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Themain goal is to reveal the 1-concavity property for a subclass of cost games called data cost games.Themotivation for the study
of the 1-concavity property is the appealing theoretical results for both the core and the nucleolus, in particular their geometrical
characterization as well as their additivity property. The characteristic cost function of the original data cost game assigns to every
coalition the additive cost of reproducing the data the coalition does not own. The underlying data and cost sharing situation is
composed of three components, namely, the player set, the collection of data sets for individuals, and the additive cost function on
the whole data set. The proof of 1-concavity is direct, but robust to a suitable generalization of the characteristic cost function. As
an adjunct, the 1-concavity property is shown for the subclass of so-called “bicycle” cost games, inclusive of the data cost games in
which the individual data sets are nested in a decreasing order.

1. The Data Sharing Situation
and the Data Cost Game

This paper broadens the game theoretic approach to the data
sharing situation initiated by Dehez and Tellone [1]. The
origin of their mathematical study is the data and cost sharing
problem faced by the European chemical industry. Following
the regulation imposed by the European Commission under
the acronym “REACH” (Registration, Evaluation, Authoriza-
tion and restriction of Chemical substances), manufacturers
and importers are required to collect safety information on
the properties of their chemical substances. There are about
30,000 substances and an average of 100 parameters for each
substance. Chemical firms are required to register the infor-
mation in a central database run by the European Chemicals
Agency (ECHA). By 2018, this regulation program REACH
requires submission of a detailed analysis of the chemical
substances produced or imported. Chemical firms are
encouraged to cooperate by sharing the data they have col-
lected over the past. To implement this data sharing problem,
a compensation mechanism is needed.

This data sharing problem can be specified as follows. A
finite group of firms agrees to undertake a joint venture that
requires the combination of various complementary inputs
held by some of them. These inputs are nonrival but exclud-
able goods, that is, public goods with exclusion such as know-
ledge, data or information, and patents or copyrights (the
consumption of which by individuals can be controlled, mea-
sured, and subjected to payment or other contractual limita-
tions). In what follows we use the common term data to cover
generically these goods. Each firm owns a subset of data.
No a priori restrictions are imposed on the individual data
sets. In addition, with each type of data, there is a replacement
cost corresponding to it, for example, the present cost of dup-
licating the data (or the cost of developing alternative tech-
nologies). Because these public goods are already available,
their costs are sunk. In summary, the data sharing situation
involves a finite group of agents and data sets owned by
individual agents, as well as a discrete list of costs of data.

In the setting of cooperative attitudes by chemical firms,
the main question arises how to compensate the firms for the
data they contribute to share. The design of a compensation
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mechanism, however, is fully equivalent to the selection
among existing solution concepts in the mathematical field
called cooperative game theory. In fact, the solution part of
cooperative game theory aims at solving any allocation prob-
lem by proposing rules based on certain fairness properties.
For that purpose, the data and cost sharing situation needs to
be interpreted as a mathematical model called a cooperative
game by specifying its fundamental characteristic cost func-
tion. We adopt Dehez and Tellone’s game theoretic model in
which the cost associated to any nonempty group of agents
is simply the sum of costs of the missing data, that is, the
total cost of data the group does not own. In this framework,
no costs are charged to the whole group of agents. The so-
called data cost games are therefore compensation games to
which standard cost allocation rules can be applied, such as
the Shapley value [2, 3], the nucleolus [4], and the core. The
determination of these game theoretic solution concepts may
be strongly simplified whenever the underlying characteristic
cost function satisfies, by chance, one or another appealing
property. The main purpose of this paper is to establish the
so-called 1-concavity property for the class of data cost games,
which has not yet been revealed.The impact of the 1-concavity
property is fundamental for the uniform determination of
both solution concepts the core and the nucleolus [5].

Definition 1 (see [1] with adapted notation). (i) A data and
cost sharing situation is given by the 3-tupleDC = (𝑁,D,C),
where 𝑁 is the finite set of agents,D = (𝐷

𝑖
)
𝑖∈𝑁

a collection of
sets 𝐷

𝑖
⊆ 𝐷, 𝑖 ∈ 𝑁, of data, and C = (𝑐

𝑗
)
𝑗∈𝐷

a collection of
costs of data. So,𝐷 = ⋃

𝑖∈𝑁
𝐷
𝑖
denotes the whole data set.

(ii) Given the set 𝑁 of agents, let P(𝑁) = {𝑆 | 𝑆 ⊆ 𝑁}

denote the power set of𝑁. For every coalition 𝑆 ⊆ 𝑁, 𝑆 ̸= 0, let
𝐷
𝑆
= ⋃
𝑖∈𝑆

𝐷
𝑖
denote the data set of 𝑆. For every subset𝐴 ⊆ 𝐷

of data, let 𝑐(𝐴) = ∑
𝑗∈𝐴

𝑐
𝑗
denote its additive cost, whereas

𝑐(0) = 0.
(iii) With every data and cost sharing situation DC =

(𝑁,D,C), there is the associated data cost game ⟨𝑁, 𝐶DC⟩, of
which the characteristic cost function 𝐶DC : P(𝑁) → R is
given by 𝐶DC(0) = 0 and for all 𝑆 ⊆ 𝑁, 𝑆 ̸= 0,

𝐶DC (𝑆) = ∑

𝑗∈𝐷\𝐷𝑆

𝑐
𝑗

Shortly, 𝐶DC (𝑆) = 𝑐 (𝐷 \ 𝐷
𝑆
) = 𝑐 (𝐷) − 𝑐 (𝐷

𝑆
) .

(1)

By (1), the so-called data cost 𝐶DC(𝑆) of coalition 𝑆 equals the
additive cost of duplicating the missing data, that is, costs of
data the coalition does not own. Without loss of generality, it
is tacitly supposed that there exist no overall missing data;
that is, 𝐷 = 𝐷

𝑁
; otherwise the data cost of every nonempty

coalition 𝑆 would increase with the same cost amounting
𝑐(𝐷 \ 𝐷

𝑁
) = 𝑐(𝐷) − 𝑐(𝐷

𝑁
). In our framework, no data costs

are charged to the whole set of agents; that is, 𝐶DC(𝑁) = 0.
Obviously, every data cost game ⟨𝑁, 𝐶DC⟩ satisfies both the
(decreasing) monotonicity (i.e., 𝐶DC(𝑆) ≥ 𝐶DC(𝑇) for all 𝑆 ⊆

𝑇 ⊆ 𝑁, 𝑆 ̸= 0, due to 𝐷
𝑆
⊆ 𝐷
𝑇
) and subadditivity as well (i.e.,

𝐶DC(𝑆 ∪ 𝑇) ≤ 𝐶DC(𝑆) + 𝐶DC(𝑇) for all 𝑆, 𝑇 ⊆ 𝑁 with 𝑆 ∩

𝑇 = 0).

Definition 2 (see [5–7]). A cooperative cost game ⟨𝑁, 𝐶⟩ with
player set 𝑁 is said to satisfy the 1-concavity property if its
characteristic cost function 𝐶 : P(𝑁) → R satisfies

𝐶 (𝑁) ≤ 𝐶 (𝑆) + ∑

𝑖∈𝑁\𝑆

Δ
𝑖 (
𝑁, 𝐶) ∀𝑆 ⊆ 𝑁, 𝑆 ̸=𝑁, 𝑆 ̸= 0,

(2)
𝐶 (𝑁) ≥ ∑

𝑖∈𝑁

Δ
𝑖 (
𝑁, 𝐶)

where Δ
𝑖 (
𝑁, 𝐶) = 𝐶 (𝑁) − 𝐶 (𝑁 \ {𝑖}) ∀𝑖 ∈ 𝑁.

(3)

Condition (2) requires that the cost 𝐶(𝑁) of the formation of
the grand coalition 𝑁 can be covered by any coalitional cost
𝐶(𝑆) together with the marginal costs Δ

𝑖
(𝑁, 𝐶), 𝑖 ∈ 𝑁 \ 𝑆, of

all the complementary players. According to condition (3), all
these marginal costs are weakly insufficient to cover the over-
all cost 𝐶(𝑁). In the framework of data cost games, the latter
condition (3) holds trivially due to the compensation assump-
tion 𝐶DC(𝑁) = 0.

For 1-concave or convex games (𝑁, V), its core and
nucleolus have very nice structures, respectively. Its core is
the convex hull of the extreme points, which are given by ⃗

𝑏

V
−

𝑔

V
(𝑁) ⋅ ⃗𝑒

𝑖
, 𝑖 ∈ 𝑁, where 𝑏

V
𝑖
= V(𝑁) − V(𝑁 \ {𝑖}) and 𝑔

V
(𝑁) =

𝑏

V
(𝑁)−V(𝑁), while its nucleolus agrees with the center of gra-

vity of the core.
The next section is devoted to one significant proof of the

1-concavity property for data cost games.

2. 1-Concavity of the Data Cost Game

Theorem 3. Every data cost game ⟨𝑁, 𝐶DC⟩ of the form (1)
satisfies 1-concavity.

Proof. Let ⟨𝑁, 𝐶DC⟩ be a data cost game. Fix coalition 𝑆 ⊆ 𝑁,
𝑆 ̸=𝑁, 𝑆 ̸= 0. We establish the 1-concavity inequality (2)
applied to ⟨𝑁, 𝐶DC⟩. Because of the compensation assump-
tion 𝐶DC(𝑁) = 0, the condition (2) reduces to

𝐶DC (𝑆) ≥ ∑

𝑖∈𝑁\𝑆

𝐶DC (𝑁 \ {𝑖}) or equivalently, by (1) ,

𝑐 (𝐷) − 𝑐 (𝐷
𝑆
) ≥ ∑

𝑖∈𝑁\𝑆

[𝑐 (𝐷) − 𝑐 (𝐷
𝑁\{𝑖}

)] .

(4)

Write 𝑁 \ 𝑆 = {𝑖
1
, 𝑖
2
, . . . , 𝑖

𝑛−𝑠
} where 𝑛 − 𝑠 denotes the

cardinality of 𝑁 \ 𝑆. Define, for every 0 ≤ 𝑘 ≤ 𝑛 − 𝑠, the data
set 𝐴
𝑖𝑘

= 𝐷
𝑆
⋃

𝑘

ℓ=1
𝐷
𝑖ℓ
, where 𝐴

𝑖0
= 𝐷
𝑆
, 𝐴
𝑖𝑛−𝑠

= 𝐷
𝑁

= 𝐷. In
this setting, using a telescoping sum, (4) is equivalent to
𝑛−𝑠

∑

𝑘=1

[𝑐 (𝐴
𝑖𝑘
) − 𝑐 (𝐴

𝑖𝑘−1
)] ≥

𝑛−𝑠

∑

𝑘=1

[𝑐 (𝐷) − 𝑐 (𝐷
𝑁\{𝑖𝑘}

)] . (5)

In view of (5), it suffices to show the following: for all 1 ≤ 𝑘 ≤

𝑛 − 𝑠

𝑐 (𝐴
𝑖𝑘
) − 𝑐 (𝐴

𝑖𝑘−1
) ≥ 𝑐 (𝐷) − 𝑐 (𝐷

𝑁\{𝑖𝑘}
) or equivalently,

(6)

∑

𝑗∈𝐴𝑖
𝑘
\𝐴𝑖
𝑘−1

𝑐
𝑗
≥ ∑

𝑗∈𝐷\𝐷𝑁\{𝑖
𝑘
}

𝑐
𝑗
. (7)
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In view of (7), in turn, it suffices to show the inclusion 𝐷 \

𝐷
𝑁\{𝑖𝑘}

⊆ 𝐴
𝑖𝑘
\𝐴
𝑖𝑘−1

for all 1 ≤ 𝑘 ≤ 𝑛− 𝑠. Finally, note that 𝑗 ∈

𝐷 \ 𝐷
𝑁\{𝑖𝑘}

means 𝑗 ∈ 𝐷
𝑖𝑘
, but 𝑗 ∉ 𝐷

𝑖ℓ
for all ℓ ̸= 𝑘, ℓ ∈ 𝑁

yielding 𝑗 ∉ 𝐷
𝑆
holds for any 𝑆 ̸∋ 𝑘. Thus, 𝑗 ∉ 𝐴

𝑖𝑘−1
and 𝑗 ∈

𝐴
𝑖𝑘
.

Notice that the equivalence of (6) and (7) in the proof of
Theorem 3 is due to the additive cost assumption in that
𝑐(𝐴) = ∑

𝑗∈𝐴
𝑐
𝑗
for any data subset𝐴 ⊆ 𝐷.We claim that the 1-

concavity property is still valid when the characteristic cost
function 𝐶DC : P(𝑁) → R is of the following generalized
form: there exists a real number𝛽 ∈ {1, 1/2, 1/3, . . .} such that

𝐶CD (𝑆) =
[

[

∑

𝑗∈𝐷

𝑐
𝑗
]

]

𝛽

−
[

[

∑

𝑗∈𝐷𝑆

𝑐
𝑗
]

]

𝛽

∀𝑆 ⊆ 𝑁, 𝑆 ̸= 0.
(8)

By (8), the data cost of coalition 𝑆 equals the surplus of costs of
data that the coalition does not own; where the surplus is
measured by some concave utility function 𝑢(𝑥) of the form
𝑥

1/𝛼 such that 𝛼 is any natural number (the case 𝛼 = 1 agrees
with the additive cost setting).

Theorem4. Every generalized data cost game ⟨𝑁, 𝐶DC⟩ of the
form (8) satisfies the 1-concavity property.

Proof. It suffices to prove the equivalent version of (6) as fol-
lows: for all 1 ≤ 𝑘 ≤ 𝑛 − 𝑠

[

[

∑

𝑗∈𝐴𝑖
𝑘

𝑐
𝑗
]

]

𝛽

−
[

[

∑

𝑗∈𝐴𝑖
𝑘−1

𝑐
𝑗
]

]

𝛽

≥
[

[

∑

𝑗∈𝐷

𝑐
𝑗
]

]

𝛽

−
[

[

∑

𝑗∈𝐷𝑁\{𝑖
𝑘
}

𝑐
𝑗
]

]

𝛽

. (9)

Write 𝛼 = 1/𝛽. We make use of the fundamental calculus
relationship:

𝑥 − 𝑦 = [𝑥

𝛽
− 𝑦

𝛽
] ⋅ [

𝛼−1

∑

𝑝=0

(𝑥

𝛽
)

𝛼−1−𝑝

⋅ (𝑦

𝛽
)

𝑝

] ∀𝑥, 𝑦 ∈ R.

(10)

Fix 1 ≤ 𝑘 ≤ 𝑛 − 𝑠. This fundamental calculus relationship
applied to the validity of (6) yields

[

[

[

[

[

∑

𝑗∈𝐴𝑖
𝑘

𝑐
𝑗
]

]

𝛽

−
[

[

∑

𝑗∈𝐴𝑖
𝑘−1

𝑐
𝑗
]

]

𝛽

]

]

]

⋅ 𝐴

≥

[

[

[

[

[

∑

𝑗∈𝐷

𝑐
𝑗
]

]

𝛽

−
[

[

∑

𝑗∈𝐷𝑁\{𝑖
𝑘
}

𝑐
𝑗
]

]

𝛽

]

]

]

⋅ 𝐵,

(11)

where the two real numbers 𝐴 and 𝐵 are given by

𝐴 =

𝛼−1

∑

𝑝=0

[

[

∑

𝑗∈𝐴𝑖
𝑘

𝑐
𝑗
]

]

(𝛼−1−𝑝)/𝛼

⋅
[

[

∑

𝑗∈𝐴𝑖
𝑘−1

𝑐
𝑗
]

]

𝑝/𝛼

,

𝐵 =

𝛼−1

∑

𝑝=0

[

[

∑

𝑗∈𝐷

𝑐
𝑗
]

]

(𝛼−1−𝑝)/𝛼

⋅
[

[

∑

𝑗∈𝐷𝑁\{𝑖
𝑘
}

𝑐
𝑗
]

]

𝑝/𝛼

.

(12)

Note that 𝐴 ≤ 𝐵 due to the sum of increasing functions 𝑥𝑞,
where 𝑞 > 0. From (11), together with𝐴 ≤ 𝐵, we conclude that
(9) holds.

Corollary 5. According to the theory developed for 𝑛-person
1-concave cost games ⟨𝑁, 𝐶⟩ [5], the so-called nucleolus cost
allocation ⃗𝑦 = (𝑦

𝑖
)
𝑖∈𝑁

∈ R𝑁 for any data cost game ⟨𝑁, 𝐶DC⟩

is given by

𝑦
𝑖
= Δ
𝑖
(𝑁, 𝐶DC) −

1

𝑛

⋅
[

[

∑

𝑗∈𝑁

Δ
𝑗
(𝑁, 𝐶DC) − 𝐶DC (𝑁)

]

]

.

(13)

Because 𝐶DC(𝑁) = 0, it holds Δ
𝑖
(𝑁, 𝐶DC) = −𝐶DC(𝑁 \ {𝑖})

for all 𝑖 ∈ 𝑁 and so, (13) simplifies as follows: for all 𝑖 ∈ 𝑁,

𝑦
𝑖
= −𝐶DC (𝑁 \ {𝑖}) +

Δ (𝑁, 𝐶DC)

𝑛

,

where Δ (𝑁,𝐶DC) = ∑

𝑗∈𝑁

𝐶DC (𝑁 \ {𝑖}) .

(14)

According to (14), a player 𝑖 receives a compensation which
equals𝐶DC(𝑁\{𝑖}) and loses the average of the total coalitional
cost the amount of which is (1/𝑛) ⋅ ∑

𝑗∈𝑁
𝐶DC(𝑁 \ {𝑖}). In par-

ticular, 𝑦
𝑖
< 0 if and only if 𝐶DC(𝑁 \ {𝑖}) > Δ(𝑁, 𝐶DC)/𝑛. In

words, according to the nucleolus, a player 𝑖 receives a compen-
sation if and only if the coalitional cost 𝐶DC(𝑁 \ {𝑖}) strictly
majorizes the average of such expressions; that is, the (𝑛 − 1)-
person coalition not containing player 𝑖 owns sufficiently few
data.

3. 1-Concavity of Bicycle Cost Games

Throughout this section write 𝑁 = {1, 2, . . . , 𝑛} and suppose
that the individual data sets 𝐷

𝑖
⊆ 𝐷, 𝑖 ∈ 𝑁, are nested which

fits particular situations like, for instance, joint ventures
between firms whose𝑅+𝐷 programs are at different stages of
progress [8].

Let us consider the decreasing sequence of individual data
sets in that 𝐷

1
⊇ 𝐷
2
⊇ ⋅ ⋅ ⋅ ⊇ 𝐷

𝑛
. Under these circumstances,

the data cost game ⟨𝑁, 𝐶DC⟩ of the form (1) satisfies the
increasing sequence 0 = 𝐶DC({1}) ≤ 𝐶DC({2}) ≤ ⋅ ⋅ ⋅ ≤

𝐶DC({𝑛}), as well as 𝐶DC(𝑆) = 0 for all 𝑆 ⊆ 𝑁 with 1 ∈ 𝑆,
in particular 𝐶DC(𝑁 \ {𝑖}) = 0 for all 𝑖 ∈ 𝑁 \ {1}, whereas
𝐶DC(𝑁 \ {1}) = 𝑐(𝐷

1
\ 𝐷
2
). Additionally, this type of data

cost game satisfies the following relationship (which remains
valid in case of an increasing sequence of individual data sets):

𝐶DC (𝑆) = min
𝑖∈𝑆

𝐶DC ({𝑖}) ∀𝑆 ⊆ 𝑁, 𝑆 ̸= 0. (15)

Write 𝑆 = {𝑖
1
, 𝑖
2
, . . . , 𝑖

𝑠
} such that 𝑖

1
< 𝑖
2

< ⋅ ⋅ ⋅ < 𝑖
𝑠
.

Because 𝐷
𝑖1

⊇ 𝐷
𝑖2

⊇ ⋅ ⋅ ⋅ ⊇ 𝐷
𝑖𝑠
, it holds 𝐶DC({𝑖

1
}) ≤

𝐶DC({𝑖
2
}) ≤ ⋅ ⋅ ⋅ ≤ 𝐶DC({𝑖

𝑠
}). Moreover, 𝐷

𝑆
= 𝐷
𝑖1
, and

therefore, 𝐶DC(𝑆) = 𝐶DC({𝑖
1
}) = min

𝑖∈𝑆
𝐶DC({𝑖}). The

purpose of the remainder of this section is to show that the 1-
concavity property remains valid for cost games ⟨𝑁, 𝐶⟩ of the
form (15) with arbitrary (not necessary zero) stand-alone
costs 𝐶({𝑖}), 𝑖 ∈ 𝑁.
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Definition 6. A cooperative cost game ⟨𝑁, 𝐶⟩ with player set
𝑁 is called a bicycle cost game and an airport cost game [9] if its
characteristic cost function 𝐶 : P(𝑁) → R satisfies

𝐶 (𝑆) = min
𝑖∈𝑆

𝐶 ({𝑖}) respectively 𝐶 (𝑆) = max
𝑖∈𝑆

𝐶 ({𝑖})

∀𝑆 ⊆ 𝑁, 𝑆 ̸= 0.

(16)

In the setting of owners of bicycles, any group of cyclists is not
willing to spend more than the cheapest repairing cost of the
best bicycle. In the setting of landings by different types of air-
planes at some runway, the largest type needs the longest run-
way, yielding the highest stand-alone cost.

Theorem 7. Every bicycle cost game ⟨𝑁, 𝐶⟩ of the form (16)
satisfies 1-concavity.

Proof. Let ⟨𝑁, 𝐶⟩ be a bicycle cost game.Without loss of gen-
erality, suppose that the stand-alone costs are ordered such
that 0 ≤ 𝐶({1}) ≤ 𝐶({2}) ≤ ⋅ ⋅ ⋅ ≤ 𝐶({𝑛}). We establish the
1-concavity inequalities (2) and (3) applied to the bicycle cost
game. Firstly,𝐶(𝑁) = 𝐶({1}) and secondly, themarginal costs
satisfy Δ

𝑖
(𝑁, 𝐶) = 𝐶(𝑁) − 𝐶(𝑁 \ {𝑖}) = 0 for all 𝑖 ∈ 𝑁 \ {1},

whereas Δ
1
(𝑁, 𝐶) = 𝐶(𝑁) − 𝐶(𝑁 \ {1}) = 𝐶({1}) − 𝐶({2}).

Fix coalition 𝑆 ⊆ 𝑁, 𝑆 ̸= 0. We distinguish two types of
coalitions 𝑆. In case 1 ∈ 𝑆, then Δ

𝑖
(𝑁, 𝐶) = 0 for all 𝑖 ∈ 𝑁 \ 𝑆,

whereas 𝐶(𝑆) = 𝐶({1}) = 𝐶(𝑁) and, in turn, the 1-concavity
condition (2) ismet as a system of equalities. In case 1 ∈ 𝑁\𝑆,
then (2) reduces to 𝐶(𝑁) ≤ 𝐶(𝑆) + 𝐶(𝑁) − 𝐶(𝑁 \ {1}) or,
equivalently, 𝐶(𝑆) ≥ 𝐶({2}) and hence, the 1-concavity prop-
erty holds too if 1 ∉ 𝑆.This proof technique illustrates that the
largest stand-alone costs 𝐶({𝑘}), 3 ≤ 𝑘 ≤ 𝑛, do not matter for
the 1-concavity property as long as their truncation remains
above the second smallest stand-alone cost 𝐶({2}). In this
setting, (3) holds trivially.

Corollary 8. According to the nucleolus cost allocation (13)
applied to bicycle cost games, the second smallest stand-alone
cost𝐶({2}) is charged equally to all players, except for the player
with the smallest stand-alone cost who receives a compensation
amounting the difference between both stand-alone costs. In
formula,𝜇

𝑖
(𝑁, 𝐶) = 𝐶({2})/𝑛 for all 𝑖 ∈ 𝑁\{1} and𝜇

1
(𝑁, 𝐶) =

𝜇
2
(𝑁, 𝐶) − [𝐶({2}) − 𝐶({1})].

The proposed new basis has been introduced and devel-
oped in [10] as a subclass of 1-concave 𝑛-person games, which
are called complementary unanimity cost games.

Definition 9 (see [10] with adapted notation). With every
coalition𝑇 ⊆ 𝑁,𝑇 ̸=𝑁,𝑇 ̸= 0, there is associated complemen-
tary unanimity cost game ⟨𝑁, 𝐶

𝑇
⟩ given by

𝐶
𝑇 (

𝑆) = {

1 if 𝑆 ̸= 0, 𝑆 ∩ 𝑇 = 0;

0 if 𝑆 = 0 or 𝑆 ∩ 𝑇 ̸= 0.

(17)

In addition, the complimentary unanimity cost game ⟨𝑁, 𝐶
0
⟩

is given by 𝐶
0
(0) = 0 and 𝐶

0
(𝑆) = 1 otherwise. Note that

𝐶
𝑇
(𝑁) = 0 for all 𝑇 ⫋ 𝑁, except 𝑇 = 0.

Corollary 10. As shown in [10], the well-known Shapley cost
allocation charged to the agents of any 𝑛-person complementary
unanimity cost game ⟨𝑁, 𝐶

𝑇
⟩ amounts

Sh
𝑖
(𝑁, 𝐶

𝑇
) =

1

𝑛

∀𝑖 ∈ 𝑁 \ 𝑇,

Sh
𝑖
(𝑁, 𝐶

𝑇
) =

1

𝑛

−

1

|𝑇|

∀𝑖 ∈ 𝑇.

(18)

Theorem 11. Suppose without loss of generality 0 ≤ 𝐶({1}) ≤

⋅ ⋅ ⋅ ≤ 𝐶({𝑛}). Every 𝑛-person bicycle cost game ⟨𝑁, 𝐶⟩ can be
decomposed as the following linear combination of a number of
complementary unanimity cost games with nonnegative coeffi-
cients:

𝐶 =

𝑛−1

∑

𝑗=0

[𝐶 ({𝑗 + 1}) − 𝐶 ({𝑗})] ⋅ 𝐶
𝐿𝑗
,

where 𝐿
0
= 0, 𝐿

𝑗
= {1, 2, . . . , 𝑗}

∀𝑗 ∈ 𝑁.

(19)

The Shapley cost allocation Sh(𝑁, 𝐶) for an 𝑛-person bicycle
cost game ⟨𝑁, 𝐶⟩ equals

Sh
𝑖 (
𝑁, 𝐶) = −

𝑛

∑

𝑗=𝑖

𝐶 ({𝑗 + 1}) − 𝐶 ({𝑗})

𝑗

∀𝑖 ∈ 𝑁, where 𝐶 ({𝑛 + 1}) = 0.

(20)

The Shapley cost allocation Sh(𝑁, 𝐶) for an 𝑛-person airport
cost game ⟨𝑁, 𝐶⟩ equals

Sh
𝑖 (
𝑁, 𝐶) =

𝑖−1

∑

𝑗=0

𝐶 ({𝑗 + 1}) − 𝐶 ({𝑗})

𝑛 − 𝑗

∀𝑖 ∈ 𝑁, where 𝐶 ({0}) = 0.

(21)

Proof. Fix coalition 𝑆 ⊆ 𝑁, 𝑆 ̸= 0. Write 𝐶(𝑆) = 𝐶({𝑘}) such
that 𝑘 ∈ 𝑆 and ℓ ∉ 𝑆 for all 1 ≤ ℓ < 𝑘. Given any 0 ≤ 𝑗 ≤ 𝑛−1,
the following equivalences hold: 𝐶

𝐿𝑗
(𝑆) = 1 if and only if

𝑆 ∩ 𝐿
𝑗
= 0 if and only if 0 ≤ 𝑗 < 𝑘. From this, we derive the

validity of (19).The validity of (20) is left for the reader, apply-
ing the additivity property of the Shapley cost allocation to
(19) and taking into account (18) as listed in Corollary 10.

Because of the relationship max
𝑖∈𝑆

𝐶({𝑖}) = 𝐶({𝑛}) −

min
𝑖∈𝑆

[𝐶({𝑛})−𝐶({𝑖})] for all 𝑆 ⊆ 𝑁, 𝑆 ̸= 0, every 𝑛-person air-
port cost game with stand-alone costs 𝐶({𝑖}), 𝑖 ∈ 𝑁, ordered
as an increasing sequence, is associated with a bicycle cost
game with adapted stand-alone costs 𝐶({𝑛}) − 𝐶({𝑖}), 𝑖 ∈ 𝑁,
to be ordered as an increasing sequence. In this setting, (21) is
a direct consequence of (20) applied to this latter bicycle cost
game.

Remark 12. It is left for the reader to check that the Shapley
value of the form (20) can be written alternatively as follows:

Sh
𝑖 (
𝑁, 𝐶) =

𝐶 ({𝑖})

𝑖

−

𝑛

∑

𝑘=𝑖+1

𝐶 ({𝑘})

𝑘 ⋅ (𝑘 − 1)

∀𝑖 ∈ 𝑁. (22)
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According to the Shapley value of Bicycle Cost Games, we
can understand it as follows: for the ordered cyclists with
𝐶({1}) ≤ 𝐶({2}) ≤ ⋅ ⋅ ⋅ ≤ 𝐶({𝑛}), in the beginning, there is
only one cyclist 1; the cost of the repairing fee for him is
𝐶({1}); then player 2 is involved in which makes the cost of
repairing fee of player 1 less and the decreasing amount equals
𝐶({2})/2 while the cost of player 2 is 𝐶({2})/2; after that,
player 3 joins in which makes the cost of players 1 and 2 less
and the total decreasing amount is 𝐶({3})/3 which is divided
equally between players 1 and 2 while the cost of player 2 is
𝐶({3})/3;. . .; finally, player 𝑛 joins in; the cost of him equals
𝐶({𝑛})/𝑛, while this amount is divided equally among the
other 𝑛 − 1 players.

4. Concluding Remarks

The proof of the 1-concavity property for data cost games is
treated in Section 2. Section 3 establishes the 1-concavity pro-
perty for a related class of games, called bicycle cost games.
Due to 1-concavity, the formula (13) for the nucleolus cost
allocation is fully determined in terms of the marginal costs
Δ
𝑖
(𝑁, 𝐶) = 𝐶(𝑁) − 𝐶(𝑁 \ {𝑖}), 𝑖 ∈ 𝑁, together with

𝐶(𝑁) = 0. Results about the core for both data cost games and
bicycle cost games are beyond the scope of this paper and can
be found in [1, 8]. Finally, an alternative proof of the main
Theorem 3 is treated in [11] in terms of Dutch soccer teams
and their potential fans. Three other applications of one-
concavity or one-convexity, called library game, coinsurance
game, and the dual game of the Stackelberg oligopoly game,
respectively, can be found in [10, 12, 13]. The nucleolus for 2-
convex games is treated in [14].The search for other appealing
classes of cost games satisfying the 1-concavity property is still
going on.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

The first author Dongshuang Hou acknowledges financial
support by National Science Foundation of China (NSFC)
through Grant nos. 71171163, 71271171, and 31300310.

References

[1] P.Dehez andD. Tellone, “Data games: sharing public goodswith
exclusion,” Journal of Public Economic Theory, vol. 15, no. 4, pp.
654–673, 2013.

[2] A. E. Roth, The Shapley Value: Essays in Honor of Lloyd S.
Shapley, CambridgeUniversity Press, NewYork,NY,USA, 1988.

[3] L. S. Shapley, “A value for n-person games,” in Annals of Math-
ematics Study, vol. 28, pp. 307–317, Princeton University Press,
Princeton, NJ, USA, 1953.

[4] D. Schmeidler, “The nucleolus of a characteristic function
game,” SIAM Journal on Applied Mathematics, vol. 17, pp. 1163–
1170, 1969.

[5] T. S. H. Driessen, Cooperative Games, Solutions, and Applica-
tions, Kluwer Academic Publishers, Dordrecht, The Nether-
lands, 1988.

[6] T. S. H. Driessen, “Properties of 1-convex n-person games,”
Operations-Research-Spektrum, vol. 7, no. 1, pp. 19–26, 1985.

[7] T. S. H. Driessen and S. H. Tijs, “The t-value, the nucleolus and
the core for a subclass of games,”Methods Operations Research,
vol. 46, pp. 395–406, 1983.

[8] P. Dehez, “Cooperative provision of indivisible public goods,”
Theory and Decision, vol. 74, no. 1, pp. 13–29, 2013.

[9] S. C. Littlechild and G. Owen, “A simple expression for the
Shapley value in a special case,” Management Science, vol. 20,
pp. 370–372, 1973.

[10] T. S. H. Driessen, A. B. Khmelnitskaya, and J. Sales, “1-concave
basis for TU games and the library game,” TOP, vol. 20, no. 3,
pp. 578–591, 2012.

[11] D. Hou and T. Driessen, “Interaction between Dutch soccer
teams and fans: a mathematical analysis through cooperative
game theory,”AppliedMathematics, vol. 3, no. 1, pp. 86–91, 2012.

[12] T. S. H. Driessen, V. Fragnelli, I. V. Katsev, and A. B. Khmelnit-
skaya, “On 1-convexity and nucleolus of co-insurance games,”
Insurance, vol. 48, no. 2, pp. 217–225, 2011.

[13] T. S. H. Driessen, D.Hou, andA. Lardon, “Stackelberg oligopoly
TU-games: characterization of the core and 1-concavity of the
dual game,” Working Paper, University of St. Étienne, Saint-
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