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We study cooperative and competitive solutions for a many-to-many generalization of Shapley and Shubik’s (1971) assignment
game. We consider the Core, three other notions of group stability, and two alternative definitions of competitive equilibrium. We
show that (i) each group stable set is closely related to the Core of certain games defined using a proper notion of blocking and
(ii) each group stable set contains the set of payoff vectors associated with the two definitions of competitive equilibrium. We also
show that all six solutions maintain a strictly nested structure. Moreover, each solution can be identified with a set of matrices of
(discriminated) prices which indicate how gains from trade are distributed among buyers and sellers. In all cases suchmatrices arise
as solutions of a system of linear inequalities. Hence, all six solutions have the same properties from a structural and computational
point of view.

1. Introduction

Gale and Shapley [1] introduce ordinal two-sided matching
models to study assignment problems between two disjoint
sets of agents. In the marriage model, where matchings are
one-to-one, each agent has to be matched to at most an agent
on the opposite set. It is assumed that each agent has strict
ordinal preferences over the set of agents that he does not
belong to plus the prospect of remaining unmatched. These
models are ordinal and money does not play any role; in
particular, money cannot be used to compensate an agent in
the case he has to be matched to an agent at the bottom of the
agent’s preference list. Ordinal models have been enormously
useful and extensively used in economics to study situations
where the assignment problem has only one issue: who is
matched to whom.1 In these models and given a preference
profile (a preference for each agent), a matching is stable if
it is individually rational (no agent is assigned to a partner
that is worse than to remain unmatched) and pairwise stable
(there is no pair of agents that are not matched to each other
but they would prefer to be so rather than to be matched to

the partner proposed by thematching, or to one of them if the
agent is a college). Gale and Shapley [1] show that, for every
preference profile, the set of stable matchings is nonempty
and it coincides with the Core of the associated cooperative
game with nontransferable utility (and hence, coalitions with
two or more agents from the same set of agents do not have
additional blocking power).2

However, there aremany assignment problems (solved by
markets) where money plays a significant role, for instance,
through salaries or prices. Hence, in those cases agents’
preferences may be cardinal. But then, to describe a solution
of the problem (in particular, to unsure its stability) it is not
sufficient to specify the matching between the two sides of
the market because it is also required to describe how each
pair of assigned agents shares the gains of being matched to
each other. Shapley and Shubik [2] propose the assignment
game as an appropriated tool to study one-to-one matching
problems with money (i.e., with transferable utility). The
prototypical andmost simple example of an assignment game
is a market with sellers and buyers in which each seller
owns one indivisible unit of a good and each buyer wants
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to buy at most one unit of one good. This setting differs
from the marriage model of Gale and Shapley [1] by the
fact that there exists money used as a means of exchange. In
addition money is also used to determine buyers’ valuations
(or maximal willingness to pay) of each unit of the available
goods and sellers’ reservation prices (or minimal amounts
at which they are willing to sell the unit of the good they
own). Shapley and Shubik [2] show that the assignment game
has, among others, the following properties. (i) There exists
at least one competitive equilibrium price vector, with a price
for each of the goods and an assignment between buyers
and sellers such that, at those prices, each buyer is assigned
to the seller that owns the good (namely, the buyer buys
the unit of the good that the seller has and pays its price)
that gives him the maximal net valuation (the difference
between his valuation and the price of the good). (ii) The set
of competitive equilibrium payoffs coincides with the Core
of the cooperative game with transferable utility induced by
the assignment game. (iii) The Core coincides with the set
of individually rational and pairwise stable payoff vectors. In
this model, a solution is not only an assignment (who buys
to whom, or equivalently, who sells to whom) but it is also
a description of how each assigned pair of agents splits the
gains generated by their trade.3

Sotomayor [3–8], Camiña [9], Milgrom [10], Fagebaume
et al. [11], Jaume et al. [12], and Massó and Neme [13] are
some of the papers that extend the one-to-one Shapley and
Shubik [2] assignment game by allowing that buyers can
buy different goods and/or that sellers can own and sell
units of different goods to different buyers. Most of those
papers show that some of the properties of the one-to-one
model also hold for the generalized versions. In addition,
most of the previously cited papers propose and study
cooperative solution concepts that are natural in themany-to-
one or many-to-many contexts. The Core is the most studied
solution concept. Given a payoff vector and an associated
assignment (the payoffs are obtained after distributing among
players the net gains generated from each trade specified by
the assignment) a coalitionCore-blocks the payoff vector if all
its agents, by breaking all their trades with all agents outside
the coalition,may improve upon their payoffs by reorganizing
new trades, performed only among themselves. The Core is
the set of payoff vectors that are not Core-blocked by any
coalition.

However, in this setting there are other alternative notions
of group stability. They differ on the type of transactions
that agents in a blocking coalition are allowed to perform
with agents outside. That is, the notions depend on how
sale contracts have been specified and, hence, on how they
can be broken. The Core concept assumes that agents in a
blocking coalition can only trade among themselves, without
being able to keep any trade with agents outside the blocking
coalition; thus, when a coalition of agents Core-blocks a
proposed payoff vector, they have to break all contracts with
agents outside the coalition. In the group stability notion
defined in Massó and Neme [13] it is assumed that sale
contracts are unit-by-unit. A trade of a unit of a good between
a buyer and a seller is performed independently of the other
traded units of the same good as well as of the traded units

of the other goods. An agent of a blocking coalition can
reduce (but not increase) the trade, with members outside
the coalition, of a given good in the number of units that
he wishes, but without being forced for this reason to reduce
neither the number of traded units of the same good nor the
number of units of the other goods. In this paper we consider
the other two alternative notions of group stability. They are
more appropriated for those cases where sale contracts are
written good-by-good or globally. In the good-by-good case,
the sale contract between a buyer and a seller includes all
traded units of only one good, and it is independent of their
trade on the other goods. Thus, when an agent belongs to a
blocking coalition and the other does not, either they keep the
trade of all units of the good specified in the sale contract or
they completely eliminate the trade of this good. In the global
case, the sale contract between a buyer and a seller includes
all trades on all goods and, thus, when an agent belongs to a
blocking coalition and the other does not, either they keep all
trades or they have to be eliminated altogether.

Jaume et al. [12], when defining competitive equilibrium
for this generalized assignment game, consider that given a
price vector (a price for each of the goods) agents demand
and supply those units of the goods that maximize their
total payoff without taking into account the aggregate feasi-
bility constraints. The supply or demand of each agent only
depends on the price vector and his individual feasibility
constraints. The fact that, at a given price vector, all supply
and demand plans are mutually compatible is an equilib-
rium question, rather than a restriction on the individual
maximization problems. On the other hand, the competitive
equilibrium notion studied by Sotomayor [6–8] in related
models assumes that individual demands and supplies have
to be feasible for the market. Namely, when obtaining their
optimal demands and supplies, it is assumed that agents
cannot demand or supply more than the available amounts
present in the market.

Themost important results of this paper are the following.
First, we show that each one of the sets of payoffs corre-
sponding to the three group stability notions can be directly
identified with the union of Cores of particular cooperative
games with transferable utility, where the blocking power of
coalitions is inherited from the corresponding nature of the
sale contracts between buyers and sellers (unit-by-unit, good-
by-good, or global). Second and using this identification, we
show that the three notions of group stability are supported by
a Cartesian product structure between a given set ofmatrices
of prices and the set of optimal assignments; all payoff vectors
in any of the sets corresponding to the three group stability
notions are fully identified by a set of matrices of prices; all
payoff vectors in any of the sets corresponding to the three
group stability notions are completely identified with the
solutions of a system of bounded linear inequalities. Third,
we show that each of the two competitive equilibriumnotions
can be directly identified with the union of Cores of certain
cooperative games with transferable utility. This result allows
us to obtain for the two competitive equilibrium concepts
the same conclusions that we have already obtained for the
three group stability notions. Hence, cooperative as well as
competitive solutions have all the same properties from a
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structural and computational point of view. Furthermore, all
studied solutions maintain a strictly nested relationship.

In short, the paper contributes to the study of markets
with indivisible goods. In particular, it shows that the two
competitive equilibrium notions are immune with respect to
the secession of subgroups of agents. It also identifies some
structural properties that hold for competitive equilibrium
solutions as well as for different notions of group stability.

The paper is organized as follows. In the next section we
present themodel introduced in Jaume et al. [12]. In Section 3
we define three notions of group stability and study the
equivalence of each of these notions with the Cores of their
corresponding cooperative games with transferable utility.
We show that the three group stability sets of payoffs have a
Cartesian product structure and that they can be identified as
the solutions of a systemof linear inequalities. In Section 4we
perform a similar analysis for the two notions of competitive
equilibria. In Section 5we compare the three notions of group
stability with the two notions of competitive equilibria. The
Appendices include the proofs of three results omitted in the
main text.

2. Preliminaries

A generalized assignment game (a market) consists of three
finite and disjoint sets: the set B of 𝐵 buyers, the set G of 𝐺
goods, and the set S of 𝑆 sellers. We denote a generic buyer
by 𝑖, a generic good by 𝑗, and a generic seller by 𝑘. Buyers
have a constant marginal valuation of each good. Let V

𝑖𝑗
≥ 0

be the monetary valuation that buyer 𝑖 assigns to each unit of
good 𝑗; namely, V

𝑖𝑗
is themaximumprice that buyer 𝑖 is willing

to pay for each unit of good 𝑗. Denote by 𝑉 = (V
𝑖𝑗
)
(𝑖,𝑗)∈B×G

the matrix of valuations. We assume that buyer 𝑖 ∈ B can
buy at most 𝑑

𝑖
∈ Z
+
\ {0} units in total, where Z

+
is the

set of nonnegative integers. The strictly positive integer 𝑑
𝑖

should be interpreted as a capacity constraint due to limits
on 𝑖’s ability for storage, transport, and so forth. Denote by
𝑑 = (𝑑

𝑖
)
𝑖∈B the vector of maximal demands. Each seller 𝑘 ∈ S

has 𝑞
𝑗𝑘

∈ Z
+
indivisible units of each good 𝑗 ∈ G. Denote

by𝑄 = (𝑞
𝑗𝑘
)
(𝑗,𝑘)∈G×S thematrix of capacities. We assume that

there is a strict amount of each good; namely,

for each 𝑗 ∈ G there exists 𝑘 ∈ S such that 𝑞
𝑗𝑘

> 0. (1)

Let 𝑟
𝑗𝑘

≥ 0 be the monetary valuation that seller 𝑘 assigns
to each unit of good 𝑗; that is, 𝑟

𝑗𝑘
is the reservation (or

minimum) price that seller 𝑘 is willing to accept for each
unit of good 𝑗. Denote by 𝑅 = (𝑟

𝑗𝑘
)
(𝑗,𝑘)∈G×S

the matrix of
reservation prices.

A market 𝑀 is a 7-tuple (B,G,S, 𝑉, 𝑑, 𝑅, 𝑄) satisfying
condition (1). Shapley and Shubik’s [2] (one-to-one) assign-
ment game is a special case of a market where each buyer can
buy at most one unit, there is only one unit of each good, and
each seller only owns one unit of one of the goods; that is,
𝑑
𝑖
= 1, for all 𝑖 ∈ B, 𝐺 = 𝑆, and, for all (𝑗, 𝑘) ∈ G×S, 𝑞

𝑗𝑘
= 1

if 𝑗 = 𝑘 and 𝑞
𝑗𝑘

= 0 if 𝑗 ̸= 𝑘.
Let𝑀 = (B,G,S, 𝑉, 𝑑, 𝑅, 𝑄) be a market. An assignment

for market 𝑀 is a three-dimensional integer matrix (i.e.,
a 3rd-order tensor) 𝐴 = (𝐴

𝑖𝑗𝑘
)
(𝑖,𝑗,𝑘)∈B×G×S ∈ Z𝐵×𝐺×𝑆

+

describing a collection of deliveries of units of the goods
from sellers to buyers. Each 𝐴

𝑖𝑗𝑘
should be interpreted as

“buyer 𝑖 receives 𝐴
𝑖𝑗𝑘

units of good 𝑗 from seller 𝑘.” We often
omit the sets to which the subscripts belong to and write, for
instance, ∑

𝑖𝑗𝑘
𝐴
𝑖𝑗𝑘

and ∑
𝑖
𝐴
𝑖𝑗𝑘

instead of ∑
(𝑖,𝑗,𝑘)∈B×G×S 𝐴

𝑖𝑗𝑘

and ∑
𝑖∈B 𝐴

𝑖𝑗𝑘
, respectively.

The assignment 𝐴 is feasible for market𝑀 if each buyer 𝑖
buys at most 𝑑

𝑖
units and each seller 𝑘 sells at most 𝑞

𝑗𝑘
units

of each good 𝑗.We are only interested in feasible assignments,
namely, in the set

{

{

{

𝐴 ∈ Z
𝐵×𝐺×𝑆

+
| ∑

𝑗𝑘

𝐴
𝑖𝑗𝑘

≤ 𝑑
𝑖
∀𝑖 ∈ B,

∑

𝑖

𝐴
𝑖𝑗𝑘

≤ 𝑞
𝑗𝑘

∀ (𝑗, 𝑘) ∈ G ×S
}

}

}

.

(2)

For further reference, we denote this set of feasible assign-
ments for market𝑀 byF0(𝑀) (or simply byF0).

The total gain from trade of market 𝑀 at assignment 𝐴 is

𝑇
𝑀

(𝐴) = ∑

𝑖𝑗𝑘

(V
𝑖𝑗
− 𝑟
𝑗𝑘
) ⋅ 𝐴
𝑖𝑗𝑘
. (3)

Definition 1. A feasible assignment𝐴 is optimal formarket𝑀
if, for any feasible assignment 𝐴, 𝑇𝑀(𝐴) ≥ 𝑇

𝑀
(𝐴

).

Example 2 below contains an instance of a market with a
unique optimal assignment.

Example 2. Let (B,G,S, 𝑉, 𝑑, 𝑅, 𝑄) be a market whereB =

{𝑏
1
, 𝑏
2
},G = {𝑔

1
, 𝑔
2
, 𝑔
3
},S = {𝑠

1
}, 𝑉 = (

6 4 4

7 3 5
), 𝑑 =

(10, 10),𝑄 = (10, 5, 1), and 𝑅 = (5, 2, 1). For any 𝐴

∈ F0,

𝑇
𝑀

(𝐴

) = (6 − 5) ⋅ 𝐴



111
+ (4 − 2) ⋅ 𝐴



121
+ (4 − 1) ⋅ 𝐴



131

+ (7 − 5) ⋅ 𝐴


211
+ (3 − 2) ⋅ 𝐴



221
+ (5 − 1) ⋅ 𝐴



231

= 𝐴


111
+ 2 ⋅ 𝐴



121
+ 3 ⋅ 𝐴



131
+ 2 ⋅ 𝐴



211

+ 𝐴


221
+ 4 ⋅ 𝐴



231
.

(4)

It is easy to check that 𝐴 = (
1 5 0

9 0 1
) is the unique optimal

assignment for𝑀 and 𝑇
𝑀
(𝐴) = 1 + 2 ⋅ 5 + 2 ⋅ 9 + 4 = 33.

Let F(𝑀) (or simply F) be the set of all optimal
assignments for market 𝑀. The set F is always nonempty.4

Denote by 𝑇
𝑀 the total gain from trade of market 𝑀 at any

optimal assignment.
Fix a market𝑀 = (B,G,S, 𝑉, 𝑑, 𝑅, 𝑄). Denote by𝐺> the

set of goods that are exchanged at some optimal assignment.
Namely,

𝐺
>
= {𝑗 ∈ G | there exists𝐴 ∈ F such that𝐴

𝑖𝑗𝑘
> 0

for some (𝑖, 𝑘) ∈ B ×S} .

(5)
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Moreover, for each buyer 𝑖 ∈ B and each seller 𝑘 ∈ S, define

𝐺
>

𝑖𝑘
= {𝑗 ∈ G | there exists𝐴 ∈ F such that𝐴

𝑖𝑗𝑘
> 0} , (6)

as the set of goods that 𝑖 buys to 𝑘 at some optimal assignment.

3. Cooperative Solutions: Core and
Group Stability

Massó and Neme [13] define, for any market 𝑀, two coop-
erative solutions: the Core and a group stable set (they call
it setwise stable). As described in the Introduction the two
concepts are based on the idea that a coalition will object
to a proposed payoff vector if all agents in the coalition can
improve upon their payoffs, but differ in that, when objecting,
the Core requires that all members of the blocking coalition
break their exchanges with agents outside the coalition while
group stability (which we will call here type 1-group stability)
allows that the exchanges of an agent in the blocking coalition
with agents outside the coalition are maintained or reduced
(since sale contracts are unit-by-unit). Here we propose two
alternative notions of group stability. Type 2-group stability
makes sense when sale contracts are performed good-by-
good and therefore an agent in the blocking coalition can
maintain with an agent outside the coalition the exchange of
all units of the good or else delete them all. Type 3-group
stability makes sense when between a buyer and a seller
there exists only a sale contract and therefore an agent in
the blocking coalition canmaintain with an agent outside the
coalition all exchanges or delete them all.

Let 𝑀 = (B,G,S, 𝑉, 𝑑, 𝑅, 𝑄) be a market and let 𝐶 ⊂

B ∪S be a coalition. Denote the sets of buyers and sellers in
𝐶 byB𝐶 = 𝐶 ∩B and S𝐶 = 𝐶 ∩ S, respectively.

Definition 3. Let 𝑀 = (B,G,S, 𝑉, 𝑑, 𝑅, 𝑄) be a market and
let 𝐶 ⊂ B ∪ S be a coalition. A feasible assignment 𝐴 ∈

F0 is 1-group compatible with 𝐶 if there exists an optimal
assignment 𝐴 ∈ F such that,

(i) for all 𝑖 ∈ B𝐶,𝐴
𝑖𝑗𝑘

> 0 implies that either 𝑘 ∈ S𝐶 or
else 𝐴

𝑖𝑗𝑘
≤ 𝐴
𝑖𝑗𝑘
,

(ii) for all 𝑘 ∈ S𝐶,𝐴
𝑖𝑗𝑘

> 0 implies that either 𝑖 ∈ B𝐶 or
else 𝐴

𝑖𝑗𝑘
≤ 𝐴
𝑖𝑗𝑘
.5

We want to emphasize that the above definition considers
as compatible any reallocation of goods between the agents
within the coalition and only decreases (with respect of some
optimal assignment) the trade, of any good, between an
agent in the coalition with another agent outside. The next
two definitions of group compatibility limit the reallocations
of goods between members of the blocking coalition and
outsiders depending on whether sale contracts are good-by-
good or global.

Definition 4. Let 𝑀 = (B,G,S, 𝑉, 𝑑, 𝑅, 𝑄) be a market and
let 𝐶 ⊂ B ∪ S be a coalition. A feasible assignment 𝐴 ∈

F0 is 2-group compatible with 𝐶 if there exists an optimal
assignment 𝐴 ∈ F such that,

(i) for all 𝑖 ∈ B𝐶,𝐴
𝑖𝑗𝑘

> 0 implies that either 𝑘 ∈ S𝐶 or
else 𝐴

𝑖𝑗𝑘
= 𝐴
𝑖𝑗𝑘
,

(ii) for all 𝑘 ∈ S𝐶,𝐴
𝑖𝑗𝑘

> 0 implies that either 𝑖 ∈ B𝐶 or
else 𝐴

𝑖𝑗𝑘
= 𝐴
𝑖𝑗𝑘
.

Definition 5. Let 𝑀 = (B,G,S, 𝑉, 𝑑, 𝑅, 𝑄) be a market and
𝐶 ⊂ B∪S be a coalition. A feasible assignment𝐴 ∈ F0 is 3-
group compatible with𝐶 if there exists an optimal assignment
𝐴 ∈ F such that,

(i) for all 𝑖 ∈ B𝐶,𝐴
𝑖𝑗𝑘

> 0 implies that either 𝑘 ∈ S𝐶 or
else 𝐴

𝑖𝑗

𝑘
= 𝐴
𝑖𝑗

𝑘
for all 𝑗 ∈ G,

(ii) for all 𝑘 ∈ S𝐶,𝐴
𝑖𝑗𝑘

> 0 implies that either 𝑖 ∈ B𝐶 or
else 𝐴

𝑖𝑗

𝑘
= 𝐴
𝑖𝑗

𝑘
for all 𝑗 ∈ G.

Let 𝑀 = (B,G,S, 𝑉, 𝑑, 𝑅, 𝑄) be a market, 𝐶 ⊂ B ∪ S a
coalition, and 𝑡 ∈ {1, 2, 3}. Denote by F𝑡(𝐶) the set of all
feasible assignments that are t-group compatible with 𝐶.

Example 2 (continued). To see the differences among the three
types of group compatibility, consider the coalition 𝐶 =

{𝑏
1
, 𝑠
1
} in market𝑀 of Example 2. Then,

F
1
(𝐶) = {𝐴 ∈ F

0
| 0 ≤ 𝐴

211
≤ 9, 𝐴

221
= 0, 0 ≤ 𝐴

231
≤ 1} ,

F
2
(𝐶) = {𝐴 ∈ F

0
| 𝐴
211

∈ {0, 9} , 𝐴221 = 0, 𝐴
231

∈ {0, 1}} ,

F
3
(𝐶) = {𝐴 ∈ F

0
| (𝐴
211

, 𝐴
221

, 𝐴
231

) = (9, 0, 1)

or (𝐴
211

, 𝐴
221

, 𝐴
231

) = (0, 0, 0)} .

(7)

Thus,F3(𝐶) ⊂ F2(𝐶) ⊂ F1(𝐶) and

(
5 5 0

5 0 1
) ∈ F

1
(𝐶) \F

2
(𝐶) ,

(
1 5 1

9 0 0
) ∈ F

2
(𝐶) \F

3
(𝐶) ,

(
4 5 1

0 0 0
) ∈ F

3
(𝐶) .

(8)

Let 𝑀 = (B,G,S, 𝑉, 𝑑, 𝑅, 𝑄) be a market. A 3rd-order
tensor Γ = (Γ

𝑖𝑗𝑘
)
(𝑖,𝑗,𝑘)∈B×G×S ∈ R𝐵×𝐺×𝑆

+
is a distribution matrix

for market𝑀 if, for all (𝑖, 𝑗, 𝑘) ∈ B×G×S such that V
𝑖𝑗
≥ 𝑟
𝑗𝑘

and 𝑗 ∈ 𝐺
>

𝑖𝑘
, V
𝑖𝑗

≥ Γ
𝑖𝑗𝑘

≥ 𝑟
𝑗𝑘

holds. Let Γ be a distribution
matrix for market 𝑀 and assume that V

𝑖𝑗
≥ 𝑟
𝑗𝑘

for some
(𝑖, 𝑗, 𝑘) ∈ B×G×S and 𝑗 ∈ 𝐺

>

𝑖𝑘
.Then, Γ

𝑖𝑗𝑘
describes a possible

way of how buyer 𝑖 and seller 𝑘 can split the gain V
𝑖𝑗
− 𝑟
𝑗𝑘

≥ 0

they could obtain by exchanging one unit of good 𝑗: buyer 𝑖
receives V

𝑖𝑗
− Γ
𝑖𝑗𝑘

and seller 𝑘 receives Γ
𝑖𝑗𝑘

− 𝑟
𝑗𝑘
. If 𝑗 ∉ 𝐺

>

𝑖𝑘
,

the value Γ
𝑖𝑗𝑘

will be irrelevant since 𝑖 and 𝑘will not exchange
any unit of good 𝑗 in any optimal assignment. Observe that
distribution matrices are not necessarily anonymous because
a buyermay obtain different gains per unit of good 𝑗 if he buys
the same good from different sellers, and vice versa. Denote
byD(𝑀) (or simply byD) the set of all distribution matrices
for market𝑀.
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Definition 6. A vector (𝑢
𝑖
, 𝑤
𝑘
)
(𝑖,𝑘)∈B×S ∈ R𝐵×𝑆 is a feasible

payoff for market𝑀 if

∑

𝑖∈B

𝑢
𝑖
+ ∑

𝑘∈S

𝑤
𝑘
= 𝑇
𝑀
. (9)

Denote by X(𝑀) (or simply by X) the set of all feasible
payoffs for market𝑀.

Let𝑀 = (B,G,S, 𝑉, 𝑑, 𝑅, 𝑄) be a market and𝐶 ⊂ B∪S
a coalition. For every Γ ∈ D and 𝐴 ∈ F0, define the gain for
𝐶 at 𝐴 according to Γ by the expression6

𝜙
𝑀

(𝐶, 𝐴, Γ) ≡ ∑

(𝑖,𝑗,𝑘)∈B𝐶×G×S𝐶

(V
𝑖𝑗
− 𝑟
𝑗𝑘
) ⋅ 𝐴
𝑖𝑗𝑘

+ ∑

(𝑖,𝑗,𝑘)∈B𝐶×G×(S
𝐶
)
𝑐

(V
𝑖𝑗
− Γ
𝑖𝑗𝑘
) ⋅ 𝐴
𝑖𝑗𝑘

+ ∑

(𝑖,𝑗,𝑘)∈(B
𝐶
)
𝑐

×G×S𝐶

(Γ
𝑖𝑗𝑘

− 𝑟
𝑗𝑘
) ⋅ 𝐴
𝑖𝑗𝑘
.

(10)

Observe that 𝜙𝑀(𝐶, 𝐴, Γ) is independent of 𝑡 ∈ {1, 2, 3}.
We are now ready to define the blocking notions accord-

ing to the assignments that the coalition can use.

Definition 7. Let 𝑀 be a market and 𝑡 ∈ {1, 2, 3}. A payoff
(𝑢, 𝑤) ∈ X(𝑀) is not t-group blocked if there exists a
distribution matrix Γ = (Γ

𝑖𝑗𝑘
)
(𝑖,𝑗,𝑘)∈B×G×S ∈ D(𝑀) such that,

for all coalition 𝐶 ⊂ B ∪S and 𝐴 ∈ F𝑡(𝐶),

∑

𝑖∈B𝐶

𝑢
𝑖
+ ∑

𝑘∈S𝐶

𝑤
𝑘
≥ 𝜙
𝑀

(𝐶, 𝐴, Γ) . (11)

It is useful to point out that the definition depends on
𝑡 ∈ {1, 2, 3} since the gain for 𝐶 depends on the setF𝑡(𝐶) of
feasible assignments (i.e., t-group compatible) with𝐶. Finally,
we define the three notions of group stability.

Definition 8. Let 𝑀 be a market and 𝑡 ∈ {1, 2, 3}. A payoff
(𝑢, 𝑤) ∈ X(𝑀) is t-group stable for 𝑀 if it is not t-group
blocked.7

Denote byGS𝑡(𝑀) (or simplyGS𝑡) the set of payoffs that
are t-group stable for𝑀. SinceF3(𝐶) ⊂ F2(𝐶) ⊂ F1(𝐶) for
all 𝐶 ⊂ B ∪S, it follows that

GS
1
⊂ GS

2
⊂ GS

3
. (12)

Moreover, there are markets for which these inclusions are
strict and, hence,8

GS
1
⫋ GS

2
⫋ GS

3
. (13)

By the above remark and the fact that GS1 ̸= 0 (see
Massó and Neme [13]) all t-group stable sets are nonempty.
For further reference, we present this result as Proposition 9
below.

Proposition 9. For any market 𝑀 and 𝑡 ∈ {1, 2, 3},
GS𝑡(𝑀) ̸= 0.

Massó and Neme [13] define the Core of market 𝑀 as
the Core of the cooperative game with transferable utility
induced by 𝑀. They show first that the 1-group stable set
is a strict subset of the Core and strictly contains the set of
competitive equilibrium payoffs. Second, the 1-group stable
set converges in the second replica to the set of competitive
equilibrium payoffs while the Core does not converge to it in
a finite number of replicas. Hence, one may infer from the
two results that the two cooperative notions are essentially
different.We will see here that the difference does not refer so
much to the solution concept but rather to how the game for
which the Core is obtained is defined. Massó and Neme [13]
define the cooperative game by assuming that the assignment
𝐴 is feasible for a coalition𝐶 ⊂ B∪S if and only if members
of 𝐶 only exchange goods among themselves.

Definition 10. Let 𝑀 = (B,G,S, 𝑉, 𝑑, 𝑅, 𝑄) be a market and
let 𝐶 ⊂ B ∪ S be a coalition. A feasible assignment 𝐴 ∈ F0

is Core-compatible with 𝐶 if,

(i) for all 𝑖 ∈ B𝐶,𝐴
𝑖𝑗𝑘

> 0 implies 𝑘 ∈ S𝐶,

(ii) for all 𝑘 ∈ S𝐶,𝐴
𝑖𝑗𝑘

> 0 implies 𝑖 ∈ B𝐶.

Given𝐶 ⊂ B∪S, the set of all Core-compatible assignments
with 𝐶 will be denoted by F𝐶𝑜(𝐶). Using this notion, we
define the cooperative game with transferable utility (B ∪

S, V) where, for every 𝐶 ⊂ B ∪ S,9

V (𝐶) = max
𝐴∈F𝐶𝑜(𝐶)

𝜙
𝑀

(𝐶, 𝐴, Γ) . (14)

Then, the Core of market𝑀, denoted byC(𝑀), is the Core of
the game (B ∪S, V); namely,

C (𝑀) = {(𝑢, 𝑤) ∈ X (𝑀) | V (𝐶) ≤ ∑

𝑖∈B𝐶

𝑢
𝑖
+ ∑

𝑘∈S𝐶

𝑤
𝑘

∀𝐶 ⊂ B ∪S} .

(15)

Now, if we accept the notions of group stability as
reasonable solutions, we can define new cooperative games
with transferable utility where compatible assignments with
a coalition 𝐶 admit that its members may have certain
exchanges with agents outside 𝐶. For this purpose it is
necessary to consider a distribution matrix Γ ∈ D indicating
how the gains from trade are distributed with members
outside coalition 𝐶. We now present these notions formally.

Definition 11. Let 𝑀 = (B,G,S, 𝑉, 𝑑, 𝑅, 𝑄) be a market, Γ ∈

D, and 𝑡 ∈ {1, 2, 3}. The cooperative game with transferable
utility associated with 𝑡 and Γ, denoted by (B ∪ S, V𝑡Γ), is
defined as follows: for every 𝐶 ⊂ B ∪S,

V𝑡Γ (𝐶) = max
𝐴∈F𝑡(𝐶)

𝜙
𝑀

(𝐶, 𝐴, Γ) . (16)

If Γ ∈ D is given and we allow 𝐶 to choose among
the set of assignments in F𝑡(𝐶), the game (B ∪ S, V𝑡Γ) can
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be interpreted in a similar way as we interpreted the game
defined in (20), where each coalition maximizes the total
payoff since 𝜙𝑀(𝐶, 𝐴, Γ) is the total gain received bymembers
of 𝐶 under 𝐴. We will denote by C𝑡Γ(𝑀) (or simply by C𝑡Γ)
the Core of the game (B ∪S, V𝑡Γ).

Remark 12. Note that, for all Γ ∈ D and 𝑡 ∈ {1, 2, 3},

𝑇
𝑀

= V (B ∪S) = V1Γ (B ∪S) = V2Γ (B ∪S)

= V3Γ (B ∪S) .

(17)

Hence, (𝑢, 𝑤) is a feasible payoff (i.e., (𝑢, 𝑤) ∈ X) if and only
if ∑
𝑖∈B 𝑢
𝑖
+ ∑
𝑘∈S 𝑤
𝑘
= V𝑡Γ(B ∪ S).

Using the games (B ∪ S, V𝑡Γ) associated with 𝑀 we can
now see that the notions of Core and group stability are
extremely related. Indeed, the following result holds.

Theorem 13. Let𝑀 be a market. Then, for all 𝑡 ∈ {1, 2, 3},

GS
𝑡
(𝑀) = ⋃

Γ∈D(𝑀)

C
𝑡Γ
(𝑀) . (18)

Proof. Fix 𝑀 and 𝑡. We first show that, for all Γ ∈ D,
C𝑡Γ ⊂ GS𝑡. Let (𝑢, 𝑤) ∈ C𝑡Γ. By Remark 12, (𝑢, 𝑤) is a
feasible payoff. Moreover, for all 𝐶 ⊂ B ∪ S, ∑

𝑖∈B𝐶 𝑢𝑖 +

∑
𝑘∈S𝐶 𝑤𝑘 ≥ V𝑡Γ(𝐶). Hence, for all 𝐶 and all 𝐴 ∈ F𝑡(𝐶),

∑
𝑖∈B𝐶 𝑢𝑖 + ∑

𝑘∈S𝐶 𝑤𝑘 ≥ 𝜙
𝑀
(𝐶, 𝐴, Γ). Thus, (𝑢, 𝑤) ∈ GS𝑡.

Namely,⋃
Γ∈D(𝑀)C

𝑡Γ
⊂ GS𝑡.

Take now a payoff (𝑢, 𝑤) ∈ GS𝑡. Since (𝑢, 𝑤) is a feasible
payoff, by Remark 12, ∑

𝑖∈B 𝑢
𝑖
+ ∑
𝑘∈S 𝑤
𝑘
= V𝑡Γ(B ∪ S), for

all Γ ∈ D. Moreover, since (𝑢, 𝑤) is not GS𝑡-blocked, there
exists Γ ∈ D such that, for all 𝐶 ⊂ B ∪S and all 𝐴 ∈ F𝑡(𝐶),

∑

𝑖∈BC

𝑢
𝑖
+ ∑

𝑘∈SC

𝑤
𝑘
≥ 𝜙
𝑀

(𝐶, Â, Γ) . (19)

Hence, there exists Γ ∈ D such that ∑
𝑖∈B𝐶 𝑢𝑖 + ∑

𝑘∈S𝐶 𝑤𝑘 ≥

V𝑡Γ(𝐶), for all𝐶 ⊂ B∪S; namely, (𝑢, 𝑤) ∈ C𝑡Γ.Thus, (𝑢, 𝑤) ∈

⋃
Γ∈D(𝑀)C

𝑡Γ.

In the Appendices we show, using the market of
Example 2, that the setsC𝑡Γ may be empty for some Γ.

3.1. Cartesian Product Structure and Computation of the
Group Stable Solutions. In this section we present, using
Theorem 13, results on the structure of the t-group stable set
of payoffs for 𝑡 = 1, 2, 3 and how to compute them.

Fix Γ ∈ D and 𝐴 ∈ F0. Define the utility of buyer 𝑖 ∈ B
at the pair (Γ, 𝐴) as the total net gain obtained by 𝑖 from his
exchanges specified by 𝐴 and the distribution of gains given
by Γ. Denote such utility by 𝑢

𝑖
(Γ, 𝐴); namely,

𝑢
𝑖 (Γ, 𝐴) = ∑

𝑗𝑘

(V
𝑖𝑗
− Γ
𝑖𝑗𝑘
) ⋅ 𝐴
𝑖𝑗𝑘
. (20)

Similarly, define the utility of seller 𝑘 ∈ S at the pair (Γ, 𝐴) as
the total net gain obtained by 𝑘 from his exchanges specified

by 𝐴 and the distribution of gains given by Γ. Denote such
utility by 𝑤

𝑘
(Γ, 𝐴); namely,

𝑤
𝑘 (Γ, 𝐴) = ∑

𝑖𝑗

(Γ
𝑖𝑗𝑘

− 𝑟
𝑗𝑘
) ⋅ 𝐴
𝑖𝑗𝑘
. (21)

Given (Γ, 𝐴), we will denote by 𝑢(Γ, 𝐴) = (𝑢(Γ, 𝐴))
𝑖∈B and

𝑤(Γ, 𝐴) = (𝑤
𝑘
(Γ, 𝐴))

𝑘∈S the vectors of utilities of buyers and
sellers at (Γ, 𝐴), respectively.

Proposition 14. Let 𝑀 be a market, Γ a distribution matrix,
and 𝑡 ∈ {1, 2, 3}. Then,

C
𝑡Γ

̸= 0 iff C
𝑡Γ

= {(𝑢 (Γ, 𝐴) , 𝑤 (Γ, 𝐴)) | 𝐴 ∈ F} . (22)

Proof. It is immediate to check that C𝑡Γ =

{(𝑢(Γ, 𝐴), 𝑤(Γ, 𝐴))|𝐴 ∈ F} implies C𝑡Γ ̸= 0. To show
that the other implication holds, assume C𝑡Γ ̸= 0. We first
check that (𝑢(Γ, 𝐴), 𝑤(Γ, 𝐴)) ∈ C𝑡Γ, for all 𝐴 ∈ F. Let
𝐴 ∈ F be arbitrary and let (𝑢, 𝑤) ∈ C𝑡Γ. Consider any
coalition 𝐶 = {𝑖} with 𝑖 ∈ B. Then, 𝐴 ∈ F𝑡({𝑖}). Hence, since
(𝑢, 𝑤) ∈ C𝑡Γ and the definition of V𝑡Γ,

𝑢
𝑖
≥ 𝜙
𝑀

(𝐶, 𝐴, Γ) = ∑

(𝑗,𝑘)∈G×S

(V
𝑖𝑗
− Γ
𝑖𝑗𝑘
) ⋅ 𝐴
𝑖𝑗𝑘
. (23)

Similarly, considering any coalition 𝐶 = {𝑘} with 𝑘 ∈ S,

𝑤
𝑘
≥ 𝜙
𝑀

(𝐶, 𝐴, Γ) = ∑

(𝑖,𝑗)∈B×G

(Γ
𝑖𝑗𝑘

− 𝑟
𝑗𝑘
) ⋅ 𝐴
𝑖𝑗𝑘
. (24)

Moreover, by Remark 12, ∑
𝑖∈B 𝑢
𝑖
+ ∑
𝑘∈S 𝑤
𝑘
= V𝑡Γ(B ∪ S) =

𝑇
𝑀. But

𝑇
𝑀

= ∑

𝑖∈B

∑

(𝑗,𝑘)∈G×S

(V
𝑖𝑗
− Γ
𝑖𝑗𝑘
) ⋅ 𝐴
𝑖𝑗𝑘

+ ∑

𝑘∈S

∑

(𝑖,𝑗)∈B×G

(Γ
𝑖𝑗𝑘

− 𝑟
𝑗𝑘
) ⋅ 𝐴
𝑖𝑗𝑘

(25)

holds. Hence, (23) and (24) imply

𝑢
𝑖
= ∑

(𝑗,𝑘)∈G×S

(V
𝑖𝑗
− Γ
𝑖𝑗𝑘
) ⋅ 𝐴
𝑖𝑗𝑘

∀𝑖 ∈ B,

𝑤
𝑘
= ∑

(𝑖,𝑗)∈B×G

(Γ
𝑖𝑗𝑘

− 𝑟
𝑗𝑘
) ⋅ 𝐴
𝑖𝑗𝑘

∀𝑘 ∈ S.

(26)

Thus, (𝑢, 𝑤) = (𝑢(Γ, 𝐴), 𝑤(Γ, 𝐴)). Therefore, (𝑢(Γ, 𝐴),

𝑤(Γ, 𝐴)) ∈ C𝑡Γ. Now it remains to be proven that if
(𝑢, 𝑤) ∈ C𝑡Γ, then there exists A ∈ F such that (𝑢, 𝑤) =

(𝑢(Γ, 𝐴), 𝑤(Γ, 𝐴)), but observing that F = F𝑡(B ∪ S), it is
proven similarly as we did previously.

Denote by D𝑡(𝑀) = {Γ : C𝑡Γ(𝑀) ̸= 0} (or simply by D𝑡)
the set of distributionmatrices whose associated game V𝑡Γ has
a nonempty Core. By Theorem 13 and Proposition 14, the set
GS𝑡 has the following Cartesian product structure.

Corollary 15. Let𝑀 be a market and 𝑡 ∈ {1, 2, 3}. Then,

GS
𝑡
= {(𝑢 (Γ, 𝐴) , 𝑤 (Γ, 𝐴)) | (Γ, 𝐴) ∈ D

𝑡
×F} . (27)
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We will refer to the set D𝑡 as the set of t-distributions by
groups.The aboveCorollary establishes thatGS𝑡 has a similar
structure to the set of competitive equilibrium payoffs.10

Lemma 16. Let 𝑡 ∈ {1, 2, 3} and Γ ∈ D𝑡 be such that C𝑡Γ ̸= 0.
Then, (𝑢(Γ, 𝐴), 𝑤(Γ, 𝐴)) = (𝑢(Γ, 𝐴


), 𝑤(Γ, 𝐴


)), for all 𝐴,𝐴


∈

F.

Proof. Observe that the proof of Proposition 14 does not
depend on the particular optimal assignment 𝐴 ∈ F.
Hence, with fixed Γ, if C𝑡Γ ̸= 0, then the vector of utilities
(𝑢(Γ, 𝐴), 𝑤(Γ, 𝐴)) at the pair (Γ, 𝐴) is independent of the
chosen optimal assignment 𝐴 ∈ F.

By Lemma 16, for Γ ∈ D𝑡 and 𝐴 ∈ F, we can
write (𝑢(Γ), 𝑤(Γ)) instead of (𝑢(Γ, 𝐴), 𝑤(Γ, 𝐴)). Hence, the
following result follows immediately from Theorem 13 and
Lemma 16.

Corollary 17. Let𝑀 be a market and 𝑡 ∈ {1, 2, 3}. Then,

GS
𝑡
= {(𝑢 (Γ) , 𝑤 (Γ)) | Γ ∈ D

𝑡
} . (28)

The above corollary establishes that each payoff vector
in GS𝑡 comes from a distribution matrix Γ ∈ D𝑡. Again,
Jaume et al. [12] show that a similar result holds for the set of
competitive equilibrium payoffs when the gains from trade
are determined by an equilibrium price vector (a price for
each good).

Proposition 18 below gives necessary and sufficient con-
ditions under which a distributionmatrix Γ is a t-distribution
by groups. But to state it, we present, given an optimal
assignment 𝐴 ∈ F, the following system of inequalities on
Γ:

𝜙
𝑀

(𝐶, 𝐴, Γ) ≤ 𝜙
𝑀

(𝐶, 𝐴, Γ) ∀𝐶 ⊂ B ∪S, all𝐴 ∈ F
𝑡
(𝐶) .

(29)

Proposition 18. Let𝑀 be amarket and 𝑡 ∈ {1, 2, 3}.Then, the
following statements are equivalent.

(i) Γ is a t-distribution by groups.

(ii)

V𝑡Γ (B ∪S) = ∑

𝑖∈B

V𝑡Γ ({𝑖}) + ∑

𝑘∈S

V𝑡Γ ({𝑘}) ,

V𝑡Γ (𝐶) ≤ ∑

𝑖∈B𝐶

V𝑡Γ ({𝑖}) + ∑

𝑘∈S𝐶

V𝑡Γ ({𝑘}) ∀𝐶 ⊂ B ∪S.

(30)

(iii) There exists𝐴 ∈ F such that V𝑡Γ(𝐶) = 𝜙
𝑀
(𝐶, 𝐴, Γ), for

all 𝐶 ⊂ B ∪C.

(iv) For all𝐴 ∈ F, V𝑡Γ(𝐶) = 𝜙
𝑀
(𝐶, 𝐴, Γ) for all𝐶 ⊂ B∪C.

(v) Γ solves the system in (29).

Proof. The equivalence between (iii) and (v) is imme-
diate. That (ii) implies (i) is immediate since, by (30),
(V𝑡Γ({𝑖}), V𝑡Γ({𝑘})

(𝑖,𝑘)∈B∪S ∈ C𝑡Γ). By the definition of V𝑡Γ,
we have that (iii) implies (ii). That (iv) implies (iii) is also
immediate. It remains to be proven that (i) implies (iv).

Assume C𝑡Γ ̸= 0 and let 𝐴 ∈ F. By Proposition 14,
(𝑢(Γ, 𝐴), 𝑤(Γ, 𝐴)) ∈ C𝑡Γ. Hence,

𝑢
𝑖 (Γ, 𝐴) ≥ V𝑡Γ ({𝑖}) ∀𝑖 ∈ B,

𝑤
𝑘 (Γ, 𝐴) ≥ V𝑡Γ ({𝑘}) ∀𝑘 ∈ S.

(31)

Thus, by the definition of V𝑡Γ,

𝑢
𝑖 (Γ, 𝐴) = V𝑡Γ ({𝑖}) ∀𝑖 ∈ B,

𝑤
𝑘 (Γ, 𝐴) = V𝑡Γ ({𝑘}) ∀𝑘 ∈ S.

(32)

Hence,

V𝑡Γ ({𝑖}) = 𝜙
𝑀

({𝑖} , 𝐴, Γ) ∀𝑖 ∈ B,

V𝑡Γ ({𝑘}) = 𝜙
𝑀

({𝑘} , 𝐴, Γ) ∀𝑘 ∈ S.

(33)

Now, since (𝑢(Γ, 𝐴), 𝑤(Γ, 𝐴)) ∈ C𝑡Γ holds, by the definition
of V𝑡Γ(𝐶) it follows that

V𝑡Γ (B ∪S) = ∑

𝑖∈B

𝑢
𝑖 (Γ, 𝐴) + ∑

𝑘∈S

𝑤
𝑘 (Γ, 𝐴) ,

∀𝐶 ⊂ B ∪S,

𝜙
𝑀

(𝐶, 𝐴, Γ) ≤ V𝑡Γ (𝐶)

≤ ∑

𝑖∈B𝐶

𝑢
𝑖 (Γ, 𝐴) + ∑

𝑘∈S𝐶

𝑤
𝑘 (Γ, 𝐴)

= 𝜙
𝑀

(𝐶, 𝐴, Γ) .

(34)

Thus, V𝑡Γ(𝐶) = 𝜙
𝑀
(𝐶, 𝐴, Γ) for all 𝐶 ⊂ B ∪S.

4. Competitive Solutions

4.1. Two Competitive Equilibrium Notions. In this section we
first present two already known competitive solutions for
generalized assignment games. Using a similar approach to
the one already used with t-group stability we will see how
competitive equilibria are related with the notions of Core,
provided that the cooperative games with transferable utility
are defined properly. This will allow us to draw conclusions
with regard to the structure of competitive solutions and how
to compute them.

The first competitive solution was presented by Jaume et
al. [12]. We will see how we can obtain some of their results
using the approach used in the previous section.This solution
assumes that buyers and sellers exchange goods through
competitive markets. Namely, there is a unique market for
each of the goods (with its corresponding price). Hence, a
price vector is an 𝑛-dimensional vector of nonnegative real
numbers. Buyers and sellers are price-takers in the following
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sense. Given a price vector 𝑝 = (𝑝
𝑗
)
𝑗∈𝐺

∈ R𝑛
+
each seller

offers units of the goods he owns (up to his capacity) to
maximize his net gains and each buyer demands units of the
goods (up to his maximal capacity) to maximize his total net
valuation. The unique information that each agent has about
themarkets, besides the price vector, is his per unit valuations
of the goods and his capacity ofmaximal demand (if the agent
is a buyer) and his reservation prices and number of units
owned of each of the goods. Agents do not know the aggregate
capacities.

In the second notion we will assume that the aggregate
capacities of the market are known by the agents. For
instance, because the market is small and all exchanges are
performed simultaneously at the same place. Hence, given a
price vector 𝑝, agents will maximize their utility taking into
account the market aggregate capacities. Namely, a buyer 𝑖

will never demand of good 𝑗 a quantity larger than ∑
𝑘
𝑞
𝑗𝑘
,

even though this amount is smaller than 𝑑
𝑖
and the net

valuation (V
𝑖𝑗
− 𝑝
𝑗
) of good 𝑗 is strictly larger than the net

valuations of all the other goods.This notion can be seen as an
extension of the competitive equilibrium notions introduced
and studied in Sotomayor [6], in an assignment model with
indivisible goods and by Sotomayor [7, 8], in a model with
infinitely divisible goods, but in both cases and in contrast
with our model, it is assumed that sellers only own units of
the same good. In these three papers, given a price vector 𝑝,
agents’ demands and supplies are obtained by solving their
maximizing problems over the set of feasible assignments;
that is, it is assumed that agents know the aggregate capacities.

It is also possible to consider the case where only buyers
know the aggregate capacities and only they adjust their
demands to such constraints, and vice versa. Our proofs
could be adapted easily to these two settings to obtain similar
conclusions for them.

To present the first approach, we transcribe some defini-
tions in Jaume et al. [12].

Supply of Seller 𝑘. For each price vector 𝑝 = (𝑝
𝑗
)
𝑗∈G ∈

R𝐺
+
, seller 𝑘 offers of each good 𝑗 any feasible amount that

maximizes his gain; namely,

S
𝑗𝑘

(𝑝
𝑗
) =

{{

{{

{

{𝑞
𝑗𝑘
} if𝑝

𝑗
> 𝑟
𝑗𝑘

{0, 1, . . . , 𝑞
𝑗𝑘
} if𝑝

𝑗
= 𝑟
𝑗𝑘

{0} if𝑝
𝑗
< 𝑟
𝑗𝑘
.

(35)

To define the demand of buyer 𝑖 ∈ B, we will use the
following notation. Let 𝑝 ∈ R𝐺

+
and let

∇
>

𝑖
(𝑝) = {𝑗 ∈ G | V

𝑖𝑗
− 𝑝
𝑗
= max
𝑗

∈G

{V
𝑖𝑗
 − 𝑝
𝑗
} > 0} (36)

be the set of goods that give to buyer 𝑖 the maximal (and
strictly positive) net valuation at 𝑝. Obviously, for some 𝑝,
the set ∇>

𝑖
(𝑝)may be empty. Let

∇
≥

𝑖
(𝑝) = {𝑗 ∈ G | V

𝑖𝑗
− 𝑝
𝑗
= max
𝑗

∈G

{V
𝑖𝑗
 − 𝑝
𝑗
} ≥ 0} (37)

be the set of goods that give to buyer 𝑖 the maximal (and
strictly positive) net valuation at 𝑝. Obviously, for some 𝑝,
the set ∇≥

𝑖
(𝑝)may be empty. It is obvious that, for all 𝑝 ∈ R𝐺

+

and all 𝑖 ∈ B,

∇
>

𝑖
(𝑝) ⊆ ∇

≥

𝑖
(𝑝) . (38)

Demand of Buyer 𝑖. For each price vector 𝑝 = (𝑝
𝑗
)
𝑗∈G ∈ R𝐺

+
,

buyer 𝑖 demands any feasible amount of goods that maximize
his net valuation at 𝑝; namely,

𝐷
𝑖
(𝑝) = {𝛼 = (𝛼

𝑗𝑘
)
(𝑗,𝑘)∈G×S

∈ Z
𝐺×𝑆

| (D.a) 𝛼𝑗𝑘 ≥ 0 ∀ (𝑗, 𝑘) ∈ G ×S,

(D.b)∑
𝑗𝑘

𝛼
𝑗𝑘

≤ 𝑑
𝑖
,

(D.c) ∇>
𝑖
(𝑝) ̸= 0 ⇒ ∑

𝑗𝑘

𝛼
𝑗𝑘

= 𝑑
𝑖
,

(D.d)∑
𝑘

𝛼
𝑗𝑘

> 0 ⇒ 𝑗 ∈ ∇
≥

𝑖
(𝑝)} .

(39)

Given 𝐴 ∈ F0 and 𝑖 ∈ B, denote by 𝐴(𝑖) =

(𝐴(𝑖)
𝑗𝑘
)
(𝑗,𝑘)∈G×S the element inZ𝐺×𝑆

+
such that, for all (𝑗, 𝑘) ∈

G ×S, 𝐴(𝑖)
𝑗𝑘

= 𝐴
𝑖𝑗𝑘
.

Definition 19. A -1-competitive equilibrium11 of market𝑀 is a
pair (𝑝, 𝐴) ∈ R𝐺

+
×F0 such that

(E.D) for all 𝑖 ∈ B, 𝐴(𝑖) ∈ 𝐷
𝑖
(𝑝),

(E.S) for all 𝑗 ∈ G and all 𝑘 ∈ S,∑
𝑖
𝐴
𝑖𝑗𝑘

∈ S
𝑗𝑘
(𝑝
𝑗
).

Next, we present the second competitive solution related
to situations where agents, given a price vector, adjust their
demands and supplies to the aggregate restrictions of the
market. Given a price vector 𝑝 = (𝑝

𝑗
)
𝑗∈G ∈ R𝐺

+
sellers will

offer units of the goods (below their capacities) to maximize
the net gains at 𝑝, but sellers will know that buyers will be
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able to buy at most 𝐷 = ∑
𝑖∈B 𝑑
𝑖
units in total, and buyers

will demand units of the goods (below their capacities) to
maximize the net valuations at𝑝, but knowing that sellers will

be able to sell at most 𝑄
𝑗
= ∑
𝑘∈S 𝑞
𝑗𝑘
units of each good 𝑗. To

define the supply of seller 𝑘 ∈ S, we will need the following
notation. Let 𝑝 ∈ R𝐺

+
be a price vector and let

∇
1>

𝑘
(𝑝) = {𝑗 ∈ G | 𝑝

𝑗
− 𝑟
𝑗𝑘

= max
𝑗

∈G

{𝑝
𝑗
 − 𝑟
𝑗

𝑘
} > 0} ,

∇
2>

𝑘
(𝑝) = {𝑗 ∈ G \ ∇

1>

𝑘
(𝑝) | 𝑝

𝑗
− 𝑟
𝑗𝑘

= max
𝑗

∈G\∇1>

𝑘
(𝑝)

{𝑝
𝑗
 − 𝑟
𝑗

𝑘
} > 0} ,

...

∇
𝑧>

𝑘
(𝑝) = {𝑗 ∈ G \

𝑧−1

⋃

𝑚=1

∇
𝑚>

𝑘
(𝑝) | 𝑝

𝑗
− 𝑟
𝑗𝑘

= max
𝑗

∈G\⋃

𝑧−1

𝑚=1
∇
𝑚>

𝑘
(𝑝)

{𝑝
𝑗
 − 𝑟
𝑗

𝑘
} > 0} ,

...

∇
𝐽>

𝑘
(𝑝) = {𝑗 ∈ G \

𝐽−1

⋃

𝑚=1

∇
𝑚>

𝑘
(𝑝) | 𝑝

𝑗
− 𝑟
𝑗𝑘

= max
𝑗

∈G\⋃

𝐽−1

𝑚=1
∇
𝑚>

𝑘
(𝑝)

{𝑝
𝑗
 − 𝑟
𝑗

𝑘
} > 0}

(40)

be the sets of goods that give to seller 𝑘 a strictly positive net
gain at 𝑝, ordered in such a way that goods in ∇

𝑧>

𝑘
(𝑝) give a

larger net gain than goods in ∇
𝑧

>

𝑘
(𝑝) if and only if 𝑧 < 𝑧

.
Obviously, for some 𝑝, the set ∇𝑧>

𝑘
(𝑝) may be empty from a

given 𝑧 onwards.
Since seller 𝑘 knows the market constraints, 𝑘 knows that

the maximal possible demand is 𝐷 = ∑
𝑖∈B 𝑑
𝑖
. Hence, 𝑘 will

adjust his supply to this demand. Now define

𝑠
1𝑘

(𝑝) = min
{

{

{

∑

𝑗∈∇
1>

𝑘
(𝑝)

𝑞
𝑗𝑘
, 𝐷

}

}

}

,

𝑠
2𝑘

(𝑝) = min
{

{

{

∑

𝑗∈∇
2>

𝑘
(𝑝)

𝑞
𝑗𝑘
, 𝐷 − 𝑠

1𝑘
(𝑝)

}

}

}

,

...

𝑠
𝑧𝑘

(𝑝) = min
{

{

{

∑

𝑗∈∇
𝑧>

𝑘
(𝑝)

𝑞
𝑗𝑘
, 𝐷 −

𝑧−1

∑

𝑚=1

𝑠
𝑚𝑘

(𝑝)

}

}

}

,

...

𝑠
𝐽𝑘

(𝑝) = min
{

{

{

∑

𝑗∈∇
𝐽>

𝑘
(𝑝)

𝑞
𝑗𝑘
, 𝐷 −

𝐽−1

∑

𝑚=1

𝑠
𝑚𝑘

(𝑝)

}

}

}

.

(41)

We may have 𝑠
𝑧𝑘
(𝑝) = 0 from some 𝑧 onwards.

Now, let

∇
≥

𝑘
(𝑝) = {𝑗 ∈ G | 𝑝

𝑗
− 𝑟
𝑗𝑘

≥ 0} (42)

be the set of goods that give to seller 𝑘 a nonnegative net gain
at 𝑝. Obviously, for some 𝑝, the set ∇≥

𝑘
(𝑝)may be empty. It is

obvious that, for all 𝑝 ∈ R𝐺
+
and all 𝑘 ∈ S,

∇
𝑧>

𝑘
(𝑝) ⊆ ∇

≥

𝑘
(𝑝) , ∀𝑧 = 1, . . . , 𝐽. (43)

Supply-0 of Seller 𝑘. For each price vector 𝑝 = (𝑝
𝑗
)
𝑗∈G ∈ R𝐺

+
,

seller 𝑘 supplies any feasible amount for the market of the
goods that maximize his net gain at 𝑝; namely,

𝑆
0

𝑘
(𝑝) =

{

{

{

𝛽 = (𝛽
𝑗
)
𝑗∈G

∈ Z
𝐺
| (S.a0) 𝛽

𝑗
≥ 0 ∀𝑗 ∈ G,

(S.b0) 𝛽
𝑗
≤ 𝑞
𝑗𝑘

∀𝑗 ∈ G,
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(S.c0) ∇
𝑧>

𝑘
(𝑝) ̸= 0 ⇒ ∑

𝑗∈∇
𝑧>

𝑘
(𝑝)

𝛽
𝑗
= 𝑠
𝑧𝑘

(𝑝) ∀𝑧 = 1, . . . , 𝐽,

(S.d0) 𝛽
𝑗
> 0 ⇒ 𝑗 ∈ ∇

≥

𝑘
(𝑝)

}

}

}

.

(44)

Therefore, 𝑆0
𝑘
(𝑝) describes the set of sales that maximize

the net gain of seller 𝑘 at 𝑝 (taking into account the market
constraints).12 Observe that the set of sales described by each

element in 𝑆
0

𝑘
(𝑝) gives, to seller 𝑘, the same net gain; namely,

𝑘 is indifferent among all sales in 𝑆
0

𝑘
(𝑝).

To define the demand of buyer 𝑖 ∈ B, we will need the
following notation. Let 𝑝 ∈ R𝐺

+
be a price vector and let

∇
1>

𝑖
(𝑝) = {𝑗 ∈ G | V

𝑖𝑗
− 𝑝
𝑗
= max
𝑗

∈G

{V
𝑖𝑗
 − 𝑝
𝑗
} > 0} ,

∇
2>

𝑖
(𝑝) = {𝑗 ∈ G \ ∇

1>

𝑖
(𝑝) | V

𝑖𝑗
− 𝑝
𝑗
= max
𝑗

∈G\∇1>

𝑖 (𝑝)

{V
𝑖𝑗
 − 𝑝
𝑗
} > 0} ,

...

∇
𝑧>

𝑖
(𝑝) = {𝑗 ∈ G \

𝑧−1

⋃

𝑚=1

∇
𝑚>

𝑖
(𝑝) | V

𝑖𝑗
− 𝑝
𝑗
= max
𝑗

∈G\⋃

𝑧−1

𝑚=1
∇
𝑚>

𝑖 (𝑝)

{V
𝑖𝑗
 − 𝑝
𝑗
} > 0} ,

...

∇
𝐽>

𝑖
(𝑝) = {𝑗 ∈ G \

𝐽−1

⋃

𝑚=1

∇
𝑚>

𝑖
(𝑝) | V

𝑖𝑗
− 𝑝
𝑗
= max
𝑗

∈G\⋃

𝐽−1

𝑚=1
∇
𝑚>

𝑖 (𝑝)

{V
𝑖𝑗
 − 𝑝
𝑗
} > 0}

(45)

be the sets of goods that give to buyer 𝑖 a strictly positive net
valuation at 𝑝, ordered in such a way that goods in ∇

𝑧>

𝑖
give

a larger net valuation than goods in ∇
𝑧

>

𝑖
if and only if 𝑧 <

𝑧
. Obviously, for some 𝑝, the set ∇𝑧>

𝑖
(𝑝)may be empty from

some 𝑧 onwards.
Now we define

𝑑
1𝑖
(𝑝) = min

{

{

{

𝑑
𝑖
, ∑

𝑗∈∇
1>

𝑖 (𝑝)

𝑄
𝑗

}

}

}

,

𝑑
2𝑖
(𝑝) = min

{

{

{

𝑑
𝑖
− 𝑑
1𝑖
(𝑝) , ∑

𝑗∈∇
2>

𝑖 (𝑝)

𝑄
𝑗

}

}

}

,

...

𝑑
𝑧𝑖
(𝑝) = min

{

{

{

𝑑
𝑖
−

𝑧−1

∑

𝑚=1

𝑑
𝑚𝑖

(𝑝) , ∑

𝑗∈∇
𝑧>

𝑖 (𝑝)

𝑄
𝑗

}

}

}

,

...

𝑑
𝐽𝑖
(𝑝) = min

{

{

{

𝑑
𝑖
−

𝐽−1

∑

𝑚=1

𝑑
𝑚𝑖

(𝑝) , ∑

𝑗∈∇
𝐽>

𝑖 (𝑝)

𝑄
𝑗

}

}

}

.

(46)

Obviously, for some 𝑝, we may have 𝑑
𝑧𝑖
(𝑝) = 0 from some 𝑧

onwards. Also, for all 𝑝 ∈ R𝐺
+
and all 𝑖 ∈ B,

∇
𝑧>

𝑖
(𝑝) ⊆ ∇

≥

𝑖
(𝑝) , ∀𝑧 = 1, . . . , 𝐽. (47)

Demand-0 of Buyer 𝑖. For each price vector 𝑝 = (𝑝
𝑗
)
𝑗∈G ∈

R𝐺
+
, buyer 𝑖 demands any feasible amount for the market that

maximizes his net valuation at 𝑝; namely,

𝐷
0

𝑖
(𝑝) = {𝛼 = (𝛼

𝑗𝑘
)
(𝑗,𝑘)∈G×S

∈ Z
𝐺×𝑆

| (D.a0) 𝛼
𝑗𝑘

≥ 0 ∀ (𝑗, 𝑘) ∈ G ×S,

(D.b0)∑
𝑗𝑘

𝛼
𝑗𝑘

≤ 𝑑
𝑖
,
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(D.c0) ∇
𝑧>

𝑖
(𝑝) ̸= 0 ⇒ ∑

𝑗∈∇
𝑧>

𝑖
(𝑝)

∑

𝑘

𝛼
𝑗𝑘

= 𝑑
𝑧𝑖
(𝑝)

∀ = 1, . . . , 𝐽,

(D.d0)∑
𝑘

𝛼
𝑗𝑘

> 0 ⇒ 𝑗 ∈ ∇
≥

𝑖
(𝑝)} .

(48)

Thus, 𝐷0
𝑖
(𝑝) describes the set of all purchases that maximize

the net valuation of buyer 𝑖 at 𝑝, taking into account the
aggregate constraints of the market.13 Observe that the set
of purchases described by each element in 𝐷

0

𝑖
(𝑝) give to 𝑖

the same net valuation; namely, 𝑖 is indifferent among all
purchases in𝐷

0

𝑖
(𝑝).

Definition 20. A 0-competitive equilibrium of market 𝑀 is a
pair (𝑝, 𝐴) ∈ R𝐺

+
×F0 such that

(E.D0) for all 𝑖 ∈ B,𝐴(𝑖) ∈ 𝐷
0

𝑖
(𝑝),

(E.S0) for all 𝑘 ∈ S, (∑
𝑖
𝐴
𝑖𝑗𝑘
)
𝑗∈G ∈ 𝑆

0

𝑘
(𝑝).

In the remaining of this section, 𝑡 will be an index in
{−1, 0}. We say that the vector 𝑝 ∈ R𝐺

+
is a t-competitive

equilibrium price (or simply a t-equilibrium price) of market
𝑀 if there exists 𝐴 ∈ F0 such that (𝑝, 𝐴) is a t-competitive
equilibrium of 𝑀 (or simply a t-equilibrium). Denote byP𝑡
the set of all t-equilibrium prices of market𝑀.

Fix a price vector 𝑝 ∈ R𝐺
+
and a feasible assignment 𝐴 ∈

F0. According to (20) and (21), the utility of buyer 𝑖 ∈ B at
(𝑝, 𝐴) is

𝑢
𝑖
(𝑝, 𝐴) = ∑

𝑗𝑘

(V
𝑖𝑗
− 𝑝
𝑗
) ⋅ 𝐴
𝑖𝑗𝑘
, (49)

and the utility of seller 𝑘 ∈ S at (𝑝, 𝐴) is

𝑤
𝑘
(𝑝, 𝐴) = ∑

𝑖𝑗

(𝑝
𝑗
− 𝑟
𝑗𝑘
) ⋅ 𝐴
𝑖𝑗𝑘
. (50)

Definition 21. Let 𝑀 be a market and 𝑡 ∈ {−1, 0}. The set of
t-competitive equilibrium payoffs is given by

CE
𝑡
= {(𝑢, 𝑤) ∈ R

𝐵
×R
𝑆
| (𝑢, 𝑤) = (𝑢 (𝑝, 𝐴) , 𝑤 (𝑝, 𝐴))

for some 𝑡-equilibrium (𝑝, 𝐴) } .

(51)

We now define a cooperative game with transferable
utility that will allow us to draw conclusions about P𝑡 and
CE𝑡, for 𝑡 = −1, 0, similarly as we did for D𝑡 and GS𝑡, for
𝑡 = 1, 2, 3.

Definition 22. Let𝑀 be amarket. A pair (𝐴𝐵, 𝐴𝑆) ∈ Z𝐵×𝐺×𝑆
+

×

Z𝐵×𝐺×𝑆
+

is -1-compatible in𝑀 if,

(i) for each 𝑖 ∈ B,∑
𝑗𝑘

𝐴
𝐵

𝑖𝑗𝑘
≤ 𝑑
𝑖
,

(ii) for each 𝑘 ∈ S and 𝑗 ∈ G,∑
𝑖
𝐴
𝑆

𝑖𝑗𝑘
≤ 𝑞
𝑗𝑘
.

The set of pairs -1-compatible in 𝑀 will be denoted by F−1.
Moreover, and with an abuse of notation, we will denote by
F0 = {(𝐴, 𝐴) | (𝐴, 𝐴) ∈ F−1} the set of 0-compatible
assignments in𝑀.14

Definition 23. Let𝑀 be a market, 𝑡 ∈ {−1, 0}, 𝑝 ∈ R𝐺
+
a price

vector, 𝐶 ⊂ B ∪S a coalition, and (𝐴
𝐵
, 𝐴
𝑆
) ∈ F𝑡. Define the

net gain for 𝐶 at (𝐴𝐵, 𝐴𝑆) according to 𝑝 by

𝜑
𝑀

(𝐶, (𝐴
𝐵
, 𝐴
𝑆
) , 𝑝) = ∑

𝑖∈B𝐶

∑

𝑗𝑘

(V
𝑖𝑗
− 𝑝
𝑗
) ⋅ 𝐴
𝐵

𝑖𝑗𝑘

+ ∑

𝑘∈S𝐶

∑

𝑖𝑗

(𝑝
𝑗
− 𝑟
𝑗𝑘
) ⋅ 𝐴
𝑆

𝑖𝑗𝑘
.

(52)

Note that if (𝐴, 𝐴) ∈ F0, then 𝜑
𝑀
(𝐶, (𝐴, 𝐴), 𝑝) =

𝜙
𝑀
(𝐶, 𝐴, 𝑝), where 𝜙

𝑀 is given by (10) after setting, for all
𝑗 ∈ G, Γ

𝑖𝑗𝑘
= 𝑝
𝑗
for all (𝑖, 𝑘) ∈ B×S. For each price vector 𝑝,

we can define the following associated games to market𝑀.

Definition 24. Let 𝑀 be a market, 𝑡 = {−1, 0}, and 𝑝 a price
vector. The cooperative game (B ∪ S, V𝑡𝑝) with transferable
utility associated with 𝑡 and 𝑝 is defined as follows:

V𝑡𝑝 (𝐶) =

{

{

{

max
(𝐴
𝐵
,𝐴
𝑆
)∈F𝑡

𝜑
𝑀

(𝐶, (𝐴
𝐵
, 𝐴
𝑆
) , 𝑝) if 𝐶 ⊊ B ∪S

𝑇
𝑀 if 𝐶 = B ∪S.

(53)

We denote by C𝑡𝑝(𝑀) (or simply by C𝑡𝑝) the Core
of the game (B ∪ S, V𝑡𝑝). We now see that these Cores
are intimately related with the corresponding notions of
competitive equilibria.

Theorem 25. Let𝑀 be a market and 𝑡 = {−1, 0}. Then,

𝑝 ∈ P
𝑡 iff C

𝑡𝑝
̸= 0. (54)

To proveTheorem 25 we need the following two results.

Lemma 26. Let 𝑀 be a market and 𝑡 = {−1, 0}. Then, (𝑝, 𝐴)

is a t-equilibrium if and only if, for all (𝐴𝐵, 𝐴𝑆) ∈ F𝑡,

∑

𝑗𝑘

(V
𝑖𝑗
− 𝑝
𝑗
) ⋅ 𝐴
𝑖𝑗𝑘

≥ ∑

𝑗𝑘

(V
𝑖𝑗
− 𝑝
𝑗
) ⋅ 𝐴
𝐵

𝑖𝑗𝑘
, ∀𝑖 ∈ B, (55)

∑

𝑖𝑗

(𝑝
𝑗
− 𝑟
𝑗𝑘
) ⋅ 𝐴
𝑖𝑗𝑘

≥ ∑

𝑖𝑗

(𝑝
𝑗
− 𝑟
𝑗𝑘
) ⋅ 𝐴
𝑆

𝑖𝑗𝑘
, ∀𝑘 ∈ S. (56)
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Proof. See the Appendices.

Parallel to Proposition 14, we now have Proposition 27.

Proposition 27. Let 𝑀 be a market, 𝑡 = {−1, 0} and 𝑝 ∈ R𝐺
+

a price vector. Then,

C
𝑡𝑝

̸= 0 iff C
𝑡𝑝

= {(𝑢 (𝑝, 𝐴) , 𝑤 (𝑝, 𝐴)) | 𝐴 ∈ F} . (57)

Proof. It is similar to the proof of Proposition 14 and therefore
it is omitted.

Proof of Theorem 25. Assume 𝑝 ∈ P𝑡 and let 𝐴 be such that
(𝑝, 𝐴) is a t-equilibrium. Then, by the definition of V𝑡𝑝 and
Lemma 26, (𝑢(𝑝, 𝐴), 𝑤(𝑝, 𝐴)) ∈ C𝑡𝑝. To see that the other
implication holds, let 𝑝 be such that C𝑡𝑝 ̸= 0 and let ∈ F.
By Proposition 27, (𝑢(𝑝, 𝐴), 𝑤(𝑝, 𝐴)) ∈ C𝑡𝑝. Hence, for all
(𝐴
𝐵
, 𝐴
𝑆
) ∈ F𝑡,

∑

𝑗𝑘

(V
𝑖𝑗
− 𝑝
𝑗
) ⋅ 𝐴
𝑖𝑗𝑘

≥ ∑

𝑗𝑘

(V
𝑖𝑗
− 𝑝
𝑗
) ⋅ 𝐴
𝐵

𝑖𝑗𝑘
, ∀𝑖 ∈ B,

∑

𝑖𝑗

(𝑝
𝑗
− 𝑟
𝑗𝑘
) ⋅ 𝐴
𝑖𝑗𝑘

≥ ∑

𝑖𝑗

(𝑝
𝑗
− 𝑟
𝑗𝑘
) ⋅ 𝐴
𝑆

𝑖𝑗𝑘
, ∀𝑘 ∈ S.

(58)

Thus, by Lemma 26, (𝑝, 𝐴) is a t-equilibrium and, hence, 𝑝 ∈

P𝑡.

It is easy to check that, for all 𝑝 ∈ R𝐺
+
,

V−1𝑝 (𝐶) ≥ V0𝑝 (𝐶) , ∀𝐶 ⊊ B ∪S,

V−1𝑝 (B ∪ S) = V0𝑝 (B ∪S)

(59)

hold. Hence, C−1𝑝 ⊂ C0𝑝, for all 𝑝 ∈ R𝐺
+
. Thus, by

Theorem 25, the following result holds.

Corollary 28. Let𝑀 be a market. Then, 0 ̸=P−1 ⊊ P0.

Proof. Jaume et al. [12] show that 0 ̸=P−1. The inclusion
follows from Theorem 25, (59). The strict inclusion follows
from Example 29 below.

Example 29. Let𝑀 = (B,G,S, 𝑉, 𝑑, 𝑅, 𝑄) be amarket where
𝐵 = {1, 2},𝐺 = {1, 2}, 𝑆 = {1},𝑉 = (

6 4

7 0
), 𝑑 = (7, 5) 𝑄 = (8, 4),

and 𝑅 = (5, 2). The unique optimal assignment is 𝐴 = (
3 4

5 0
).

Consider the price vector 𝑝 = (5, 2). Then, V0𝑝({𝑏
1
, 𝑏
2
, 𝑠
1
}) =

𝑇(𝐴) = 1 ⋅ 3 + 2 ⋅ 4 + 2 ⋅ 5 = 21, V0𝑝({𝑏
1
, 𝑠
1
}) = 1 ⋅ 3 + 2 ⋅ 4 =

11,V0𝑝({𝑏
2
, 𝑠
1
}) = 2 ⋅ 5 = 10, V0𝑝({𝑠

1
}) = 0, V0𝑝({𝑏

1
}) = 1 ⋅ 3 +

2 ⋅ 4 = 11, V0𝑝({𝑏
2
}) = 2 ⋅ 5 = 10. Thus, (𝑢(𝑝, 𝐴), 𝑤(𝑝, 𝐴)) =

(11, 10, 0) ∈ 𝐶
0𝑝 and, hence, (5, 2) ∈ P0. But (5, 2) ∉ P−1,

since at 𝑝 = (5, 2) buyer 𝑏
1
would demand 7 units of good 2.

The next proposition follows immediately from
Lemma 26 and the fact that if 𝐴 ∈ F0, then (𝐴, 𝐴) ∈ F𝑡, for
all 𝑡 ∈ {−1, 0}.

Proposition 30. Let 𝑀 be a market and 𝑡 ∈ {−1, 0}. Then,
(𝑝, 𝐴) is a t-equilibrium if and only if 𝑝 ∈ P𝑡 and 𝐴 ∈ F.15

A result, similar toTheorem 13 for group stable sets, holds
for the sets of competitive equilibrium payoffs.

Theorem 31. Let𝑀 be a market. Then, for 𝑡 ∈ {−1, 0},16

CE
𝑡
= ⋃

𝑝∈R𝐺
+

C
𝑡𝑝
. (60)

Proof. That CE𝑡 ⊂ ⋃
𝑝∈R𝐺
+

C𝑡𝑝 holds follows from
Theorem 25 and Propositions 27 and 30. To see that
the other inclusion holds, let (𝑢, 𝑤) ∈ ⋃

𝑝∈R𝐺
+

C𝑡𝑝. By
Proposition 27, there exists (𝑝, 𝐴) ∈ R𝐺

+
× F such that

(𝑢, 𝑤) = (𝑢(𝑝, 𝐴), 𝑤(𝑝, 𝐴)) ∈ C𝑡𝑝. Hence, by Lemma 26 and
Theorem 25, (𝑢, 𝑤) ∈ CE𝑡.

Corollary 32. Let𝑀 be a market. Then, 0 ̸=CE−1 ⊊ CE0.

Proof. Jaume et al. [12] show that 0 ̸=CE−1. The inclusion
follows fromTheorem 31, (59). Example 29 below shows that
the inclusion may be strict.

Example 29 (continued). We already saw that 𝑝 = (5, 2) ∈

P0 \ P−1. Hence, (11, 10, 0) ∈ 𝐶
0𝑝 and (11, 10, 0) ∈ CE0.

Moreover, we have that (𝑢(𝑝∗, 𝐴), 𝑤(𝑝
∗
, 𝐴)) = (11, 10, 0) if

and only if 𝑝∗ = (5, 2). But since (5, 2) ∉ P−1, (11, 10, 0) ∉

CE−1. Namely,CE−1 ⊊ CE0.

4.2. Cartesian Product Structure and Computation of Compet-
itive Equilibria. We have already seen that for 𝑡 ∈ {−1, 0} the
setCE𝑡 is a Cartesian product in the following sense:

CE
𝑡
= {(𝑢, 𝑤) ∈ R

𝐵×𝑆
| for some (𝑝, 𝐴) ∈ P

𝑡
×F,

(𝑢, 𝑤) = (𝑢 (𝑝, 𝐴) , 𝑤 (𝑝, 𝐴)) } .

(61)

Now, parallel to Lemma 16, the following result holds.

Lemma 33. Let 𝑀 be a market, 𝑡 ∈ {−1, 0}, and 𝑝 ∈

R𝐺
+

a price vector. If C𝑡𝑝 ̸= 0, then (𝑢(𝑝, 𝐴), 𝑤(𝑝, 𝐴)) =

(𝑢(𝑝, 𝐴

), 𝑤(𝑝, 𝐴


)) for all pairs 𝐴,𝐴


∈ F.

Proof. The proof proceeds similarly to the proof of
Proposition 14, using the fact that if𝐴 ∈ F, then (𝐴, 𝐴) ∈ F𝑡

for 𝑡 ∈ {−1, 0}.

Thus, if C𝑡𝑝 ̸= 0 and 𝐴 ∈ F, we will write
(𝑢(𝑝, 𝐴), 𝑤(𝑝, 𝐴)) simply by (𝑢(𝑝), 𝑤(𝑝)), without any
reference to𝐴. We present this fact in the following corollary.

Corollary 34. Let 𝑀 be a market and 𝑡 ∈ {−1, 0}. Then,
CE𝑡 = {(𝑢(𝑝), 𝑤(𝑝)) | 𝑝 ∈ P𝑡}.

Parallel to Proposition 14, we present several necessary
and sufficient conditions forC𝑡𝑝 ̸= 0 (one of them can be used
to check whether or not 𝑝 belongs to P𝑡). Observe that the
condition

V𝑡𝑝 (𝐶) ≤ ∑

𝑖∈B𝐶

V𝑡𝑝 ({𝑖}) + ∑

𝑘∈S𝐶

V𝑡𝑝 ({𝑘}) , ∀𝐶 ⊂ B ∪S, (62)

is trivially satisfied for 𝑡 ∈ {−1, 0}.
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Fix 𝐴 ∈ F and consider the system on 𝑝 of lineal
inequalities given by

𝜑
𝑀

(𝐶, (𝐴
𝐵
, 𝐴
𝑆
) , 𝑝) ≤ 𝜑

𝑀
(𝐶, (𝐴, 𝐴) , 𝑝) ,

∀𝐶 ⊂ B ∪Cwith #𝐶 = 1,

∀ (𝐴
𝐵
, 𝐴
𝐴
) ∈ F

𝑡
.

(63)

Proposition 35. Let 𝑀 be a market, 𝑡 ∈ {−1, 0}, and 𝑝 ∈ R𝐺
+

a price vector. Then, the following statements are equivalent.

(i) 𝑝 is a t-equilibrium price.
(ii) C𝑡𝑝 ̸= 0.
(iii)

V𝑡𝑝 (B ∪S) = ∑

𝑖∈B

V𝑡𝑝 ({𝑖}) + ∑

𝑘∈S

V𝑡𝑝 ({𝑘}) . (64)

(iv) There exists 𝐴 ∈ F such that V𝑡𝑝(𝐶) =

𝜑
𝑀
(𝐶, (𝐴, 𝐴), 𝑝), for all 𝐶 ⊂ B ∪S with #𝐶 = 1.

(v) For all 𝐴 ∈ F, V𝑡𝑝(𝐶) = 𝜑
𝑀
(C, (𝐴, 𝐴), 𝑝) for all 𝐶 ⊂

B ∪S with #𝐶 = 1.
(vi) 𝑝 solves system (63).

Proof. The equivalence between (i) and (ii) follows from
Theorem 25. The equivalence between (iv) and (vi) is imme-
diate. That (iii) implies (ii) follows from the fact that
(V𝑡𝑝({𝑖}), V𝑡𝑝({𝑘})

(𝑖,𝑘)∈B∪S ∈ C𝑡Γ). That (iv) implies (iii)
follows easily from the definition V𝑡𝑝. That (v) implies (iv) is
also immediate. Hence, it only remains to be proved that (ii)
implies (v).

Assume C𝑡𝑝 ̸= 0. By Proposition 14, if 𝐴 ∈ F, then
(𝑢(𝑝, 𝐴), 𝑤(𝑝, 𝐴)) ∈ C𝑡𝑝. Hence,

𝑢
𝑖
(𝑝) ≥ V𝑡𝑝 ({𝑖}) , ∀𝑖 ∈ B,

𝑤
𝑘
(𝑝) ≥ V𝑡𝑝 ({𝑘}) , ∀𝑘 ∈ S.

(65)

By the definition of V𝑡𝑝,

𝜑
𝑀

({𝑖} , (𝐴, 𝐴) , 𝑝) = 𝑢
𝑖
(𝑝, 𝐴) = V𝑡𝑝 ({𝑖}) , ∀𝑖 ∈ B,

𝜑
𝑀

({𝑘} , (𝐴, 𝐴) , 𝑝) = 𝑤
𝑘
(𝑝, 𝐴) = V𝑡𝑝 ({𝑘}) , ∀𝑘 ∈ S.

(66)

The above proposition gives criteria and procedures to
compute price vectors in P𝑡 and therefore payoff vectors in
CE𝑡.

5. Comparison and Relationships among
Solutions

Our notation will enable us to compare the solutions and
to show how the group stability notions, the notions of

competitive equilibria, and the Core of a market are related.
We first observe that, for all 𝐶 ⊂ B ∪S,

F
C
(𝐶) ×F

C
(𝐶) ⊂ F

3
(𝐶) ×F

3
(𝐶) ⊂ F

2
(𝐶) ×F

2
(𝐶)

⊂ F
1
(𝐶) ×F

1
(𝐶) ⊂ F

0
⊂ F
−1
.

(67)

Moreover, if (𝐴, 𝐴) ∈ F𝑡(𝐶)×F𝑡(𝐶), then𝜑
𝑀
(𝐶, (𝐴, 𝐴), 𝑝) =

𝜙
𝑀
(𝐶, 𝐴, 𝑝). Hence, for all 𝑝 and all 𝐶 ⊊ B ∪S,

V (𝐶) ≤ V3𝑝 (𝐶) ≤ V2𝑝 (𝐶) ≤ V1𝑝 (𝐶) ≤ V0𝑝 (𝐶) ≤ V−1𝑝 (𝐶) ,

V (B ∪S) = V3𝑝 (B ∪ S) = V2𝑝 (B ∪S)

= V1𝑝 (B ∪ S) = V0𝑝 (B ∪S) = V−1𝑝 (B ∪S) .

(68)

Thus, for all 𝑝,

C ⊃ C
3𝑝

⊃ C
2𝑝

⊃ C
1𝑝

⊃ C
0𝑝

⊃ C
−1𝑝

, (69)

and, therefore,

if C𝑡

𝑝

̸= 0, then C
𝑡𝑝

= C
𝑡

𝑝 for 𝑡 ≥ 𝑡


. (70)

It is easy to describemarkets for which there exists𝑝 such that
𝐶
1𝑝

̸= 0 and 𝐶
0𝑝

= 0.
Now, we state a result showing that the set of payoffs

associated with all six solutions are nonempty and have a
strictly nested structure.

Theorem 36. Let𝑀 be a market. Then,

0 ̸=CE
−1

⊊ CE
0
⊊ GS

1
⊊ GS

2
⊊ GS

3
⊊ C. (71)

Proof. By Corollary 32, (13), Theorems 13 and 31, and (69) it
only remains to be proven that the inclusion of CE0 in GS1

is strict. But Example 29 below will show that.

Example 29 (continued). Consider 𝑝 = (5, 4). Then,
V1𝑝({𝑏

1
, 𝑠
1
}) = 11, V1𝑝({𝑏

2
, 𝑠
1
}) = 18, V1𝑝({𝑠

1
}) =

8, V1𝑝({𝑏
1
}) = 3, V1𝑝({𝑏

2
}) = 10. Hence, (𝑢(𝑝, 𝐴), 𝑤(𝑝, 𝐴)) =

(3, 10, 8) ∈ 𝐶
1𝑝. Thus, (3, 10, 8) ∈ GS1. But 𝑝 ∉

P0, since 𝑏
1
would demand 8 units of good 1. Moreover,

(𝑢(p∗, 𝐴), 𝑤(𝑝
∗
, 𝐴)) = (3, 10, 8) if and only if 𝑝∗ = (5, 4).

That is, (3, 10, 8) ∉ CE0.
Massó and Neme [13] show that CE−1 ⊊ GS1 using an

alternative proof. Moreover, from the inclusion relationships
established in Theorem 36 and by Theorems 13 and 31, we
observe that all solutions have a similar structure because to
compute the payoff vectors in the solutions it is sufficient to
identify the appropriated Γ (or 𝑝). Namely,

GS
𝑡
= {(𝑢 (Γ) , 𝑤 (Γ)) | Γ ∈ D

𝑡
} for 𝑡 = 1, 2, 3,

CE
𝑡
= {(𝑢 (𝑝) , 𝑤 (𝑝)) | 𝑝 ∈ P

𝑡
} for 𝑡 = −1, 0.

(72)

By Propositions 18 and 35, the elements in D𝑡 and P𝑡

are solutions of a system of nonstrict lineal inequalities (the
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functions 𝜙𝑀 and 𝜑
𝑀 are lineal and continuous in Γ and 𝑝,

resp.). Hence, a procedure to compute payoff vectors in GS𝑡

andCE𝑡 is by solving the respective systems. In addition, the
sets of solutions of such systems are convex and closed.Thus,
D𝑡 andP𝑡 are convex and closed sets. But since the functions
(𝑢(Γ), 𝑤(Γ)) are lineal and continuous in Γ, it follows thatGS𝑡

andCE𝑡 are convex and closed sets. Moreover,GS𝑡 andCE𝑡

are compact sets since GS𝑡 ⊂ C(𝑀) and CE𝑡 ⊂ C(𝑀).
Thus, the inclusions given in Theorem 36 constitute a chain
of nested convex sets.

Appendices

A. GS1 ⫋ GS2 ⫋ GS3 in Example 2

We want to show that GS1 ⫋ GS2 ⫋ GS3 holds for the
market𝑀 of Example 2.

(a) First, we will see that (𝑢, 𝑤) = (11, 16, 6) ∈ GS3\GS2.
Let Γ = (

5 2 4

17/3 3 1
) and 𝐶 ⊂ B ∪S. We distinguish five cases.

(I) If 𝐶 = {𝑠
1
} and 𝐴 ∈ F𝑡(𝐶),

𝜙
𝑀

(𝐶, 𝐴, Γ) = (Γ
111

− 𝑟
11
) ⋅ 𝐴
111

+ (Γ
121

− 𝑟
21
) ⋅ 𝐴
121

+ (Γ
131

− 𝑟
31
) ⋅ 𝐴
131

+ (Γ
211

− 𝑟
11
) ⋅ 𝐴
211

+ (Γ
221

− 𝑟
21
) ⋅ 𝐴
221

+ (Γ
231

− 𝑟
31
) ⋅ 𝐴
231

≤ 0 ⋅ 𝐴
111

+ 0 ⋅ 𝐴
121

+ 3 ⋅ 𝐴
131

+
2

3
⋅ 𝐴
211

+ 1 ⋅ 𝐴
221

+ 0 ⋅ 𝐴
231

= 0 + 0 +
2

3
⋅ 9 = 𝑤

1
.

(A.1)

(II) If 𝐶 = {𝑏
𝑖
} and 𝐴 ∈ F𝑡(𝐶),

𝜙
𝑀

(𝐶, 𝐴, Γ) = (V
𝑖1
− Γ
𝑖11

) ⋅ 𝐴
𝑖11

+ (V
𝑖2
− Γ
𝑖21

) ⋅ 𝐴
𝑖21

+ (V
𝑖3
− Γ
𝑖31

) ⋅ 𝐴
𝑖31

≤ (V
𝑖1
− Γ
𝑖11

) ⋅ 𝐴
𝑖11

+ (V
𝑖2
− Γ
𝑖21

) ⋅ 𝐴
𝑖21

+ (V
𝑖3
− Γ
𝑖31

) ⋅ 𝐴
𝑖31

= 𝑢
𝑖
.

(A.2)

(III) If 𝐶 = {𝑏
1
, 𝑠
1
} and 𝐴 ∈ F0,

𝜙
𝑀

(𝐶, 𝐴, Γ) = (V
11

− 𝑟
11
) ⋅ 𝐴
111

+ (V
12

− 𝑟
21
) ⋅ 𝐴
121

+ (V
13

− 𝑟
31
) ⋅ 𝐴
131

+ (Γ
211

− 𝑟
11
) ⋅ 𝐴
211

+ (Γ
221

− 𝑟
21
) ⋅ 𝐴
221

+ (Γ
231

− 𝑟
31
) ⋅ 𝐴
231

= 1 ⋅ 𝐴
111

+ 2 ⋅ 𝐴
121

+ 3 ⋅ 𝐴
131

+
2

3
⋅ 𝐴
211

+ 1 ⋅ 𝐴
221

+ 0 ⋅ 𝐴
231

.

(A.3)

If 𝐴 ∈ F3(𝐶), we have two possibilities.

(i) 𝐴
211

= 𝐴
221

= 𝐴
231

= 0, in which case,

𝜙
𝑀

(𝐶, 𝐴, Γ) = 1 ⋅ 𝐴
111

+ 2 ⋅ 𝐴
121

+ 3 ⋅ 𝐴
131

≤ 1 ⋅ 4 + 2 ⋅ 5 + 3 ⋅ 1

= 17 ≤ 𝑢
1
+ 𝑤
1
.

(A.4)

(ii) 𝐴
211

= 9, 𝐴
221

= 0, 𝐴
231

= 1, in which case,

𝜙
𝑀

(𝐶, 𝐴, Γ) = 1 ⋅ 𝐴
111

+ 2 ⋅ 𝐴
121

+ 3 ⋅ 𝐴
131

+
2

3
⋅ 9

+ 1 ⋅ 0 + 0 ⋅ 1

≤ 1 ⋅ 1 + 2 ⋅ 5 + 3 ⋅ 0 +
2

3
⋅ 9 + 1 ⋅ 0 + 0 ⋅ 1

= 17 = 𝑢
1
+ 𝑤
1
.

(A.5)

(IV) If 𝐶 = {𝑏
2
, 𝑠
1
} and 𝐴 ∈ F0,

𝜙
𝑀

(𝐶, 𝐴, Γ) = (V
21

− 𝑟
11
) ⋅ 𝐴
211

+ (V
22

− 𝑟
21
) ⋅ 𝐴
221

+ (V
23

− 𝑟
31
) ⋅ 𝐴
231

+ (Γ
111

− 𝑟
11
) ⋅ 𝐴
111

+ (Γ
121

− 𝑟
21
) ⋅ 𝐴
121

+ (Γ
131

− 𝑟
31
) ⋅ 𝐴
131

= 2 ⋅ 𝐴
211

+ 1 ⋅ 𝐴
221

+ 4 ⋅ 𝐴
231

+ 0 ⋅ 𝐴
111

+ 0 ⋅ 𝐴
121

+ 3 ⋅ 𝐴
131

.

(A.6)

If 𝐴 ∈ F3(𝐶), we have two possibilities.

(i) 𝐴
111

= 𝐴
121

= 𝐴
131

= 0, in which case,

𝜙
𝑀

(𝐶, 𝐴, Γ) = 2 ⋅ 𝐴
211

+ 1 ⋅ 𝐴
221

+ 4 ⋅ 𝐴
231

≤ 2 ⋅ 9 + 1 ⋅ 0 + 4 ⋅ 1

= 22 ≤ 𝑢
2
+ 𝑤
1
.

(A.7)

(ii) 𝐴
111

= 1, 𝐴
121

= 5, 𝐴
131

= 0, in which case,

𝜙
𝑀

(𝐶, 𝐴, Γ) = 2 ⋅ 𝐴
211

+ 1 ⋅ 𝐴
221

+ 4 ⋅ 𝐴
231

+ 0 ⋅ 1

+ 0 ⋅ 5 + 3 ⋅ 0

≤ 2 ⋅ 9 + 1 ⋅ 0 + 4 ⋅ 1 + 0 ⋅ 1 + 0 ⋅ 5

= 22 = 𝑢
2
+ 𝑤
1
.

(A.8)

(V) If 𝐶 = {𝑏
1
, 𝑏
1
, 𝑠
1
} and 𝐴 ∈ F3(𝐶), then 𝜙

𝑀
(𝐶, 𝐴, Γ) =

𝑇(𝐴). Hence, 𝜙𝑀(𝐶, 𝐴, Γ) ≤ 𝑇(𝐴) = 𝑢
1
+ 𝑢
2
+ 𝑤
1
.

Thus, we can conclude that, for all 𝐶 ⊂ B ∪ S and all
𝐴 ∈ F3(𝐶), ∑

𝑖∈B𝐶 𝑢𝑖+∑𝑘∈S𝐶 𝑤𝑘 ≥ 𝜙
𝑀
(𝐶, 𝐴, Γ)holds.Hence,

(11, 16, 6) ∈ GS3.
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We now check that (11, 16, 6) ∉ GS2. Assume that there
exists Γ ∈ D such that, for all 𝐶 ⊂ B∪S and all𝐴 ∈ F2(𝐶),

∑

𝑖∈B𝐶

𝑢
𝑖
+ ∑

𝑘∈S𝐶

𝑤
𝑘
≥ 𝜙
𝑀

(𝐶, 𝐴, Γ

) (A.9)

holds. Consider {𝑏
1
, 𝑠
1
} ⊂ B ∪ S and 𝐴 = (

1 5 1

9 0 0
). Observe

that 𝐴 ∈ F2({𝑏
1
, 𝑠
1
}). By (A.9),

𝜙
𝑀

({𝑏
1
, 𝑠
1
} , 𝐴, Γ


) = 1 ⋅ 1 + 2 ⋅ 5 + 3 ⋅ 1 + (Γ



211
− 5) ⋅ 9

≤ 11 + 6.

(A.10)

Now, consider {𝑏
2
} ⊂ B ∪ S and 𝐴 = (

1 5 0

9 0 1
). Observe that

𝐴 ∈ F2({𝑏
2
}). By (A.9),

𝜙
𝑀

({𝑏
2
} , 𝐴, Γ


) = (7 − Γ



211
) ⋅ 9 + (5 − Γ



231
) ⋅ 1 ≤ 16,

(A.11)

and, hence, by (A.10) and (A.11),

1 + 10 + 3 + (Γ


211
− 5) ⋅ 9 + (7 − Γ



211
) ⋅ 9 + (5 − Γ



231
) ≤ 33,

(A.12)

whichmeans that Γ
231

≥ 4. Consider now the assignment𝐴 =

(
5 5 0

0 0 1
), and observe that 𝐴 ∈ F2({𝑏

1
, 𝑠
1
}). By (A.9),

𝜙
𝑀

({𝑏
1
, 𝑠
1
} , 𝐴, Γ


) = 5 + 10 + (Γ



231
− 1) ≤ 6 + 11, (A.13)

and, hence, by (A.13) and (A.11),

5 + 10 + (Γ


231
− 1) + (7 − Γ



211
) ⋅ 9 + (5 − Γ



231
) ≤ 33,

(A.14)

which means that Γ
231

≥ 49/9. Finally, consider {𝑠
1
} ⊂ B∪S

and 𝐴 = (
1 5 0

9 0 1
). Observe that 𝐴 ∈ F2({𝑠

1
}) and

𝜙
𝑀

({𝑠
1
} , 𝐴, Γ


) = (Γ



111
− 5) ⋅ 1 + (Γ



121
− 5) ⋅ 5

+ (Γ


211
− 5) ⋅ 9 + (Γ



231
− 1) ⋅ 1

≥ (Γ


211
− 5) ⋅ 9 + (Γ



231
− 1)

≥ (
49

9
− 5) ⋅ 9 + 4 − 1 = 7.

(A.15)

Hence,𝜙𝑀({𝑠
1
}, 𝐴, Γ


) ≥ 7 > 6 = 𝑤

1
, which contradicts (A.9).

Thus, (11, 16, 6) ∈ GS3 \GS2 holds.
(b) Second, we will see that (𝑢, 𝑤) = (11, 13, 9) ∈ GS2 \

GS1. Let Γ = (
6 4 4

17/3 3 4
) and 𝐶 ⊂ B ∪ S. We distinguish

between two cases.

(I) If 𝐶 ⊂ B ∪ S, 𝐶 ̸= {𝑏
1
, 𝑠
1
}, and 𝐴 ∈ F𝑡(𝐶), we can

show using a similar argument to the one used in case
(a) that 𝜙𝑀(𝐶, 𝐴, Γ) ≤ ∑

𝑖∈B𝐶 𝑢𝑖 + ∑
𝑘∈S𝐶 𝑤𝑘 holds as

well.

(II) If 𝐶 = {𝑏
1
, 𝑠
1
} and 𝐴 ∈ F0,

𝜙
𝑀

(𝐶, 𝐴, Γ) = (V
11

− 𝑟
11
) ⋅ 𝐴
111

+ (V
12

− 𝑟
21
) ⋅ 𝐴
121

+ (V
13

− 𝑟
31
) ⋅ 𝐴
131

+ (Γ
211

− 𝑟
11
) ⋅ 𝐴
211

+ (Γ
221

− 𝑟
21
) ⋅ 𝐴
221

+ (Γ
231

− 𝑟
31
) ⋅ 𝐴
231

= 1 ⋅ 𝐴
111

+ 2 ⋅ 𝐴
121

+ 3 ⋅ 𝐴
131

+
2

3
⋅ 𝐴
211

+ 1 ⋅ 𝐴
221

+ 3 ⋅ 𝐴
231

.

(A.16)

If 𝐴 ∈ F2(𝐶), we have three possibilities.

(i) If 𝐴
231

= 1 and 𝐴
211

= 9,

𝜙
𝑀

(𝐶, 𝐴, Γ) ≤ 1 ⋅ 𝐴
111

+ 2 ⋅ 𝐴
121

+ 3 ⋅ 𝐴
131

+
2

3
⋅ 9 + 1 ⋅ 0 + 3 ⋅ 1

≤ 1 + 10 + 6 + 3

= 20 = 𝑢
1
+ 𝑤
1
.

(A.17)

(ii) If 𝐴
231

= 1 and 𝐴
211

= 0,

𝜙
𝑀

(𝐶, 𝐴, Γ) ≤ 1 ⋅ 𝐴
111

+ 2 ⋅ 𝐴
121

+ 3 ⋅ 𝐴
131

+
2

3
⋅ 0

+ 1 ⋅ 0 + 3 ⋅ 1

≤ 1 ⋅ 5 + 10 + 3

= 18 ≤ 𝑢
1
+ 𝑤
1
.

(A.18)

(iii) If 𝐴
231

= 0,

𝜙
𝑀

(𝐶, 𝐴, Γ) = 1 ⋅ 𝐴
111

+ 2 ⋅ 𝐴
121

+ 3 ⋅ 𝐴
131

+
2

3
⋅ 𝐴
211

+ 1 ⋅ 0 + 3 ⋅ 0

= 1 ⋅ 𝐴
111

+ 2 ⋅ 5 + 3 ⋅ 0 +
2

3
⋅ 𝐴
211

+ 1 ⋅ 0

≤ 𝑢
1
+ 𝑤
1
,

(A.19)

where the last inequality follows from what we
have established in cases (i) and (ii) above.

Thus, we can conclude that for all 𝐶 ⊂ B ∪ S and all
𝐴 ∈ F2(𝐶),∑

𝑖∈B𝐶 𝑢𝑖 +∑
𝑘∈S𝐶 𝑤𝑘 ≥ 𝜙

𝑀
(𝐶, 𝐴, Γ) holds. Hence,

(11, 13, 9) ∈ GS2.
We now check that (11, 13, 9) ∉ GS1. Assume that there

exists Γ ∈ D such that, for all 𝐶 ⊂ B∪S and all𝐴 ∈ F1(𝐶),

∑

𝑖∈B𝐶

𝑢
𝑖
+ ∑

𝑘∈S𝐶

𝑤
𝑘
≥ 𝜙
𝑀

(𝐶, 𝐴, Γ

) (A.20)
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holds. Consider {𝑏
1
, 𝑠
1
} ⊂ B ∪ S and 𝐴 = (

5 5 0

4 0 1
). Observe

that 𝐴 ∈ F1({𝑏
1
, 𝑠
1
}). By (A.20),

𝜙
𝑀

({𝑏
1
, 𝑠
1
} , 𝐴, Γ


) = 1 ⋅ 5 + 2 ⋅ 5 + 3 ⋅ 0 + (Γ



211
− 5) ⋅ 4

+ (Γ


231
− 1) ⋅ 1

≤ 11 + 9.

(A.21)

Consider now {𝑏
2
} ⊂ B ∪ S and 𝐴 = (

1 5 0

9 0 1
). Observe that

𝐴 ∈ F2({𝑏
2
}). By (A.20),

𝜙
𝑀

({𝑏
2
} , 𝐴, Γ


) = (7 − Γ



211
) ⋅ 9 + (5 − Γ



231
) ⋅ 1 ≤ 13,

(A.22)

and, hence, by (A.21) and (A.22),

5 + 10 + (Γ


211
− 5) ⋅ 4 + (Γ



231
− 1) ⋅ 1 + (7 − Γ



211
) ⋅ 9

+ (5 − Γ


231
) ≤ 33,

(A.23)

whichmeans that Γ
211

≥ 6. Consider now the assignment𝐴 =

(
1 5 1

9 0 0
). Observe that 𝐴 ∈ F1({𝑏

1
, 𝑠
1
}) and

𝜙
M
({𝑏
1
, 𝑠
1
} , 𝐴, Γ


) = 1 + 10 + 3 + (Γ



211
− 5) ⋅ 9 ≤ 11 + 9.

(A.24)

Hence, by (A.24) and (A.22),

1 + 10 + 3 + (Γ


211
− 5) ⋅ 9 + (7 − Γ



211
) ⋅ 9 + (5 − Γ



231
) ≤ 33,

(A.25)

which means that Γ
231

≥ 4. Finally, consider {𝑠
1
} ⊂ B ∪ S

and 𝐴 = (
1 5 0

9 0 1
). Observe that 𝐴 ∈ F2({𝑠

1
}) and

𝜙
𝑀

({𝑠
1
} , 𝐴, Γ


) = (Γ



111
− 5) ⋅ 1 + (Γ



121
− 5) ⋅ 5

+ (Γ


211
− 5) ⋅ 9 + (Γ



231
− 1) ⋅ 1

≥ (Γ


211
− 5) ⋅ 9 + (Γ



231
− 1)

≥ (6 − 5) ⋅ 9 + 4 − 1 = 12.

(A.26)

Hence, 𝜙𝑀({𝑠
1
}, 𝐴, Γ


) ≥ 12 > 9 = 𝑤

1
, which contradicts

(A.20). Thus, (11, 13, 9) ∈ GS2 \GS1.
(c) To finish, we will exhibit a vector inGS1. Let (𝑢, 𝑤) =

(0, 0, 33), Γ = (
6 4 4

7 3 5
), and𝐶 ⊂ B∪S.We distinguish between

two cases.

(I) If 𝐶 ⊂ B, then, 𝜙𝑀(𝐶, 𝐴, Γ) = 0 holds for all 𝐴 ∈

F1(𝐶). Hence, 𝜙𝑀(𝐶, 𝐴, Γ) ≤ ∑
𝑖∈B𝐶 𝑢𝑖 + ∑

𝑘∈S𝐶 𝑤𝑘.
(II) If 𝑠

1
∈ 𝐶 and 𝐴 ∈ F1(𝐶), then 𝜙

𝑀
(𝐶, 𝐴, Γ) ≤

𝑇
𝑀
(𝐴) ≤ 33 (since 𝐴 ∈ F0 holds). Hence,

𝜙
𝑀

(𝐶, 𝐴, Γ) ≤ 33 = 𝑤
1
= ∑

𝑖∈B𝐶

𝑢
𝑖
+ ∑

𝑘∈S𝐶

𝑤
𝑘
, (A.27)

which means that (𝑢, 𝑤) = (0, 0, 33) ∈ GS1.

B. C𝑡Γ=0 in Example 2

Remember that the unique optimal assignment in themarket
of Example 2 is 𝐴 = (

1 5 0

9 0 1
) with 𝑇

𝑀
(𝐴) = 33. Let Γ =

(
6 4 4

17/3 3 4
). By Remark 12, V1Γ({𝑏

1
, 𝑏
2
, 𝑠
1
}) = 33. Observe that

𝐴 = (
5 5 0

4 0 1
) ∈ F1({𝑏

1
, 𝑠
1
}), and thus

V𝑡Γ ({𝑏
1
, 𝑠
1
}) ≥ 𝜙

𝑀
({𝑏
1
, 𝑠
1
} , 𝐴, Γ)

= 5 + 10 + (
17

3
− 5) ⋅ 4 + (4 − 1) ⋅ 1

=
62

3
.

(B.1)

Now, consider {𝑏
2
}. We have𝐴 = (

1 5 0

9 0 1
) ∈ F1({𝑏

2
}), and thus

V𝑡Γ ({𝑏
2
}) ≥ 𝜙

𝑀
({𝑏
2
} , 𝐴, Γ)

= (7 −
17

3
) ⋅ 9 + (5 − 4) ⋅ 1 = 13.

(B.2)

Therefore, V1Γ({𝑏
1
, 𝑠
1
})+V1Γ({𝑏

2
}) ≥ 62/3+13 = 101/3 > 33 =

V1Γ({𝑏
1
, 𝑏
2
, 𝑠
1
}), where we deduce that the game (B ∪ S, V1Γ)

has empty Core.

C. Proof of Lemma 26

We first prove the statement in Lemma 26 for 𝑡 = −1. For
this purpose we will use the following notation. Fix 𝑝 ∈ R𝐺

+
.

Define for every 𝑖 ∈ B

𝛾
𝑖
(𝑝) = {

V
𝑖𝑗
− 𝑝
𝑗

if there exists 𝑗 ∈ ∇
>

𝑖
(𝑝)

0 otherwise,
(C.1)

and for every (𝑗, 𝑘) ∈ G ×S

𝜋
𝑗𝑘

(𝑝) = {
𝑝
𝑗
− 𝑟
𝑗𝑘

if𝑝
𝑗
− 𝑟
𝑗𝑘

> 0

0 otherwise.
(C.2)

The number 𝛾
𝑖
(𝑝) is the net valuation obtained by buyer 𝑖

from each unit of the goods that he wants to buy at 𝑝 and
the number 𝜋

𝑗𝑘
(𝑝) is the net gain obtained by seller 𝑘 from

each unit of good 𝑗 that he wants to sell at 𝑝.
Let (𝐴𝐵, 𝐴𝑆) ∈ F−1. Since (𝑝, 𝐴) is a -1-equilibrium, for

each 𝑖 ∈ B,

∑

𝑗𝑘

(V
𝑖𝑗
− 𝑝
𝑗
) ⋅ 𝐴
𝑖𝑗𝑘

= 𝛾
𝑖
(𝑝) ⋅ 𝑑

𝑖
. (C.3)

But 𝑑
𝑖
≥ ∑
𝑗𝑘

𝐴
𝐵

𝑖𝑗𝑘
and (V

𝑖𝑗
− 𝑝
𝑗
) ≤ 𝛾
𝑖
(𝑝), for all 𝑗. Hence, for

each 𝑖 ∈ B,

∑

𝑗𝑘

(V
𝑖𝑗
− 𝑝
𝑗
) ⋅ 𝐴
𝑖𝑗𝑘

≥ ∑

𝑗𝑘

(V
𝑖𝑗
− 𝑝
𝑗
) ⋅ 𝐴
𝐵

𝑖𝑗𝑘
. (C.4)

Thus, (55) holds. The proof that (56) holds as well proceeds
similarly and therefore it is omitted.

To prove the other implication, consider a pair (𝑝, 𝐴)

satisfying (55) and (56) for all (𝐴𝐵, 𝐴𝑆) ∈ F−1. We will show
that (𝑝, 𝐴) is a -1-competitive equilibrium.
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First, we will check that (E.D) holds. Since 𝐴 is feasible,
(D.a) and (D.b) hold.

To check that (D.c) holds assume that, for 𝑖 ∈

B, ∇
>

𝑖
(𝑝) ̸= 0. We want to show that ∑

𝑗∈∇
>

𝑖
(𝑝)

∑
𝑘
𝐴
𝑗𝑘

=

𝑑
𝑖
. Assume that there exists 𝑖

 such that ∇
>

𝑖
 (𝑝) ̸= 0 but

∑
𝑗∈∇
>

𝑖

(𝑝)

∑
𝑘
𝐴
𝑖

𝑗𝑘

< 𝑑
𝑖
 . Let 𝑗 ∈ ∇

>

𝑖
 (𝑝) and let 𝐴𝐵 be such

that

∑

𝑘

𝐴
𝐵

𝑖

𝑗𝑘

= {
𝑑
𝑖
 if 𝑗 = 𝑗



0 if 𝑗 ̸= 𝑗

.

(C.5)

It is clear that (𝐴𝐵, 𝐴𝑆) ∈ F−1 for some𝐴𝑆. Now we have that
∑
𝑗𝑘
(V
𝑖

𝑗
−𝑝
𝑗
) ⋅𝐴
𝐵

𝑖

𝑗𝑘

= 𝛾
𝑖
(𝑝) ⋅ 𝑑

𝑖
 . We distinguish between two

cases.

Case 1. ∑
𝑗𝑘

𝐴
𝑖

𝑗𝑘

< 𝑑
𝑖
 . Then,

∑

𝑗𝑘

(V
𝑖

𝑗
− 𝑝
𝑗
) ⋅ 𝐴
𝐵

𝑖

𝑗𝑘

= 𝛾
𝑖
 (𝑝) ⋅ 𝑑

𝑖
 > 𝛾
𝑖
 (𝑝) ⋅ ∑

𝑗𝑘

𝐴
𝑖

𝑗𝑘

≥ ∑

𝑗𝑘

(V
𝑖

𝑗
− 𝑝
𝑗
) ⋅ 𝐴
𝑖

𝑗𝑘
,

(C.6)

which contradicts (55).

Case 2. ∑
𝑗𝑘

𝐴
𝑖

𝑗𝑘

= 𝑑
𝑖
 . Then,

∑

𝑗𝑘

(V
𝑖

𝑗
− 𝑝
𝑗
) ⋅ 𝐴
𝐵

𝑖

𝑗𝑘

= 𝛾
𝑖
 (𝑝) ⋅ 𝑑

𝑖
 ≥ 𝛾
𝑖
 (𝑝) ⋅ ∑

𝑗

∑

𝑘

𝐴
𝑖

𝑗𝑘

= 𝛾
𝑖
 (𝑝) ⋅ ( ∑

𝑗∈∇
>

𝑖
(𝑝)

∑

𝑘

𝐴
𝑖

𝑗𝑘
)

+ 𝛾
𝑖
 (𝑝) ⋅ ( ∑

𝑗∉∇
>

𝑖
(𝑝)

∑

𝑘

𝐴
𝑖

𝑗𝑘
)

> ∑

𝑗∈∇
>

𝑖
(𝑝)

∑

𝑘

(V
𝑖

𝑗
− 𝑝
𝑗
) ⋅ 𝐴
𝑖

𝑗𝑘

+ ∑

𝑗∉∇
>

𝑖
(𝑝)

(V
𝑖

𝑗
− 𝑝
𝑗
) ⋅ ∑

𝑘

𝐴
𝑖

𝑗𝑘

= ∑

𝑗𝑘

(V
𝑖

𝑗
− 𝑝
𝑗
) ⋅ 𝐴
𝑖

𝑗𝑘
,

(C.7)

which contradicts (55).
To check that (D.d) holds, assume that, for 𝑖 ∈ B,

∑
𝑘
𝐴
𝑖𝑗𝑘

> 0. We want to show that 𝑗 ∈ ∇
≥

𝑖
(𝑝). Assume that

there exist 𝑖 ∈ B, 𝑗 ∈ G, and 𝑘

∈ S such that 𝐴

𝑖

𝑗

𝑘
 > 0,

but 𝑗 ∉ ∇
≥

𝑖
 (𝑝). Define

𝐴
𝐵

𝑖𝑗𝑘
= {

𝐴
𝑖𝑗𝑘

if (𝑖, 𝑗, 𝑘) ̸= (𝑖

, 𝑗

, 𝑘

)

0 if (𝑖, 𝑗, 𝑘) = (𝑖

, 𝑗

, 𝑘

) .

(C.8)

We have that (𝐴𝐵, 𝐴𝑆) ∈ F−1 for some 𝐴𝑆 and in addition,

∑

𝑗𝑘

(V
𝑖

𝑗
− 𝑝
𝑗
) ⋅ 𝐴
𝐵

𝑖

𝑗𝑘

= ∑

𝑗𝑘:(𝑗,𝑘) ̸= (𝑗

,𝑘


)

(V
𝑖

𝑗
− 𝑝
𝑗
) ⋅ 𝐴
𝑖

𝑗𝑘

> ∑

𝑗𝑘

(V
𝑖

𝑗
− 𝑝
𝑗
) ⋅ 𝐴
𝑖

𝑗𝑘
.

(C.9)

Hence, (𝑝, 𝐴) does not satisfy (55). Thus, (E.D) holds.
Proceeding similarly, we can check that (E.S) holds, since,

for (𝑝, 𝐴) to satisfy (56), it is necessary that each seller 𝑘 ∈ S
sells all the units he owns of each good that produce a strict
positive net gain and no unit of the goods producing negative
net gains.

We now proceed to prove Lemma 26 for the case 𝑡 = 0.
For this purpose we will use the following notation. Fix 𝑝 ∈

R𝐺
+
and 𝑗 ∈ ∇

𝑧>

𝑖
(𝑝) for 𝑧 = 1, . . . , 𝐽, and define 𝛾

𝑧𝑖
(𝑝) = (V

𝑖𝑗
−

𝑝
𝑗
). Moreover, if∇𝑧>

𝑖
(𝑝) = 0, define 𝛾

𝑧𝑖
(𝑝) = 0. Let (𝑝, 𝐴) be a

0-competitive equilibrium and assume there exist 𝑖 ∈ B and
𝐴
∗
∈ F0 such that

∑

𝑗𝑘

(V
𝑖𝑗
− 𝑝
𝑗
) ⋅ 𝐴
∗

𝑖𝑗𝑘
> ∑

𝑗𝑘

(V
𝑖𝑗
− 𝑝
𝑗
) ⋅ 𝐴
𝑖𝑗𝑘
. (C.10)

If (V
𝑖𝑗
− 𝑝
𝑗
) < 0, then 𝐴

𝑖𝑗𝑘
= 0 for all 𝑘 since (𝑝, 𝐴) is a 0-

competitive equilibrium. Hence,

𝐽

∑

𝑧=1

𝛾
𝑧𝑖
(𝑝) ∑

𝑗∈∇
𝑧>

𝑖
(𝑝)

𝑘∈S

𝐴
∗

𝑖𝑗𝑘
+ ∑

𝑗∉∇
𝑧>

𝑖
(𝑝)

𝑘∈S

(V
𝑖𝑗
− 𝑝
𝑗
) ⋅ 𝐴
∗

𝑖𝑗𝑘

= ∑

𝑗𝑘

(V
𝑖𝑗
− 𝑝
𝑗
) ⋅ 𝐴
∗

𝑖𝑗𝑘

> ∑

𝑗𝑘

(V
𝑖𝑗
− 𝑝
𝑗
) ⋅ 𝐴
𝑖𝑗𝑘

=

𝐽

∑

𝑧=1

𝛾
𝑧𝑖
(𝑝) ∑

𝑗∈∇
𝑧>

𝑖
(𝑝)

𝑘∈S

𝐴
𝑖𝑗𝑘
.

(C.11)

Then, since∑
𝑗∉∪∇
𝑧>

𝑖
(𝑝),𝑘∈S(V𝑖𝑗 − 𝑝

𝑗
) ⋅ 𝐴
∗

𝑖𝑗𝑘
≤ 0 holds,

𝐽

∑

𝑧=1

𝛾
𝑖𝑡
(𝑝) ∑

𝑗∈∇
𝑧>

𝑖
(𝑝)

𝑘∈S

𝐴
∗

𝑖𝑗𝑘
>

𝐽

∑

𝑧=1

𝛾
𝑧𝑖
(𝑝) ∑

𝑗∈∇
𝑧>

𝑖
(𝑝)

𝑘∈S

𝐴
𝑖𝑗𝑘
. (C.12)

Assume ∑
𝑗∈∇
1>

𝑖
(𝑝)𝑘

𝐴
∗

𝑖𝑗𝑘
> ∑

𝑗∈∇
1>

𝑖
(𝑝)𝑘

𝐴
𝑖𝑗𝑘
. Since 𝐴 and

𝐴
∗ are feasible, ∇

1>

𝑖
(𝑝) ̸= 0 and ∑

𝑗∈∇
𝑧>

𝑖
(𝑝),𝑘∈S 𝐴

𝑖𝑗𝑘
<

∑
𝑗∈∇
𝑧>

𝑖
(𝑝),𝑘∈S 𝐴

∗

𝑖𝑗𝑘
≤ 𝑑
1𝑖
. Then, 𝐴(𝑖) ∉ 𝐷

𝑖
(𝑝). Hence,

∑

𝑗∈∇
1>

𝑖
(𝑝)

𝑘∈S

𝐴
∗

𝑖𝑗𝑘
≤ ∑

𝑗∈∇
1>

𝑖
(𝑝)

𝑘∈S

𝐴
𝑖𝑗𝑘
.

(C.13)
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Let 𝑧
∗ be the minimum 𝑧 = 1, . . . , 𝐽 such that

∑
𝑧
∗

𝑧=1
∑
𝑗∈∇
𝑧>

𝑖
(𝑝),𝑘∈S 𝐴

∗

𝑖𝑗𝑘
> ∑
𝑧
∗

𝑧=1
∑
𝑗∈∇
𝑧>

𝑖
(𝑝),𝑘∈S 𝐴

𝑖𝑗𝑘
(𝑧∗ exists by

(C.12) and (C.13)). Clearly, ∇𝑧
∗
>

𝑖
(𝑝) ̸= 0. Thus,

𝑧
∗

∑

𝑧=1

∑

𝑗∈∇
𝑧>

𝑖
(𝑝)

𝑘∈S

𝐴
𝑖𝑗𝑘

=

𝑧
∗

∑

𝑧=1

𝑑
𝑖𝑡
. (C.14)

We distinguish between two cases.

Case 1. ∑𝑧
∗

𝑧=1
𝑑
𝑧𝑖

= 𝑑
𝑖
. Then, ∑𝑧

∗

𝑧=1
∑
𝑗∈∇
𝑧>

𝑖
(𝑝),𝑘∈S 𝐴

∗

𝑖𝑗𝑘
> 𝑑
𝑖
,

which contradicts that 𝐴∗ is feasible.

Case 2. ∑
𝑧
∗

𝑧=1
𝑑
𝑧𝑖

< 𝑑
𝑖
. Then, 𝑑

𝑧𝑖
= min{𝑑

𝑖
−

∑
𝑧−1

𝑚=1
𝑑
𝑚𝑖
, ∑
𝑗∈∇
𝑧>

𝑖
(𝑝)

𝑄
𝑗
} = ∑

𝑗∈∇
𝑧>

𝑖
(𝑝)

𝑄
𝑗
for all 𝑧 = 1, . . . , 𝑧

∗.
Hence, ∑𝑧

∗

𝑧=1
∑
𝑗∈∇
𝑡>

𝑖
(𝑝),𝑘∈S 𝐴

𝑖𝑗𝑘
= ∑
𝑧
∗

𝑧=1
∑
𝑗∈∇
𝑧>

𝑖
(𝑝)

𝑄
𝑗
. Thus,

𝑧
∗

∑

𝑧=1

∑

𝑗∈∇
𝑧>

𝑖
(𝑝)

𝑘∈S

𝐴
∗

𝑖𝑗𝑘
>

𝑧
∗

∑

𝑧=1

∑

𝑗∈∇
𝑧>

𝑖
(𝑝)

𝑄
𝑗
, (C.15)

which again contradicts that 𝐴∗ is feasible.
The fact that∑

𝑖𝑗
(𝑝
𝑗
−𝑟
𝑗𝑘
) ⋅𝐴
𝑖𝑗𝑘

≥ ∑
𝑖𝑗
(𝑝
𝑗
−𝑟
𝑗𝑘
) ⋅𝐴
∗

𝑖𝑗𝑘
holds,

for all 𝑘 ∈ S, can be deduced similarly.
To verify that the other implication holds as well, assume

that the pair (𝑝, 𝐴) satisfies (55) and (56) for all feasible 𝐴
∗.

We want to show that (𝑝, 𝐴) is a 0-competitive equilibrium.
First, we check that (E.D0) holds. Since 𝐴 is feasible, (D.a0)
and (D.b0) hold.

To check that (D.c) holds, assume ∇
𝑧>

𝑖
(𝑝) ̸= 0. Next, we

show ∑
𝑗∈∇
𝑧>

𝑖
(𝑝)

∑
𝑘
𝐴
𝑗𝑘

= 𝑑
𝑧𝑖
. Assume there exist 𝑖 and 𝑧

∗

such that ∇𝑧
∗
>

𝑖
 (𝑝) ̸= 0 but

∑

𝑗∈∇
𝑧
∗
>

𝑖

(𝑝)

∑

𝑘

𝐴
𝑖

𝑗𝑘

< 𝑑
𝑖

𝑧
∗ .

(C.16)

Without loss of generality, we may assume that
∑
𝑗∈∇
𝑧>

𝑖

(𝑝)

∑
𝑘
𝐴
𝑗𝑘

= 𝑑
𝑧𝑖
 holds for all 𝑧 < 𝑧

∗.We have
𝑑
𝑧
∗i ≤ ∑

𝑗∈∇
𝑧
∗
>

𝑖

(𝑝)

𝑄
𝑗
. By (C.16), there exist 𝑘

∗
∈ S and

𝑗
∗
∈ ∇
𝑧
∗
>

𝑖
 such that 𝐴

𝑖

𝑗
∗
𝑘
∗ < 𝑞
𝑗
∗
𝑘
∗ . We distinguish between

two cases.

Case 1. ∑
𝑗𝑘

𝐴
𝑖

𝑗𝑘

< 𝑑
𝑖
 . Define 𝐴∗ as follows:

𝐴
∗

𝑖𝑗𝑘
=

{{{{{{{

{{{{{{{

{

𝐴
𝑖𝑗𝑘

if 𝑖 = 𝑖

, 𝑗 ∈ ∇

𝑧>

𝑖
(𝑝) for some 𝑧 < 𝑧

∗

or 𝑧∗ < 𝑧 ∀𝑘

𝐴
𝑖𝑗𝑘

+ 1 if 𝑖 = 𝑖

, 𝑗 = 𝑗

∗
, 𝑘 = 𝑘

∗

𝐴
𝑖𝑗𝑘

if 𝑖 = 𝑖

, 𝑗 ∈ ∇

𝑧
∗
>

𝑖
(𝑝) , 𝑗 ̸= 𝑗

∗
, 𝑘 ̸= 𝑘

∗

0 otherwise.
(C.17)

We have that 𝐴∗ is feasible. Moreover,

∑

𝑗𝑘

(V
𝑖𝑗
− 𝑝
𝑗
) ⋅ 𝐴
∗

𝑖𝑗𝑘
=

𝐽

∑

𝑧=1

𝛾
𝑧𝑖
(𝑝) ∑

𝑗∈∇
𝑧>

𝑖
(𝑝)

𝑘∈S

𝐴
∗

𝑖𝑗𝑘

>

𝐽

∑

𝑧=1

𝛾
𝑧𝑖
(𝑝) ∑

𝑗∈∇
𝑧>

𝑖
(𝑝)

𝑘∈S

𝐴
𝑖𝑗𝑘

≥ ∑

𝑗𝑘

(V
𝑖𝑗
− 𝑝
𝑗
) ⋅ 𝐴
𝑖𝑗𝑘
,

(C.18)

which contradicts (55).

Case 2. ∑
𝑗𝑘

𝐴
𝑖

𝑗𝑘

= 𝑑
𝑖
 . Then, by (C.16), there exist �̃� > 𝑧,

𝑗 ∈ G and �̃� ∈ S such that 𝑗 ∈ ∇
�̃�>

𝑖
 (𝑝) and 𝐴

𝑖

𝑗�̃�

> 0. Now
define 𝐴∗ as follows:

𝐴
∗

𝑖𝑗𝑘
=

{{{{{{{{{{{

{{{{{{{{{{{

{

𝐴
𝑖𝑗𝑘

if 𝑖 = 𝑖

, 𝑗 ∈ ∇

𝑧>

𝑖
(𝑝) for some 𝑧 < 𝑧

∗
, ∀𝑘

𝐴
𝑖𝑗𝑘

+ 1 if 𝑖 = 𝑖

, 𝑗 = 𝑗

∗
, 𝑘 = 𝑘

∗

𝐴
𝑖𝑗𝑘

− 1 if 𝑖 = 𝑖

, 𝑗 = 𝑗, 𝑘 = �̃�

𝐴
𝑖𝑗𝑘

if 𝑖 = 𝑖

, 𝑗 ∈ ∇

𝑡
∗
>

𝑖
(𝑝) , (𝑗, 𝑘) ̸= (𝑗

∗
, 𝑘
∗
)

𝐴
𝑖𝑗𝑘

𝑖 = 𝑖

, 𝑗 ∈ ∇

𝑧>

𝑖
(𝑝) for some 𝑧 > 𝑧

∗
,

(𝑗, 𝑘) ̸= (𝑗, �̃�) .

0 otherwise.
(C.19)

It is immediate to check that 𝐴∗ is feasible. Moreover,

∑

𝑗𝑘

(V
𝑖𝑗
− 𝑝
𝑗
) ⋅ 𝐴
∗

𝑖𝑗𝑘
=

𝐽

∑

𝑧=1

𝛾
𝑧𝑖
(𝑝) ∑

𝑗∈∇
𝑧>

𝑖
(𝑝)

𝑘∈S

𝐴
∗

𝑖𝑗𝑘

>

𝐽

∑

𝑧=1

𝛾
𝑧𝑖
(𝑝) ∑

𝑗∈∇
𝑧>

𝑖
(𝑝)

𝑘∈S

𝐴
𝑖𝑗𝑘

≥ ∑

𝑗𝑘

(V
𝑖𝑗
− 𝑝
𝑗
) ⋅ 𝐴
𝑖𝑗𝑘
,

(C.20)

which contradicts (55).
To check that (D.d0) holds, assume∑

𝑘
𝐴
𝑖𝑗𝑘

> 0. We want
to show that 𝑗 ∈ ∇

≥

𝑖
(𝑝) for all 𝑖 ∈ B. Assume that there exist

𝑖

∈ B and 𝑗


∈ G such that ∑

𝑘
𝐴
𝑖

𝑗

𝑘
> 0 but 𝑗 ∉ ∇

≥

𝑖
 (𝑝).

Define

𝐴
∗

𝑖𝑗𝑘
=

{{

{{

{

0 if 𝑖 = 𝑖
and𝑗 ∉ ∇

≥

𝑖
 (𝑝) , ∀𝑘 ∈ S

𝐴
𝑖𝑗𝑘

if 𝑖 = 𝑖

, 𝑗 ∈ ∇

𝑧>

𝑖
(𝑝) for some 𝑧, ∀𝑘 ∈ S

0 otherwise.
(C.21)
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It is immediate to check that 𝐴∗ is feasible. Moreover,

∑

𝑗𝑘

(V
𝑖𝑗
− 𝑝
𝑗
) ⋅ 𝐴
∗

𝑖𝑗𝑘
=

𝐽

∑

𝑧=1

𝛾
𝑧𝑖
(𝑝) ∑

𝑗∈∇
𝑧>

𝑖
(𝑝)

𝑘∈B

𝐴
∗

𝑖𝑗𝑘

=

𝐽

∑

𝑧=1

𝛾
𝑧𝑖
(𝑝) ∑

𝑗∈∇
𝑧>

𝑖
(𝑝)

𝑘∈B

𝐴
𝑖𝑗𝑘

> ∑

𝑗𝑘

(V
𝑖𝑗
− 𝑝
𝑗
) ⋅ 𝐴
𝑖𝑗𝑘
,

(C.22)

which contradicts (55). Namely, (E.D0) holds.
Now we check that (E.S0) holds. That is, for each seller

𝑘 ∈ S, (∑
𝑖
𝐴
𝑖𝑗𝑘
)
𝑗
∈ 𝑆
0

𝑘
(𝑝). Since𝐴 is feasible, (S.a0) and (S.b0)

hold.
To check that (S.c0) holds, assume ∇

𝑧>

𝑘
(𝑝) ̸= 0 for some

𝑧 = 1, . . . , 𝐽. We want to show that ∑
𝑗∈∇
𝑧>

𝑖
(𝑝)

𝛽
𝑗

= 𝑠
𝑧𝑘
(𝑝).

Assume that there exist 𝑘 and 𝑧
∗ such that ∇𝑧

∗
>

𝑘
 (𝑝) ̸= 0 but

for 𝑧 = 1, . . . , 𝐽,

∑

𝑗∈∇
𝑧
∗
>

𝑖

(𝑝)

∑

𝑖

𝐴
𝑖𝑗𝑘
 < 𝑠
𝑧
∗
𝑘
 (𝑝) .

(C.23)

Without loss of generality we may assume that
∑
𝑗∈∇
𝑧>

𝑘

(𝑝)

∑
𝑖
𝐴
𝑖𝑗𝑘
 = 𝑠

𝑧𝑘
(𝑝) for all 𝑧 < 𝑧

∗. We have

𝑠
𝑧
∗
𝑘
(𝑝) ≤ min{∑

𝑗∈∇
𝑡
𝑧∗
>

𝑘

(𝑝)

𝑞
𝑗𝑘
 , 𝐷 − ∑

𝑧−1

𝑚=1
𝑠
𝑚𝑘
(𝑝)}. Then, by

(C.23),

∑

𝑗∈∇
𝑧
∗
>

𝑖

(𝑝)

∑

𝑖

𝐴
𝑖𝑗𝑘
 < 𝐷 −

𝑧−1

∑

𝑚=1

𝑠
𝑚𝑘
 (𝑝)

= 𝐷 −

𝑧
∗
−1

∑

𝑚=1

∑

𝑗∈∇
𝑚>

𝑘

(𝑝)

∑

𝑖

𝐴
𝑖𝑗𝑘
 .

(C.24)

Hence, ∑
𝑧
∗

𝑛=1
∑
𝑗∈∇
𝑛>

𝑘

(𝑝)

∑
𝑖
𝐴
𝑖𝑗𝑘
 < 𝐷. Thus,

∑
𝑖∈B ∑
𝑧
∗

𝑛=1
∑
𝑗∈∇
𝑛>

𝑘

(𝑝)

𝐴
𝑖𝑗𝑘
 < ∑

𝑖∈B 𝑑
𝑖
. Then, there exists

𝑖
∗

∈ B such that ∑𝑧
∗

𝑛=1
∑
𝑗∈∇
𝑛>

𝑘

(𝑝)

𝐴
𝑖
∗
𝑗𝑘
 < 𝑑

𝑖
∗ . Moreover, by

(C.23), we know ∑
𝑗∈∇
𝑧
∗
>

𝑘

(𝑝)

∑
𝑖
𝐴
𝑖𝑗𝑘
 < ∑

𝑗∈∇
𝑧
∗
>

𝑘

(𝑝)

𝑞
𝑗𝑘
 . Then,

there exists 𝑗∗ ∈ ∇
𝑧
∗
>

𝑘
 such that ∑

𝑖
𝐴
𝑖𝑗
∗
𝑘
 < 𝑞
𝑗
∗
𝑘
 . Define 𝐴

∗

as follows:

𝐴
∗

𝑖𝑗𝑘
=

{{{{{{{

{{{{{{{

{

𝐴
𝑖𝑗𝑘

if 𝑘 = 𝑘

, 𝑗 ∈ ∇

𝑧>

𝑘
(𝑝) for some 𝑧 < 𝑧

∗

or 𝑧∗ < 𝑧 ∀𝑖

𝐴
𝑖𝑗𝑘

+ 1 if 𝑖 = 𝑖
∗
, 𝑗 = 𝑗

∗
, 𝑘 = 𝑘



𝐴
𝑖𝑗𝑘

if 𝑖 = 𝑖

, 𝑗 ∈ ∇

𝑧
∗
>

𝑖
(𝑝) , 𝑗 ̸= 𝑗

∗
, 𝑘 ̸= 𝑘

∗

0 otherwise.
(C.25)

It is immediate to check that 𝐴∗ is feasible. Moreover,

∑

𝑖𝑗

(𝑝
𝑗
− 𝑟
𝑗𝑘
) ⋅ 𝐴
∗

𝑖𝑗𝑘
=

𝐽

∑

𝑧=1

𝜋
𝑧𝑘

(𝑝) ∑

𝑗∈∇
𝑧>

𝑖
(𝑝)

𝑖∈B

𝐴
∗

𝑖𝑗𝑘

>

𝐽

∑

𝑧=1

𝜋
𝑧𝑘

(𝑝) ∑

𝑗∈∇
𝑧>

𝑖
(𝑝)

𝑖∈B

𝐴
𝑖𝑗𝑘

≥ ∑

𝑖𝑗

(𝑝
𝑗
− 𝑟
𝑗𝑘
) ⋅ 𝐴
𝑖𝑗𝑘
,

(C.26)

which contradicts (56).
The proof that (S.d0) holds as well is similar and is

therefore omitted.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The work of R. Pablo Arribillaga and Alejandro Neme is
partially supported by the Universidad Nacional de San Luis,
through Grant 319502, and by the Consejo Nacional de
Investigaciones Cient́ıficas y Técnicas (CONICET), through
Grant PIP 112-200801-00655. Jordi Massó acknowledges the
financial support from the SpanishMinistry of Economy and
Competitiveness, through the Severo Ochoa Programme for
Centers of Excellence in R&D (SEV-2011-0075) and through
Grant ECO2008-0475-FEDER (Grupo Consolidado-C), and
from theGeneralitat de Catalunya, through the prize “ICREA
Academia” for excellence in research and Grant SGR2009-
419.

Endnotes

1. The work by Roth and Sotomayor [14] contains a
masterful presentation of the most relevant matching
models and some of their applications.

2. Knuth [15] shows that the set of stable matchings is
a (dual) complete lattice with the unanimous partial
ordering of the agents in one set.

3. Observe that competitive equilibrium assignments are
optimal in the sense that they maximize the sum of all
net gains. Thus, and since they are solutions of a linear
problem, they are generically unique.

4. SeeMilgrom [10] for a proof of this statement, based on a
fixed point argument, in amore generalmodel.Thework
by Jaume et al. [12] contains a proof of the statement,
using only linear programming arguments, in the same
model as the one studied here.

5. Massó and Neme [13] add a third condition requiring
that, for all 𝑖 ∉ B𝐶 and 𝑘 ∉ S𝐶, 𝐴

𝑖𝑗𝑘
= 0 for all

𝑗 ∈ G. Since the exchanges between two agents outside
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the blocking coalition are irrelevant for describing the
payoffs that agents in the blocking coalition can obtain,
here we will dispense with this condition. Moreover, it
will be useful that the assignment 𝐴 be an optimal one.

6. Given a set 𝑌 we denote its complement by 𝑌
𝑐. The

reader should not be confused when 𝑌 is B𝐶 or S𝐶,
whose complements are denoted by (B𝐶)

𝑐

and (S𝐶)
𝑐

,
respectively.

7. The notion of 1-group stability corresponds to setwise
stability defined in Massó and Neme [13].

8. In the Appendices we show that this property holds for
the market𝑀 of Example 2.

9. Observe that if 𝐴 ∈ F𝐶𝑜(𝐶), then 𝜙
𝑀
(𝐶, 𝐴, Γ) is inde-

pendent of Γ since 𝜙
𝑀
(𝐶, 𝐴, Γ) = ∑

(𝑖,𝑗,𝑘)∈B𝐶×G×S𝐶(V𝑖𝑗 −
𝑟
𝑗𝑘
) ⋅ 𝐴

𝑖𝑗𝑘
. For those cases we could simply write

𝜙
𝑀
(𝐶, 𝐴).

10. Jaume et al. [12] show that the set of competitve equi-
librium payoffs is the Cartesian product of the set of
competitive equilibrium prices and the set of optimal
assignmentsF.

11. Jaume et al. [12] refer to this notion as competitive
equilibrium; here we will refer to it as -1-competitive
equilibrium to have available in this way a notation that
will help us to compare it with other solutions.

12. When 𝑠
𝑧𝑘
(𝑝) = ∑

𝑗∈∇
𝑧>

𝑘
(𝑝)

𝑞
𝑗𝑘

for all 𝑧 = 1, . . . , 𝐽, the
supply-0 of seller 𝑘 coincides with that presented in
Jaume et al. [12].

13. When 𝑑
1𝑖
(𝑝) = 𝑑

𝑖
the demand-0 coincides with the

definition in Jaume et al. [12].
14. Although, by the notation used in the previous section,

we have that F0 = {𝐴 | (𝐴, 𝐴) ∈ F−1} the abuse of
notation when writing F0 = {(𝐴, 𝐴) | (𝐴, 𝐴) ∈ F−1}
does not produce any trouble and helps to present the
results.

15. Jaume et al. [12] prove the result in another way when
𝑡 = −1.

16. For the case 𝑡 = −1, if we extend Definition 23 to all Γ ∈

D, we can show that

CE
−1

= ⋃

Γ∈D

C
−1Γ

(∗)

holds. Indeed, if C−1Γ ̸= 0, then Γ is essentially a price
vector; namely, for every pair (𝑖, 𝑗, 𝑘), (𝑖, 𝑗, 𝑘) ∈ B ×

G × S such that 𝑗 ∈ G>
𝑖𝑘
∩G>
𝑖

𝑘
 , Γ𝑖𝑗𝑘 = Γ

𝑖

𝑗𝑘
 .
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