considered as a mechanism
of resource allocation in selfish, multiagents environments
[22]. Although the theoretical literature on auctions is rich
and multidimensional, fairness issues are relatively rare. In
[23], two notions of fairness are introduced for combinatorial
auctions: the basic fairness and the extended fairness. The
basic fairness is related to conditions that must be satisfied to
leave each agent with the feeling that he has a fair share. The
extended fairness ensures envy-free allocation, which means
that each agent is at least as happy with his share as he would
be with share of any other agent.

Murillo et al. [24] consider a recurrent auction model
equipped with reservation price. In this setting, no selling
offer below its reservation price can be winning. The incor-
poration of the reservation price forces the introduction of
fairness considerations. The problem considered in [24] is
a policy of setting the reservation prices to assure fairness

condition understood as a similar probability of winning for
every bidder.

Wu et al. [25] consider fairness in the sealed-bid auctions
rather more on procedural level than the market clearing
rules. In order to mitigate the possibilities for collusion or
cheating, they consider when and how the sealed bids should
be opened.

The concept of fairness for multicommodity auctions
has been formalized by Toczyłowski in [26]. We follow this
concept in our paper and we discuss the details in Section 4.

The term price of fairness has been introduced in [27].
In this work, the PoF has been analyzed in the context of
general resource allocation problem. The authors define PoF
as a relative system efficiency loss under fair conditions of the
allocation. A characterization of the PoF for a broad spectrum
of allocation problems is also provided in [27].

There are also some studies, that refer to the PoF indi-
rectly; They consider loss of efficiency due to fair conditions,
mainly in allocation problems. In most works, the price
of fairness or similar notion is defined as the performance
loss incurred relative to utility, in making allocations under
one of several possible fairness criteria formulations. In [28]
some numerical computations for efficiency loss in several
network configurations are presented under consideration of
proportional andmax-min fairness. Butler andWilliams have
proved that, for certain class of facility location problem, the
price of fairness is zero [29]. Mo and Walrand have studied
some family of parameterised objective of bandwidth alloca-
tions [30]. The max-min fairness and proportional fairness
are special cases of this family.

In [26] the fairness is defined by a set of requirements that
must be satisfied in a fair solution of auction with uniform
pricing. In our paper we follow this work and extend the anal-
ysis to the case of nodal pricing. Differentiation of buy and
sell market prices is discussed in [31] with an application to
electricity market. We derive the concept of separated prices
for buying and selling from this work. However, we consider
more general class of auction models.

The price of anarchy is somehow similar concept to the
PoF [32, 33]. It measures the system efficiency loss due to
selfish behaviour of the agents. The PoA and PoF are only
partially overlapped. Even if the agents would play truly, the
PoF can be positive. However, the increase of PoA can be
related to higher PoF that results from deficiency of consid-
ered auction mechanism.

3. Networked Auctions

We consider an organized market in which the sellers and
buyers submit their offers. Then, the auction mechanism is
run to find the winning offers and to set the value flows.
The auction rules can be divided into two steps: the winners
determination and the pricing.

3.1. Winners Determination Problem. Let us assume that an
infrastructure network is modeled by graph 𝐺, where 𝑉 is
a set of vertices and 𝐸 is a set of edges [4]. We assume that
graph 𝐺 is defined by an incidence matrix 𝑎 = [𝑎

𝜐𝑒
]. To make

the notation simpler, we also assume that 𝐺 is a connected
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graph. Any solution to the winners determination problem is
equivalent to some flows in the 𝐺 and must satisfy Kirchoff ’s
laws. Each sell offer is related to a commodity that can be
injected by a seller into the network at a given node. Similarly,
any buy offer is related to a commodity that can be taken by
a buyer from the network at a given node.

Definition 1 (vertex-oriented network winner determination
problem,VWDP). The sellers submit the set of offers 𝑗 ∈ J =

{1, 2, . . . , 𝐽}. An offer 𝑗 is a tuple ⟨𝑐
𝑗
, 𝑞

max
𝑗

⟩, where 𝑐
𝑗

≥ 0 is
an offered unit price, and 𝑞

max
𝑗

≥ 0 is the maximal offered
volume of a commodity. The buyers submit a set of offers
𝑚 ∈ B = {1, 2, . . . , 𝐵}. An offer 𝑚 is a tuple ⟨𝑒

𝑚
, 𝑑

max
𝑚

⟩,
where 𝑒

𝑚
≥ 0 is an offered unit price, and 𝑑

max
𝑚

is the
maximal demanded volume of a commodity. Without loss
of generality, to simplify the notation, we assume that each
seller and each buyer are located in different node. Thus, the
indexes of sellers and buyers can be also used for indexing
the nodes. Let 𝑉𝐽 = J ⊆ 𝑉 be a set of seller nodes and let
𝑉
𝐵

= B ⊆ 𝑉 be a set of buyer nodes. The vertex-oriented
network winner determination problem (VWDP) is to find
a set of winning offers and their volumes (𝑞

𝑗
) and (𝑑

𝑚
),

0 ≤ 𝑞
𝑗

≤ 𝑞
max
𝑗

and 0 ≤ 𝑑
𝑚

≤ 𝑑
max
𝑚

, which is balanced
(∑
𝑗∈J 𝑞
𝑗
= ∑
𝑚∈B 𝑑

𝑚
) and social welfare-maximizing under

the network flow constraints:

∑

𝑒∈𝐸

𝑎
𝜐𝑒
𝑓
𝑒
=

{{

{{

{

𝑞
𝜐

𝜐 ∈ 𝑉
𝐽

,

0 𝜐 ∉ 𝑉
𝐽

∪ 𝑉
𝐵

,

−𝑑
𝑚

𝜐 ∈ 𝑉
𝐵

,

∀𝜐 ∈ 𝑉,

(1)

where 𝑓
𝑒
is the commodity flow over edge 𝑒 and 𝑞

𝑗
and 𝑑

𝑚

are the accepted volumes of sell offer 𝑗 and buy offer 𝑚,
respectively. The VWDP maximizes the natural utilitarian
criterion—the sum of the surpluses of all individual players.
Full formulation of VWDP is a simple extension of classical
auction models [26] and can be expressed as linear pro-
gramme.

3.2. Value Mechanism. The maximal total social welfare 𝑄 =

∑
𝑚∈𝑀

𝑒
𝑚
𝑑
𝑚

− ∑
𝑗∈𝐽

𝑐
𝑗
𝑞
𝑗
is achieved by solving VWDP. The

buyers and sellers are selfish and tend to maximize their
individual profits. Thus, we should notice that the submitted
offers could be different than the market participants’ true
valuations, and then𝑄would not be a true social welfare, but
rather “declared” market surplus [31].

The value mechanism is responsible for the surplus
distribution. The distribution is usually expressed with the
use of payment information I, which may include market
price, payments for individual offers, and other information.
For instance, there are marginal prices at each node in I in
case of LMPmechanism.ThemechanismM is defined as the
following mapping:

M : (𝑒, 𝑐, 𝑑, 𝑞) → I. (2)

A very generic approach to modeling the value mecha-
nisms was formulated by Toczyłowski and called parametric

0

𝜋0

𝜋l𝜋k

𝜋
0l𝜋 k

0

k l

Figure 1: Model of pricing with nodal prices 𝜋
𝑘
, 𝜋
𝑙
, virtual node

price 𝜋
0
, and transmission prices 𝜋

𝑘0
and 𝜋

0𝑙
.

balancing model [26]. It introduces a virtual node denoted by
0 and connected to each other node. There are market price
𝜋
0
at virtual node and nodal prices 𝜋

𝜐
at every node in 𝑉. If

commodity is injected to the network at node 𝑘 ∈ 𝑉 and 𝜋
𝑘

is the nodal price, then 𝜋
𝑘0

= 𝜋
0
− 𝜋
𝑘
is the unit cost of com-

modity transport from node 𝑘 to the virtual node 0. Similarly,
if node 𝑙 ∈ 𝑉 is a consumption node with nodal price 𝜋

𝑙
then

𝜋
0𝑙

= 𝜋
𝑙
− 𝜋
0
is the unit cost for commodity transport from

the virtual node 0 to node 𝑙 (see Figure 1).

3.3. Problem of Finding the Best Value Mechanism. Let
us assume that there is a set of 𝐿 quality measures
{𝑄
1
(M), . . . , 𝑄

𝐿
(M)} of pricingmechanisms, where function

𝑄
𝑙
: M → R is such that if 𝑄

𝑙
(M
1
) > 𝑄
𝑙
(M
2
), then mecha-

nismM
1
is strictly preferred over themechanismM

2
accord-

ing to the measure 𝑙. Quality measures introduce the partial
order to the space of mechanisms. Then, the problem of
finding the best mechanism is defined as follows:

max
M

{𝑄
1
(M) , . . . , 𝑄

𝐿
(M)} . (3)

For a given pricing mechanism it is interesting whether
it is nondominated solution of multicriteria problem (3). In
the next sections we will formulate a bit narrower space of
possible mechanisms and we will analyze possible pricing
mechanisms according to the PoF criterion.

4. Concept of Fairness

For a given set of nodal prices (𝜋
𝜐
) the set of offers can be

divided into competitive and noncompetitive subsets. A sell
(buy) offer at node 𝑗/𝑚 is competitive if nodal price 𝜋

𝑗
/𝜋
𝑚

is higher/lower than or equal to the offer price, that is, if
𝑐
𝑗

≤ 𝜋
𝑗
/𝑒
𝑚

≥ 𝜋
𝑚
. An offer 𝑗 is strictly competitive if 𝑐

𝑗
<

𝜋
𝑗
or 𝑒
𝑚

> 𝜋
𝑚
. A sell (buy) offer 𝑗/𝑚 is considered to be

noncompetitive offer if the nodal price is lower/higher than
the offer price, that is, if 𝑐

𝑗
> 𝜋
𝑘
/𝑒
𝑚

< 𝜋
𝑘
. If an accepted (fully

or partially) offer is also noncompetitive offer then it is called
forced offer.

Two notions of fairness have been introduced in [26]:
absolute fairness and relative fairness.

4.1. Absolute Fairness. Fairness in absolute sense means that
no offer brings individual loss. Figure 2 illustrates an accepted
(forced) sell offer 𝑗. Since the seller is paid with nodal price 𝜋

𝑗

lower than the offer price 𝑐
𝑗
, the entity gains loss 𝑞

𝑗
(𝑐
𝑗
−𝜋
𝑗
). To
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j

Figure 2: Cost 𝑅
𝑆
(𝑗) of forced sell.

compensate the loss, the cost of forced sell 𝑅
𝑆
(𝑗) = (𝑐

𝑗
−𝜋
𝑗
)𝑞
𝑗

must be also paid to the seller 𝑗. Of course, if it is possible
to set nodal prices, that make each offer competitive, then
no individual losses appear. A mechanism M can ensure no
individual losses either by directly setting prices or by
additional payment of losses compensation 𝑅

𝑆
(𝑗).

Similarly, the compensation of competitive buyer losses
should be introduced. For forced buy offer the compensation
is 𝑅
𝐵
(𝑚) = (𝜋

𝑚
−𝑒
𝑚
)𝑑
𝑚
. According to the concept of fairness

introduced in [26], a mechanismM is fair in absolute sense if
it ensures no individual losses.

4.2. Relative Fairness. Mechanism is fair in the relative sense
if none of the parties can claim to be treated worse than
others. This means that each strictly competitive offer must
be fully accepted. For instance, a seller can claim to be treated
clearly unfair if his offer price is lower than market nodal
price, but his offer is not winning. If such situation cannot be
avoided, the compensations for the loss of profit 𝑅0

𝑆
(𝑗) should

be introduced. Figure 3 illustrates the compensation for a sell
offer 𝑗 which is 𝑅

0

𝑆
(𝑗) = (𝑞

max
𝑗

− 𝑞
𝑗
)(𝜋
𝑗
− 𝑐
𝑗
). Similarly, the

compensation for uncompetitive buy offer 𝑚 is defined as
𝑅
0

𝐵
(𝑚) = (𝑑

max
𝑚

− 𝑑
𝑚
)(𝑒
𝑚

− 𝜋
𝑚
).

Also, two participants connected with undersaturated
edge should have the same nodal prices. If this would not
be satisfied, then the entity with the worse nodal price could
trade in the neighbor’s node with better profits.

AmechanismM is fair if it satisfies fairness conditions in
absolute and relative senses.

5. Analysis of Fairness

5.1. Price of Fairness. Let 𝑄 be the social welfare resulting
from the optimal solution of VWDP. LetM be a mechanism
that satisfies absolute and relative fairness conditions. The
mechanism produces somewelfare distribution. Some part of
the social welfare is distributed under pure market rules. The
sellers obtain 𝑄

𝑆

= ∑
𝑗∈J max{0, 𝜋

𝑗
− 𝑐
𝑗
} ∗ 𝑞
𝑗
and the buyers

cj

𝜋k

qj

Units

($
)

qmax
j

R0
S(j)

Figure 3: Loss of profits 𝑅0
𝑆
(𝑗) for rejected, competitive sell offer.

gain 𝑄
𝐵

= ∑
𝑚∈B max{0, 𝑒

𝑚
− 𝜋
𝑚
} ∗ 𝑑
𝑚
. Some part of the

social welfare is also distributed via lost profit compensations:
𝑅
0

𝑆
(𝑗) and 𝑅

0

𝐵
(𝑚). Finally, some social welfare may be not

distributed and market becomes imbalanced.
The difference between total social welfare and welfare

distributed under the pure market rules is a price that must
be paid to maintain fairness [34]. It can be partially paid as
the compensations or it becomes an unbalanced value that
should be allocatedwith some additional, notmarket,mecha-
nism (like fees and subsidies).We call this difference the price
of fairness (PoF).

5.2. Space of Value Mechanisms. Let 𝑒 = (𝑒
𝑚
), 𝑐 = (𝑐

𝑗
), 𝑑 =

(𝑑
𝑚
), 𝑞 = (𝑞

𝑗
), 𝜋 = (𝜋

𝜐
), 𝑅
𝑆
= (𝑅
𝑆
(𝑗)), 𝑅

𝐵
= (𝑅
𝐵
(𝑚)), 𝑅0

𝑆
=

(𝑅
0

𝑆
(𝑗)), 𝑅0

𝐵
= (𝑅
0

𝐵
(𝑚)). Let us define M the space of value

mechanisms as follows:

M = {M : (𝑒, 𝑐, 𝑑, 𝑞) → (𝜋, 𝜋
0
, 𝑅
𝑆
, 𝑅
𝐵
, 𝑅
0

𝑆
, 𝑅
0

𝐵
)} . (4)

The space M is quite general. It covers LMP mechanism
(𝑅
𝑆
= 𝑅
𝐵
= 𝑅
0

𝑆
= 𝑅
0

𝐵
= 0 and 𝜋 are marginal). Also the single

uniform price model is inM (𝜋
0
is uniformmarket price and

𝜋
𝜐
= 𝜋
0
, ∀𝜐 ∈ 𝑉).

Moreover, for the sake of generality, we also consider
the mechanisms that, unlike the LMP or classical uniform
pricing, assume two nodalmarket prices at each node: buying
price 𝜋𝐵

𝜐
and selling price 𝜋

𝑆

𝜐
.The idea of differentiation of sell

and buy prices has been proposed in [26] anddiscussed in [31]
in the context of balancing electrical energy market.

5.3. PoF Minimization. In the perfect situation, when no
congestion manifests in the network, the maximal economic
benefit𝑄𝑢 = ∑

𝑚∈B 𝑒
𝑚
∗𝑑
𝑢

𝑚
−∑
𝑗∈J 𝑐
𝑗
𝑞
𝑢

𝑗
can be reached, where

𝑑
𝑢

𝑚
and 𝑞
𝑢

𝑗
are the accepted volumes under neglected network

constraints assumption. We will call the solution 𝑑
𝑢

= (𝑑
𝑢

𝑚
),

𝑞
𝑢

= (𝑞
𝑢

𝑗
) of the VWDP with network constraints neglected

the unconstrained solution.The related social welfare𝑄
𝑢 will

be called the unconstrained welfare. In most cases, as a result
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of limited resources in the system, the loss of aggregated
economic benefits is observed. We refer to the solution 𝑑 =

(𝑑
𝑚
), 𝑞 = (𝑞

𝑗
) as constrained solution for which constrained

social welfare 𝑄 is obtained. Let 𝐷 be the total trade volume,
𝐷 = ∑

𝑗
𝑞
𝑗
= ∑
𝑗
𝑞
𝑢

𝑗
.

Lemma 2. Price of fairness can be expressed as follows:

PoF = (𝜋
𝐵

0
− 𝜋
𝑆

0
)𝐷 + ∑

𝑗

𝜋
𝑗0
𝑞
𝑗
+ ∑

𝑖

𝜋
0𝑖
𝑑
𝑖
. (5)

Proof. Market sell cost received by the sellers is

𝐾(𝜋
𝑆

0
, (𝜋
𝑗0
)) = ∑

𝑗

(𝜋
𝑆

0
− 𝜋
𝑗0
) 𝑞
𝑗
+ 𝑅
𝑆
+ 𝑅
0

𝑆
. (6)

Market buy cost received by the buyers is

𝑍(𝜋
𝐵

0
, (𝜋
0𝑖
)) = ∑

𝑖

(𝜋
𝐵

0
+ 𝜋
0𝑖
) 𝑑
𝑖
− 𝑅
𝐵
− 𝑅
0

𝐵
. (7)

The basic balance is as follows: 𝐾(𝜋
𝑆

0
, (𝜋
𝑗0
)) + 𝑄

0

=

𝑍(𝜋
𝐵

0
, (𝜋
0𝑖
)), where 𝑄

0 is an imbalance of the market. Thus
∑
𝑗
(𝜋
𝑆

0
−𝜋
𝑗0
)𝑞
𝑗
+𝑅
𝑆
+𝑅
0

𝑆
+𝑄
0

= ∑
𝑖
(𝜋
𝐵

0
+𝜋
0𝑖
)𝑑
𝑖
−𝑅
𝐵
−𝑅
0

𝐵
, and after

transformation𝑄
0

+𝑅
𝑆
+𝑅
𝐵
+𝑅
0

𝑆
+𝑅
0

𝐵
= ∑
𝑖
(𝜋
𝐵

0
+𝜋
0𝑖
)𝑑
𝑖
−∑
𝑗
(𝜋
𝑆

0
−

𝜋
𝑗0
)𝑞
𝑗
, and after further simplifications𝑄0+𝑅

𝑆
+𝑅
𝐵
+𝑅
0

𝑆
+𝑅
0

𝐵
=

(𝜋
𝐵

0
− 𝜋
𝑆

0
)𝐷 + ∑

𝑖
𝜋
0𝑖
𝑑
𝑖
+ ∑
𝑗
𝜋
𝑗0
𝑞
𝑗
.

Let us analyze the properties of 𝐾(𝜋
𝑆

0
, (𝜋
𝑗0
)). For given

values of (𝜋
𝑗0
) we obtain the market sell cost function 𝐾(𝜋

𝑆

0
)

of one variable 𝜋
𝑆

0
. If 𝜋𝑆
0
is sufficiently small (i.e., it is below

each of the offer prices), then the function 𝐾(𝜋
𝑆

0
) is equal to

some minimal value 𝐾
0
. Function 𝐾(𝜋

𝑆

0
) increases with 𝜋

𝑆

0

increase.𝐾(𝜋
𝑆

0
) is a continuous, convex function (the deriva-

tive of this function is equal to volume of sell offers and prices
lower than 𝜋

𝑆

0
).

Similar analysis can be done for function𝑍(𝜋
𝐵

0
, (𝜋
0𝑖
)). For

given values of (𝜋
0𝑖
) we obtain function 𝑍(𝜋

𝐵

0
), which for

sufficiently big price 𝜋
𝐵

0
, no less than the maximal offer price,

is equal to sell value 𝑍
0
. When the value of 𝜋

𝐵

0
goes down,

the function 𝑍(𝜋
𝐵

0
) becomes decreasing and its derivative is

increasing. So, it is continuous, concave function.
Functions 𝐾(𝜋

𝑆

0
) and 𝑍(𝜋

𝐵

0
) are illustrated in Figure 4. It

is easy to see from (5) and Figure 4 that, for given values (𝜋
𝑗0
)

and (𝜋
0𝑖
), the PoF function of market prices 𝜋

𝑆

0
and 𝜋

𝐵

0
is a

convex function. Let us denote the value of market trade by
𝑊 = 𝐾(𝜋

𝑆

0
) + 𝑄
0

= 𝑍(𝜋
𝐵

0
) for given values (𝜋

𝑗0
) and (𝜋

0𝑖
).

Lemma 3. The PoF is a convex function with respect to the
value of market trade 𝑊.

Proof. Theproof of convexity of function (𝜋
𝐵

−𝜋
𝑆

)𝐷, without
congestion costs, is provided in [26]. For fixed congestion
costs, that is, for given values of (𝜋

𝑗0
) and (𝜋

0𝑖
), PoF(𝑊) is

a function of market trade value𝑊 in the range [𝐾
0
, 𝑍
0
] and

it is a convex function (see Figure 4).
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Figure 4: Market sell cost and market buy cost functions.

Notice that above property is true for all values of (𝜋
𝑗0
)

and (𝜋
0𝑖
). Any change in values of (𝜋

𝑗0
) results in parallel

shift of the function 𝐾(𝜋
𝑆

0
) by the value −∑

𝑗
𝜋
𝑗0
𝑞
𝑗
. Any

change in values of (𝜋
0𝑖
) results in parallel shift of function

𝑍(𝜋
𝐵

0
) by ∑

𝑗
𝜋
0𝑖
𝑑
𝑗
. Due to market balance, any deviation in

∑
𝑗
𝜋
𝑗0
𝑞
𝑗
must be compensated by a change in ∑

𝑗
𝜋
0𝑖
𝑑
𝑗
; thus

∑
𝑗
𝜋
𝑗0
𝑞
𝑗
+ ∑
𝑗
𝜋
0𝑖
𝑑
𝑗
is constant. Finally, any shift in 𝐾(𝜋

𝑆

0
)

must also result in the same shift in𝑍(𝜋
𝐵

0
). For different prices

(𝜋
𝑗0
) and (𝜋

0𝑖
) the gap between 𝐾(𝜋

𝑆

0
) and 𝑍(𝜋

𝐵

0
) is constant

and PoF(𝑊) does not change when the values (𝜋
𝑗0
) and (𝜋

0𝑖
)

are changing.Therefore, PoF(𝑊) is a convex function for any
prices (𝜋

𝑗0
) and (𝜋

0𝑖
).

Now, we will show that the minimum of PoF is reached
for market price 𝜋

0
= 𝜋
𝑢. First, in the following two lemmas

we consider two cases: (1) market price 𝜋
0
is lower than 𝜋

𝑢;
(2) market price 𝜋

0
is greater than 𝜋

𝑢.

Lemma 4. ThePoF for market price 𝜋
0
= 𝜋
𝑢 is lower than PoF

for 𝜋
0
< 𝜋
𝑢.

Proof. We assume that congestions involve some reduction
of accepted volume of offers from set 𝐽

𝑅 with total reduced
volume 𝑞

𝑅

= ∑
𝑗∈𝐽
𝑅(𝑞
𝑢

𝑗
− 𝑞
𝑗
). Because these offers would be

accepted in the unconstrained market, their prices must be
lower than 𝜋

𝑢. To meet the demand𝐷, the reduction must be
compensated by some forced offers. Let us denote the set of
these offers by 𝐽

𝑊.Their pricesmust be not lower than𝜋
𝑢 and

their total volume is 𝑞
𝑅

= ∑
𝑗∈𝐽
𝑊(𝑞
𝑗
− 𝑞
𝑢

𝑗
). Now, we will con-

sider a decrease of market price by the value 𝜋
𝑢

−𝜋
0
. It would

decrease the compensations by the value (𝜋
𝑢

− 𝜋
0
) ∗ 𝑞
𝑅, if

𝜋
0
is higher than 𝑐

𝑗
for 𝑗 ∈ 𝐽

𝑅, or the decrease would be even
smaller if some of the offers would become competitive. Total
change of compensation is determined as follows:

∑

𝑗∈𝐽
𝑅
,𝑐𝑗≤𝜋0

(𝜋
𝑢

− 𝜋
0
) ∗ (𝑞

𝑢

𝑗
− 𝑞
𝑗
)

+ ∑

𝑗∈𝐽
𝑅
,𝑐𝑗>𝜋0

(𝜋
𝑢

− 𝑐
𝑗
) ∗ (𝑞

𝑢

𝑗
− 𝑞
𝑗
) .

(8)
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The above expression can be also rewritten in the following
form:

∑

𝑗∈𝐽
𝑅

(𝜋
𝑢

− 𝜋
0
) ∗ (𝑞

𝑢

𝑗
− 𝑞
𝑗
)

− ∑

𝑗∈𝐽
𝑅
,𝑐𝑗>𝜋0

(𝑐
𝑗
− 𝜋
0
) ∗ (𝑞

𝑢

𝑗
− 𝑞
𝑗
) .

(9)

Decreasing themarket price causes increase in costs of forced
sell with value (𝜋

𝑢

− 𝜋
0
) ∗ 𝑞
𝑗
for 𝑗 ∈ 𝐽

𝑊 and (𝑐
𝑗
− 𝜋
0
) ∗ 𝑞
𝑗
for

𝑗 ∈ 𝐽
𝑅 and 𝑐

𝑗
> 𝜋
0
. Total change in the PoF is as follows:

increase of forced costs

− decrease of cost of compensations

= (𝜋
𝑢

− 𝜋
0
) ∗ 𝑞
𝑅

+ ∑

𝑗∈𝐽
𝑅
,𝑐𝑗>𝜋0

(𝑐
𝑗
− 𝜋
0
) ∗ 𝑞
𝑗

− (𝜋
𝑢

− 𝜋
0
) ∗ 𝑞
𝑅

+ ∑

𝑗∈𝐽
𝑅
,𝑐𝑗>𝜋0

(𝑐
𝑗
− 𝜋
0
) ∗ (𝑞

𝑢

𝑗
− 𝑞
𝑗
)

= ∑

𝑗∈𝐽
𝑅
,𝑐𝑗>𝜋0

(𝑐
𝑗
− 𝜋
0
) ∗ 𝑞
𝑗

+ ∑

𝑗∈𝐽
𝑅
,𝑐𝑗>𝜋0

(𝑐
𝑗
− 𝜋
0
) ∗ (𝑞

𝑢

𝑗
− 𝑞
𝑗
) > 0.

(10)

Similar reasoning can be carried out for the buyers, showing
that decreasing 𝜋

0
leads to increase of the PoF.

Lemma 5. ThePoF for market price 𝜋
0
= 𝜋
𝑢 is lower than PoF

for 𝜋
0
> 𝜋
𝑢.

Proof. The proof is similar to the proof of the previous
lemma. Let us assume that congestions cause the reduction of
accepted volume of offers from the set 𝐽𝑅 with total volume
𝑞
𝑅

= ∑
𝑗∈𝐽
𝑅(𝑞
𝑢

𝑗
− 𝑞
𝑗
). Because these offers would be accepted

in the unconstrained market, their prices must be not higher
than 𝜋

𝑢. To meet the demand 𝐷, there must be also forced
increase of other offers. Let us denote these offers by 𝐽

𝑊.Their
prices must be not lower than 𝜋

𝑢 and their total volume is
𝑞
𝑅

= ∑
𝑗∈𝐽
𝑊(𝑞
𝑗
−𝑞
𝑢

𝑗
). Increase of market price by value 𝜋

0
−𝜋
𝑢

causes a compensation increase by value

∑

𝑗∈𝐽
𝑅

(𝜋
0
− 𝜋
𝑢

) ∗ (𝑞
𝑢

𝑗
− 𝑞
𝑗
) + ∑

𝑐𝑗=𝜋
𝑢

(𝜋
0
− 𝜋
𝑢

) ∗ (𝑞
max
𝑗

)

+ ∑

𝑗∈𝐽
𝑊
,𝑐𝑗<𝜋0

(𝜋
0

− 𝑐
𝑗
) ∗ (𝑞

max
𝑗

− 𝑞
𝑗
)

+ ∑

𝑗:𝑞𝑗=0,𝜋
𝑢
<𝑐𝑗<𝜋0

(𝜋
𝑢

− 𝑐
𝑗
) ∗ 𝑞

max
𝑗

.

(11)

The increase of market price causes the decrease cost of
forced sell by

∑

𝑗∈𝐽
𝑊
,𝑐𝑗>𝜋0

(𝜋
0
− 𝜋
𝑢

) ∗ 𝑞
𝑗
+ ∑

𝑗∈𝐽
𝑊
,𝑐𝑗≤𝜋0

(𝜋
0

− 𝑐
𝑗
) ∗ 𝑞
𝑗
. (12)

The above expression can be also rewritten as follows:

(𝜋
0
− 𝜋
𝑢

) ∗ 𝑞
𝑅

− ∑

𝑗∈𝐽
𝑊
,𝑐𝑗>𝜋0

(𝜋
0

− 𝑐
𝑗
) ∗ 𝑞
𝑗
. (13)

Total change in PoF of balancing is as follows:

increase of cost of compensations

− decrease of forced costs

= (𝜋
0
− 𝜋
𝑢

) ∗ 𝑞
𝑅

+ ∑

𝑐𝑗=𝜋
𝑢

(𝜋
0
− 𝜋
𝑢

) ∗ (𝑞
max
𝑗

)

+ ∑

𝑗∈𝐽
𝑊
,𝑐𝑗<𝜋0

(𝜋
0

− 𝑐
𝑗
) ∗ (𝑞

max
𝑗

− 𝑞
𝑗
)

+ ∑

𝑗:𝑞𝑗=0,𝜋
𝑢
<𝑐𝑗<𝜋0

(𝜋
𝑢

− 𝑐
𝑗
) ∗ 𝑞

max
𝑗

− (𝜋
0
− 𝜋
𝑢

) ∗ 𝑞
𝑅

+ ∑

𝑗∈𝐽
𝑊
,𝑐𝑗>𝜋0

(𝜋
0

− 𝑐
𝑗
) ∗ 𝑞
𝑗
> 0.

(14)

Similar reasoning can be carried out for the buyers, showing
that increasing 𝜋

0
leads to increase of the PoF.

Finally, we can formulate the theorem about the minimal
PoF.

Theorem 6. The minimum of PoF is achieved at the market
price 𝜋

𝑢 at every node.

Proof. The proof is clear on the basis of Lemma 3 about the
convexity of PoF and Lemmas 4 and 5 about local minimum
of PoF at price 𝜋

𝑢.

6. Summary

In the paper, we have introduced and analyzed the concept
of price of fairness. PoF reflects the social welfare that must
be distributed out of pure market mechanism to assure that
the final distribution is fair according to the absolute and
relative fairness definitions. Our main result is proving that
the PoF is a convex function with respect to the market value
𝑊. It means that there exists the unique minimum of PoF
function. In fact, we have proved that the minimal PoF is
achieved for theoretical uniform price 𝜋

𝑢 coming from the
unconstrained market solution. Instead of nodal marginality,
the costs of forced offers and compensations of lost profits
are paid. We observe that widely applied locational marginal
pricing mechanism does not in general minimize the PoF.

Our results open the doors for further investigations of
new mechanisms. We have shown that there is still a lot
of space for new mechanisms that can be even better than
locational marginal pricing, at least in some criteria, for
example, PoF. We have introduced the space of mechanism
M, which is promising to contain new interestingmechanism
designs. We believe that further researches should include
more quality measures of mechanism, for example, efficiency
market signals.
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[24] J. Murillo, B. López, V. Muñoz, and D. Busquets, “Fairness
in recurrent auctions with competing markets and supply
fluctuations,” Computational Intelligence, vol. 28, no. 1, pp. 24–
50, 2012.

[25] C.-C. Wu, C.-C. Chang, and I.-C. Lin, “New sealed-bid elec-
tronic auction with fairness, security and efficiency,” Journal of
Computer Science and Technology, vol. 23, no. 2, pp. 253–264,
2008.

[26] E. Toczyłowski, Optimization of Market Processes under Con-
straints, EXIT Academic Publishing, 2003, (Polish).

[27] D. Bertsimas, V. F. Farias, and N. Trichakis, “The price of
fairness,” Operations Research, vol. 59, no. 1, pp. 17–31, 2011.

[28] T. Bonald and L. Massouli, “Impact of fairness on internet
performance,” in Proceedings of the ACM SIGMETRICS Inter-
national Conference onMeasurement andModeling of Computer
Systems (SIGMETRICS ’01), pp. 82–91, ACM, New York, NY,
USA, 2001.

[29] M. Butler and H. P. Williams, “Fairness versus efficiency in
charging for the use of common facilities,” Journal of the
Operational Research Society, vol. 53, no. 12, pp. 1324–1329, 2002.

[30] J. Mo and J. Walrand, “Fair end-to-end window-based conges-
tion control,” IEEE/ACMTransactions on Networking, vol. 8, no.
5, pp. 556–567, 2000.

[31] E. Toczyłowski and I. Zoltowska, “A new pricing scheme for a
multi-period pool-based electricity auction,” European Journal
of Operational Research, vol. 197, no. 3, pp. 1051–1062, 2009.

[32] E. Koutsoupias and C. Papadimitriou, “Worst-case equilibria,”
in Proceedings of the 16th Annual Symposium on Theoretical
Aspects of Computer Science, pp. 404–413, Trier, Germany,
March 1999.

[33] C. Papadimitriou, “Algorithms, games, and the internet,” in
Proceedings of the 33rd Annual ACM Symposium on Theory of
Computing (STOC ’01), pp. 749–753, ACMPress, NewYork, NY,
USA, 2001.

[34] M. Kaleta, “Computing alpha-efficient cost allocations for
unbalanced games,” in Social Informatics, vol. 6430 of Lecture
Notes in Computer Science, pp. 103–112, 2010.


