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Evolutionary graph theory is a nice measure to implement evolutionary dynamics on spatial structures of populations. To calculate
the fixation probability is usually regarded as aMarkov chain process, which is affected by the number of the individuals, the fitness
of the mutant, the game strategy, and the structure of the population. However the position of the new mutant is important to its
fixation probability. Here the position of the new mutant is laid emphasis on. The method is put forward to calculate the fixation
probability of an evolutionary graph (EG) of single level. Then for a class of bilevel EGs, their fixation probabilities are calculated
and some propositions are discussed.The conclusion is obtained showing that the bilevel EG is more stable than the corresponding
one-rooted EG.

1. Introduction

The idea of evolution can be dated back to the times of
Darwin. In recent years, there is a growing interest in the
investigation of evolutionary dynamics on spatial structures
of populations; see Lieberman et al. [1], Ohtsuki et al. [2],
Nowak et al. (2006), Nie and Zhang [3–5], Shakarian et al. [6],
Broom et al. [7], Fu et al. [8], and the references mentioned
therein. Evolutionary graph theory is a nicemeasure to imple-
ment evolutionary dynamics, in which evolutionary dynam-
ics are arranged on graphs. Individuals in a population are
posed on a graph, the weighted edges denoting reproductive
rates which govern how often individuals place offspring into
adjacent vertices. When a mutant appears in this population,
its fixation probability is the probability that this mutant
takes over the whole population. After a mutant appears in
a population, this mutant may choose to leave the group.The
fixation probability of an EG can be affected by the number of
the individuals, the fitness of the mutant, the game strategy,
and the structure of the population, where the fitness reflects
the fit degree of the mutant. A population with lower fixation
probability is consequently more stable than a population
with higher fixation probability. The stability of a graph

refers to the degree of stabilization. Calculating the fixation
probability of an EG is a basic and key task. Many researchers
have studied the problem. The evolution dynamics on an EG
are treated as a discrete time Markov chain process. Some
EGs are sensitive to the positions where the new mutants
appear. Some papers as Lieberman et al. [1], Shakarian et al.
[6], Nowak et al. (2006), Nie [3], and Zhang et al. [9, 10]
have noticed that the positions of the new appeared mutants
in EGs are important to their fixation probabilities. For the
directed line, only the mutant appearing at the origin vertex
can take over the whole population.The fixation probabilities
of somemultilevel EGs dependon the appearance of the levels
of the new mutants. In this paper, we lay emphasis on the
position of the new arisen mutant and put forward a way to
calculate the fixation probability of an EG and calculate them
for the directed lines, directed circles, and a class of bilevel
EGs which is discussed by Zhang et al. [9] and correct their
results.

The paper is arranged as follows. Section 2 puts forward
the method to calculate the fixation probabilities of single-
level EGs and applies it to directed lines and directed circles.
Section 3 gives the method to calculate the fixation probabil-
ities of a kind of bilevel EGs. Section 4 is the conclusion.
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2. The Fixation Probabilities of
Single-Level EGs

The evolutionary graph was initially introduced in 2005
by Lieberman et al. [1] and significantly developed by Nie
and Zhang [3–5], Zhang et al. [9, 10], Ohtsuki et al. [2],
and Shakarian et al. [6] and the references therein. In this
framework, the structure of a population is modeled by
a weighted digraph on vertices 1, 2, . . . , 𝑁. It is supposed
that every individual of the population occupies a unique
vertex on the graph. The fitness of a resident is 1. When
a new mutant with fitness 𝑟 appears, it may take over the
whole population or disappear. The graph can describe the
architecture of cells in a multicellular organism and represent
spatial structure among animals or plants in an ecosystem.
Moreover, graphs can also represent relationships in a social
network of humans, whichmeans that the dynamics describe
cultural selection and the spread of new inventions and
ideas. The digraph will model evolution dynamics. In each
iteration, a random individual 𝑖 is chosen for reproduction
with a probability proportional to its fitness, and the resulting
offspring will occupy an adjacent vertex 𝑗with the probability
𝑤
𝑖𝑗
, which represents the weight on edge 𝑖𝑗, if there are any.

Up to now, the evolution on EGs is regarded as a discrete
time Markov chain process. But for some EGs, their fixation
probabilities, however, have a close relation to the positions of
the new appearingmutants. Here we put forward amethod to
calculate the fixation probabilities of EGs, with regard to the
position of the new mutants.

Theorem 1. A given EG has 𝑛 vertices named 1, 2, . . . , 𝑁.
Suppose all the residents with fitness 1 are identical and a new
mutant with fitness 𝑟 is introduced. Let 𝜌(𝑖) be the fixation
probability of a newmutant which appears at the vertex 𝑖.Then
the fixation probability 𝜌 of the new mutant which appears in
the population is

𝜌 =
1

𝑁

𝑁

∑

𝑖=1

𝜌
(𝑖)
. (1)

Proof. Let 𝑄 be the event that a new mutant appears in the
population and 𝑄

𝑖
(𝑖 = 1, 2, . . . , 𝑁) the event that the new

mutant appears at the position of vertex 𝑖. So 𝑄
1
, 𝑄
2
, . . . , 𝑄

𝑁

are inconsistent and the following equation is true:

𝑄 = 𝑄
1
+ 𝑄
2
+ ⋅ ⋅ ⋅ + 𝑄

𝑁
. (2)

Let 𝑇 be the event that the new mutant is fixed; then we have
the following equations:

𝜌 = 𝑃 (𝑇𝑄)
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1
+ 𝑄
2
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𝑛
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1
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2
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𝑛
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1
) 𝑃 (𝑇 | 𝑄

1
) + 𝑃 (𝑄

2
) 𝑃 (𝑇 | 𝑄

2
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𝑁
) 𝑃 (𝑇 | 𝑄

𝑁
)

=
1

𝑁
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1
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2
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𝑁
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=
1

𝑁

𝑁

∑

𝑖=1

𝜌
(𝑖)
.

(3)

Since the new mutant can appear at any vertices of the
population, the vertices are inconsistent, and the individuals
are treated identically; the events𝑄

1
, 𝑄
2
, . . . , 𝑄

𝑁
are inconsis-

tent such that 𝑇𝑄
1
, 𝑇𝑄
2
, . . . , 𝑇𝑄

𝑁
are inconsistent.Therefore

the second equation is satisfied, (𝑄
𝑖
) = 1/𝑁(𝑖 = 1, 2, . . . , 𝑁),

and the result is obtained. The proof is complete.

We have given the statement of the calculation of fixation
probabilities of EGs. In the following we apply it to the
directed lines and directed circles.

Proposition 2. A directed line with 𝑁 vertices named
1, 2, . . . , 𝑁 is shown as follows:

∘ → ∘ → ∘ → ⋅ ⋅ ⋅ → ∘ → ∘

1 2 3 𝑁 − 1 𝑁

(4)

Suppose a new mutant with fitness 𝑟 is introduced and all the
residents are with fitness 1. Then the fixation probability of the
new mutant is 1/𝑁.

Proof. It is obvious that the newmutantwill occupy thewhole
population if it appears at position 1; the new mutant will
disappear if it appears at any other positions. So we have
𝜌
(1)
= 1 and 𝜌𝑖 = 0, 𝑖 = 2, 3, . . . , 𝑛. From (1) we have

𝜌 =
1

𝑁

𝑁

∑

𝑖=1

𝜌
(𝑖)
=
1

𝑁
. (5)

The proof is complete.

We have applied Theorem 1 to the directed lines and we
have gotten the same result asNowak [11] did. In the following
we will apply Theorem 1 to directed circles.

Proposition 3. A directed circle with 𝑁 vertices named
1, 2, . . . , 𝑁 is shown in Figure 1. Suppose a new mutant with
fitness 𝑟 is introduced and all the residents are with fitness 1.
Then the fixation probability of the new mutant is 𝜌 = (1 −
1/𝑟)/(1 − 1/𝑟

𝑁
).

Proof. Let state 𝑘 be the state of 𝑘mutants, 𝑥(𝑖)
𝑘
the probability

of reaching state 𝑁 when starting from state 𝑘 and starting
initially from single new mutant at position 𝑖, and 𝑃(𝑖)

𝑘,𝑙
the

probability of moving from state 𝑘 to state 𝑙, 𝑦(𝑖)
𝑘
= 𝑥
(𝑖)

𝑘
− 𝑥
(𝑖)

𝑘−1

and 𝛾(𝑖)
𝑘
= 𝑃
(𝑖)

𝑘,𝑘−1
/𝑃
(𝑖)

𝑘,𝑘+1
for 𝑖 = 0, 1, 2, . . . , 𝑁; 𝑘 = 1, 2, . . . , 𝑁−

1. It is clear that 𝑥(𝑖)
0
= 0, 𝑥(𝑖)

𝑁
= 1 and the mutants are in a

cluster. By direct calculation, we get 𝑃(𝑖)
𝑘,𝑘−1

= 1/(𝑁 − 𝑘 + 𝑘𝑟)

and𝑃(𝑖)
𝑘,𝑘+1

= 𝑟/(𝑁−𝑘+𝑘𝑟) such that 𝛾(𝑖)
𝑘
= 𝑃
(𝑖)

𝑘,𝑘−1
/𝑃
(𝑖)

𝑘,𝑘+1
= 1/𝑟.
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Figure 1: A directed circle with𝑁 individuals.

From the equation 𝑥(𝑖) = 𝑃(𝑖)𝑥(𝑖), we have the following
equations:
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(6)
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is the transition matrix. Since
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𝑁
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(𝑖)

0

= 𝑦
(𝑖)
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we can obtain the following equations:

𝜌
(𝑖)
= 𝑥
(𝑖)

1
=

1

1 + 1/𝑟 + ⋅ ⋅ ⋅ + 1/𝑟
𝑁−1

=
1 − 1/𝑟

1 − 1/𝑟
𝑁
, for 𝑖 = 1, 2, . . . , 𝑁.

(9)

The result of the proposition is therefore obtained from
(1) and (9). The proof is complete.

The result in Proposition 3 is the same as that Nowak [11]
obtained, but we lay emphasis on the position of the new
mutant.

In the section, we gave the calculation of fixation proba-
bility which has a close relationwith the vertex where the new
mutant appears in Theorem 1 and applied it to the directed
lines and directed circles. From the above discussion, we can
get the conclusion that the directed line cannot be regarded a
Markov chain process, for it is sensitive to the position where
the newmutant is introduced, while the directed circle can be
looked upon as aMarkov chain process, for it is insensitive to
the position. In the following section, a class of bilevel EGs
will be discussed.

3. The Fixation Probabilities of a Class of
Bilevel EGs

Nie [3] introduced bilevel EGs: the upper levels are stars
whereas the lower levels are isothermal EGs. Nie showed

that the fixation probabilities of the EGs on two levels are
lower than those of the star structure, such that the EGs on
two levels are more stable. Nie explained the phenomenon of
autoeciousness. Zhang et al. [9] discussed a class of bilevel
EGs: the upper levels are isothermal and the lower levels are
one rooted. The bilevel EGs reflect hierarchical population
structures. The work on bilevel EGs is extended by Zhang
et al. [10] where the considered bilevel EGs have different
fitness depending on the levels of the graphs. Zhang et al.
[10] described several anecdotal applications of bilevel EGs,
including the budgerigar of Oceania and the Aptenodytes
forsteri (emperor penguins) of Antarctica. Zhou [12] took a
step further toward a real-world application by using bilevel
EGs and star EGs to examine the stability of various types
of business forms. They model corporations with individual
decisions (CIDs) as 1-level star graphs and multiperson deci-
sion corporations (MDCs) and stock corporations (SCs) are
modeled as bilevel graphs. They find that, under reasonable
conditions, MDCs have higher fixation probabilities than
CIDs, which have higher fixation probabilities than SCs.
Hence, through the lens of EGT, SCs represent themost stable
organizational structure for business among these three types
of business forms. The bilevel EGs and multilevel EGs are
important. There are many works to be done in this region.
Here we give and correct the fixation probabilities of the
bilevel EGs discussed in Zhang et al. [9]. For the bilevel EG as
shown in Figure 2, the vertices can be divided into two sets.
One is named 𝐴; the other is named 𝐵. The vertices in set
𝐴 are called the leaders with number 𝑚, while the vertices
in set 𝐵 are called the followers with number 𝑛. The leaders
form an isothermal 𝐸. When the leaders (set𝐴) are collapsed
into a single vertex, we have a one-rooted EG. In the following
theorem, we give the fixation probability of the described
bilevel EG.

Theorem 4. For a bilevel EG, the upper level is isothermal
with 𝑚 vertices whereas the lower level is one-rooted with 𝑁
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Figure 2: A bilevel EG where the leaders (set𝐴) form an isothermal
EG. When they are collapsed into a single vertex, we have a one-
rooted EG [6].

vertices. If a newmutant with fitness 𝑟 is introduced and all the
residents are with fitness 1 in the EG, its fixation probability is
𝜌 = (𝑚/(𝑚 + 𝑁)) ⋅ (1 − 𝑟

−1
)/(1 − 𝑟

−𝑚
).

Proof. Let 𝐶 be the event that the new mutant appears in set
𝐴, 𝐶 the event that the new mutant appears in set 𝐵 which
is the opposite event of 𝐶, 𝐷 the event that new mutant
occupies set𝐴, and 𝐸 the event that the newmutant occupies
the whole vertices. If a mutant occupies the whole vertices,
it must occupy all the vertices in set 𝐴. Therefore we have
𝐷 ⊆ 𝐶 such that 𝐷 = 𝐷𝐶. The fixation probability of a new
mutant refers to the probability that the newmutant occupies
the whole EG such that 𝜌 = 𝑃(𝐸). Since vertices are treated
identically, the probability that the new mutant appears in
set 𝐴 is 𝑚/(𝑚 + 𝑁) and the probability that the new mutant
appears in set 𝐵 is𝑁/(𝑚 + 𝑁). Then we have

𝜌 = 𝑃 (𝐸)

= 𝑃 ((𝐶 + 𝐶)𝐸)

= 𝑃 (𝐶𝐸 + 𝐶𝐸)

= 𝑃 (𝐶𝐸) + 𝑃 (𝐶𝐸)

= 𝑃 (𝐶𝐷𝐸) + 𝑃 (𝐶𝐸)

= 𝑃 (𝐶) 𝑃 (𝐷 | 𝐶) 𝑃 (𝐸 | 𝐶𝐷) + 𝑃 (𝐶) (𝐸 | 𝐶)

=
𝑚

𝑚 +𝑁
⋅
1 − 𝑟
−1

1 − 𝑟
−𝑚
⋅ 1 +

𝑁

𝑚 +𝑁
⋅ 0

=
𝑚

𝑚 +𝑁
⋅
1 − 𝑟
−1

1 − 𝑟
−𝑚
.

(10)

The third equation in the above equations is true for 𝐶 and
𝐶 are inconsistent such that 𝐶𝐸 and 𝐶𝐸 are inconsistent. The
fourth equation is true for 𝐶𝐷 = 𝐷. The fifth equation is true
from the probability law. Since the lower level is one rooted,
only the newmutant appearing in set𝐴 can occupy the whole

vertices in set 𝐴. Therefore, 𝑃(𝐸 | 𝐶) = 0. The leaders form
an isothermal EG, such that 𝑃(𝐷 | 𝐶) = (1 − 𝑟−1)/(1 − 𝑟−𝑚).
The proof is complete.

The fixation probability of the bilevel EG is obtained,
which corrects the result of Zhang et al. [9]. In the following
we will discuss its property.

Proposition 5. Let 𝜌 be the fixation probability of the bilevel
EG with 𝑚 leaders and 𝑁 followers and let 𝑟 be the fitness of
the new mutant. When all the leaders in the upper level are
collapsed into a single vertex, a one-rooted EG with 𝑁 + 1

vertices is obtained. The fixation probability of the one-rooted
EG with 𝑁 + 1 vertices is denoted by 𝜌

1
. If the new mutant is

advantageous, that is, 𝑟 > 1, one can get 𝜌 < 𝜌
1
.

Proof. Since 𝜌
1
is the fixation probability of a one-rooted EG

with𝑁 + 1 vertices, 𝜌
1
= 1/(𝑁 + 1).

For 𝑟 > 1,

1 − 𝑟
−1

1 − 𝑟
−𝑚
=

1

1 + 1/𝑟 + 1/𝑟
2
+ ⋅ ⋅ ⋅ + 1/𝑟

𝑚−1
<
1

𝑚
; (11)

therefore

𝜌 =
𝑚

𝑚 +𝑁
⋅
1 − 𝑟
−1

1 − 𝑟
−𝑚
<

1

𝑚 + 𝑁
<

1

𝑁 + 1
= 𝜌
1
. (12)

The proof is complete.

In this section, we give the fixation probability of a bilevel
EG and discuss its proposition. We get the result that the
bilevel EG has lower fixation probability than that of the
corresponding one-rooted EGwhen the leaders are collapsed
into one vertex. The same conclusion is obtained as that in
Nie [3] and Zhang et al. [9].

4. Conclusion Remark

In this paper, we lay emphasis on the effect of the position
of the new mutant on its fixation probability. We give the
fixation probability of an EG of single level. The result is
applied to directed lines and directed circles. For a directed
line, the fixation probability of a new mutant has a close
relation with the position where it appears. Only the mutant
appearing at the “first” position will occupy the whole
population while themutant appearing at other positions will
disappear. So the directed line is sensitive to the position
and the evolutionary dynamics on the directed line cannot
be regarded as a Markov chain process. For a directed circle,
the fixation probability of the new mutant appearing at each
position is identical. So the directed circle is insensitive to the
position and the evolutionary dynamics on the directed circle
can be regarded as a Markov chain process.

Then the idea is applied to a class of bilevel EGs.Theupper
levels are isothermal while the lower levels are one rooted.
The fixation probabilities are given which correct the result
in Zhang et al. [9]. We compare the bilevel EG with the case
where all the leaders in the upper level are collapsed into
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only one vertex, that is, the one-rooted EG. For an advantage
mutant 𝑟 > 1, we get the result that the bilevel EG has lower
fixation probability such that the bilevel EG is more stable.

Zhou [12] modeled a CID as a star graph and an MDC
as a bilevel EG when the lower level and the upper level are
both isothermal. Here we would like tomodel a CID as a one-
rooted graph and an MDC as a bilevel EG when the upper
level is isothermal and the lower level is one rooted. From
the conclusion of Proposition 5 we know that the fixation
probability of the bilevel graph is lower than that of the
corresponding one-rooted graph such that the bilevel EG is
more stable.The result, however, is accordant with Zhou [12].
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