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We modify the relaxed hybrid steepest-descent methods to the case of variational inequality for finding a solution over the set of
common fixed points of a finite family of strictly pseudocontractive mappings. The strongly monotone property defined on cost
operator was extended to relaxed cocoercive in convergence analysis. Results presented in this paper may be viewed as a refinement
and important generalizations of the previously known results announced by many other authors.

1. Introduction

Let 𝐻 be a real Hilbert space with inner product ⟨⋅, ⋅⟩ and
norm ‖ ⋅ ‖, respectively. Let 𝐾 be a nonempty closed convex
subset of𝐻 and let 𝐹 : 𝐻 → 𝐻 be a nonlinear mapping. We
consider the following variational inequality problem: find
𝑞 ∈ 𝐾 such that

⟨𝐹 (𝑞) , 𝑝 − 𝑞⟩ ≥ 0, ∀𝑝 ∈ 𝐾, (1)

which was introduced by Stampacchia [1], has emerged as
an interesting and fascinating branch of mathematical and
engineering sciences.The ideas and techniques of variational
inequalities are being applied in structural analysis, eco-
nomics, optimization, and operations research fields. It has
been shown that variational inequalities provide the most
natural, direct, simple, and efficient framework for a general
treatment of some unrelated problems arising in various
fields of pure and applied sciences. In recent years, there have
been considerable activities in the development of numeri-
cal techniques including projection methods, Wiener-Hopf
equations, auxiliary principle, and descent framework for
solving variational inequalities; see [2–15] and the references
therein.

Recall that a self-mapping 𝑇 : 𝐻 → 𝐻 is called a 𝑘-strict
pseudocontraction if there exists a constant 𝑘 ∈ [0, 1) such
that

𝑇𝑥 − 𝑇𝑦


2

≤
𝑥 − 𝑦



2

+ 𝑘
(𝐼 − 𝑇) 𝑥 − (𝐼 − 𝑇) 𝑦



2

, ∀𝑥, 𝑦 ∈ 𝐻.

(2)

We use Fix(𝑇) to denote the fixed point set of 𝑇; that is,
Fix(𝑇) := {𝑥 ∈ 𝐻 : 𝑇𝑥 = 𝑥}. As 𝑘 = 0, 𝑇 is said to be
nonexpansive; that is,

𝑇𝑥 − 𝑇𝑦
 ≤

𝑥 − 𝑦
 , ∀𝑥, 𝑦 ∈ 𝐻. (3)

𝑇 is said to be pseudocontractive if 𝑘 = 1 and is also said
to be strongly pseudocontractive if there exists a positive
constant 𝜆 ∈ (0, 1) such that 𝑇 + 𝜆𝐼 is pseudocontractive.
Clearly, the class of 𝑘-strict pseudocontractions falls into
the one between classes of nonexpansive mappings and
pseudocontractions.We remark also that the class of strongly
pseudocontractive mappings is independent of the class of 𝑘-
strict pseudocontractions (see, e.g., [16, 17]).
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It is well known that a variational inequality in a smooth
Banach space is equivalent to a fixed-point equation contain-
ing a sunny nonexpansive retraction from any point of the
space onto the feasible set, assumed usually to be closed and
convex. However, the sunny nonexpansive retraction is not
easy to compute, due to the complexity of the feasible set
[18]. In order to overcome this drawback in a Hilbert space,
where the retraction is a metric projection, Xu [19] assumed
that the feasible set was the set of common fixed points of
a finite family of nonexpansive mappings and introduced
a hybrid steepest-descent method. To be more precise, Xu
proposed the following steepest-descent method cyclically
in combination with each nonexpansive mapping of a finite
family:

𝑢
𝑘+1

= 𝜆
𝑘+1

𝑢 + (𝐼 − 𝜆
𝑘+1

𝐴)𝑇
[𝑘+1]

𝑢
𝑘
, (4)

where 𝑇
[𝑛]

= 𝑇
𝑛 mod 𝑁, 𝐴 is a self-adjoint, linear, bounded,

and strongly positive mapping, 𝑢 is some fixed point, and 𝐼

denotes the identity operator of 𝐻, and proved that, under
the following conditions:

(C1) lim
𝑘→∞

𝜆
𝑘
= 0;

(C2) ∑∞
𝑘=1

𝜆
𝑘
= ∞;

(C3) ∑∞
𝑘=1

|𝜆
𝑘
− 𝜆
𝑘+𝑁

| < ∞ or lim
𝑘→∞

(𝜆
𝑘
− 𝜆
𝑘+𝑁

)/

𝜆
𝑘+𝑁

= 0.

Assume, in addition, that

(C4) 𝐾 = Fix(𝑇
1
𝑇
2
⋅ ⋅ ⋅ 𝑇
𝑁−1

𝑇
𝑁
) = Fix(𝑇

𝑁
𝑇
1
⋅ ⋅ ⋅

𝑇
𝑁−2

𝑇
𝑁−1

) = ⋅ ⋅ ⋅ = Fix(𝑇
2
𝑇
3
⋅ ⋅ ⋅ 𝑇
𝑁
𝑇
1
) holds.

Then the sequence {𝑢
𝑛
}, generated by (4), converges strongly

to the unique solution of variational inequality (1) with
𝐹(𝑥) = 𝐴𝑥 − 𝑢.

Recently, Zeng et al. [11] proposed a hybrid steepest-
descent method with variable parameters for variational
inequalities, and Yao et al. [12] analyzed the strong conver-
gence of three-step relaxed hybrid steepest-descent methods
for variational inequalities. Very recently, Liu and Cui [20]
showed that the condition

𝐾 =

𝑁

⋂

𝑖=1

Fix (𝑇
𝑖
) = Fix (𝑇

1
𝑇
2
⋅ ⋅ ⋅ 𝑇
𝑁
) (5)

is sufficient for (C4) as 𝐾 ̸= 0.
In 2011, Buong and Duong [13] proposed an explicit

iterative algorithm for a class of variational inequalities. To
be more precise, they proved the following theorem.

Theorem BD. Let 𝐻 be a real Hilbert space and 𝐹 : 𝐻 → 𝐻

be a map such that, for some positive constants 𝐿 and 𝑟, 𝐹 is 𝐿-
Lipschitz continuous and 𝑟-strongly monotone. Let {𝑇

𝑖
}
𝑁

𝑖=1
be𝑁

nonexpansive self-maps of 𝐻 such that 𝐾 = ⋂
𝑁

𝑖=1
Fix(𝑇
𝑖
) ̸= 𝜙.

Then the sequence {𝑥
𝑛
} defined by

𝑥
0
∈ 𝐻, 𝑦

0

0
= 𝑥
0
,

𝑦
𝑖

𝑘
= (1 − 𝛽

𝑖

𝑘
) 𝑦
𝑖−1

𝑘
+ 𝛽
𝑖

𝑘
𝑇
𝑖
𝑦
𝑖−1

𝑘
, 𝑖 = 1, 2, . . . , 𝑁,

𝑥
𝑘+1

= (1 − 𝛽
0

𝑘
) 𝑥
𝑘
+ 𝛽
0

𝑘
(𝐼 − 𝜆

𝑘
𝜇𝐹) 𝑦

𝑛
, 𝑘 ≥ 0,

(6)

where the parameters 𝜆
𝑘
∈ (0, 1) for 𝑘 ≥ 0, 𝛽𝑖

𝑘
∈ [𝛼, 𝛽] ⊂

(0, 1), 𝑖 = 0, 1, . . . , 𝑁, and conditions (C1), (C2), and (C5)
lim
𝑘→∞

|𝛽
𝑖

𝑘+1
−𝛽
𝑖

𝑘
| = 0, 𝑖 = 1, 2, . . . , 𝑁 are satisfied, converges

strongly to the unique solution 𝑞 ∈ 𝐾 of variational inequality
(1).

It is worthmentioning that almost all the results regarding
the existence and convergence of the steepest-descent meth-
ods for variational inequality requires that the underlying
operator 𝐹must be strongly monotone and Lipschitzian con-
tinuous. These strict conditions rule out many applications
of these methods and their various modifications. This fact
motivates to develop other methods or modify the steepest-
descent methods with more weaker or general conditions.

In this paper, inspired and motivated by research going
on in this area, we introduce a new parallel relaxed hybrid
steepest-descent method in combination with a finite family
of strict pseudocontractive mappings, which is defined in the
following way:

𝑦
𝑛
= (1 − 𝛽

𝑛
) 𝑥
𝑛
+ 𝛽
𝑛

𝑁

∑

𝑖=1

𝜂
(𝑛)

𝑖
𝑇
𝑖
𝑥
𝑛
,

𝑥
𝑛+1

= (1 − 𝛼
𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
(𝐼 − 𝜆

𝑛
𝜇𝐹) 𝑦

𝑛
, 𝑛 ≥ 0,

(7)

where {𝑇
𝑖
}
𝑁

𝑖=𝑖
: 𝐻 → 𝐻 is a finite family of 𝑘

𝑖
-strict

pseudocontractions, {𝛼
𝑛
}, {𝛽
𝑛
}, and {𝜂(𝑛)

𝑖
}
𝑁

𝑖=1
are some positive

sequences in (0, 1).
Our purpose is not only to extend the relaxed hybrid

steepest-descent methods to the case of variational inequality
in combination with a finite family of 𝑘

𝑖
-strictly pseudo-

contractive mappings, but also to remove conditions (C3),
(C4), and (C5) lim

𝑘→∞
|𝛽
𝑖

𝑘+1
− 𝛽
𝑖

𝑘
| = 0, 𝑖 = 1, 2, . . . , 𝑁

in convergence analysis. Moreover, the strongly monotone
property defined on cost operator 𝐹 was extended to relaxed
(𝛾, 𝑟)-cocoercive. Our results presented in this paper improve
and extend the corresponding ones of [5, 11–13, 19–21].

2. Preliminaries

Let 𝐾 be a nonempty closed convex subset of real Hilbert𝐻.
We use → and⇀ to denote strong and weak convergence of
sequences in 𝐻, respectively. In order to prove main results,
we need the following concepts and results.

Definition 1. Amapping 𝐹 : 𝐻 → 𝐻 is called 𝐿-Lipschitzian
continuous if there exists constant 𝐿 > 0 such that

𝐹 (𝑥) − 𝐹 (𝑦)
 ≤ 𝐿

𝑥 − 𝑦
 , ∀𝑥, 𝑦 ∈ 𝐻. (8)

Definition 2. A mapping 𝐹 : 𝐻 → 𝐻 is called

(i) 𝑟-strongly monotone if there exists a constant 𝑟 > 0

such that

⟨𝐹 (𝑥) − 𝐹 (𝑦), 𝑥 − 𝑦⟩ ≥ 𝑟
𝑥 − 𝑦



2

, ∀𝑥, 𝑦 ∈ 𝐻; (9)

(ii) 𝛼-inverse strongly monotonic if there exists a con-
stant 𝛼 > 0 such that

⟨𝐹 (𝑥) − 𝐹 (𝑦), 𝑥 − 𝑦⟩ ≥ 𝛼
𝐹 (𝑥) − 𝐹 (𝑦)



2

, ∀𝑥, 𝑦 ∈ 𝐻;

(10)
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(iii) relaxed (𝛾, 𝑟)-cocoercive if there exist constants 𝛾 > 0

and 𝑟 > 0 such that

⟨𝐹 (𝑥) − 𝐹 (𝑦), 𝑥 − 𝑦⟩ ≥ − 𝛾
𝐹 (𝑥) − 𝐹 (𝑦)



2

+ 𝑟
𝑥 − 𝑦



2

, ∀𝑥, 𝑦 ∈ 𝐻.

(11)

Remark 3. Obviously, a 𝑟-strongly monotonic mapping must
be a relaxed (𝛾, 𝑟)-cocoercive mapping whenever 𝛾 = 0, but
the converse is not true. Therefore the class of the relaxed
(𝛾, 𝑟)-cocoercive mappings is a more general class than 𝑟-
strongly monotone.

Lemma 4 (see [22]). Let 𝐻 be a real Hilbert space, for any
fixed 𝑡 ∈ [0, 1]; then

(i) ‖𝑥 + 𝑦‖
2
≤ ‖𝑥‖

2
+ 2⟨𝑦, 𝑥 + 𝑦⟩, for all 𝑥, 𝑦 ∈ 𝐻;

(ii) ‖𝑡𝑥 + (1 − 𝑡)𝑦‖
2
≤ 𝑡‖𝑥‖

2
+(1−𝑡)‖𝑦‖

2
−𝑡(1−𝑡)‖𝑥 − 𝑦‖

2,
for all 𝑥, 𝑦 ∈ 𝐻.

Lemma 5 (see [21]). Let 𝑇 : 𝐻 → 𝐻 be a 𝑘-strict
pseudocontraction. For 𝜆 ∈ [𝑘, 1), define 𝑆 : 𝐻 → 𝐻 by
𝑆𝑥 = 𝜆𝑥 + (1 − 𝜆)𝑇𝑥 for each 𝑥 ∈ 𝐾. Then 𝑆 is a nonexpansive
mapping such that Fix(𝑆) = Fix(𝑇).

Lemma 6 (see [23]). Let {𝑥
𝑛
} and {𝑦

𝑛
} be two bounded

sequences in a Banach space 𝐸 such that 𝑥
𝑛+1

= (1 − 𝛼
𝑛
)𝑥
𝑛
+

𝛼
𝑛
𝑦
𝑛
for all integers 𝑛 ≥ 0. Let {𝛼

𝑛
} be a sequence in [0, 1] with

0 < lim inf
𝑛→∞

𝛼
𝑛
≤ lim sup

𝑛→∞
𝛼
𝑛
< 1. Suppose that

lim sup
𝑛→∞

(
𝑦𝑛+1 − 𝑦

𝑛

 −
𝑥𝑛+1 − 𝑥

𝑛

) ≤ 0. (12)

Then lim
𝑛→∞

‖𝑥
𝑛
− 𝑦
𝑛
‖ = 0.

Lemma 7 (demiclosed principle [24]). Let 𝐾 be a nonempty
closed convex subset of a real Hilbert space 𝐻 and let 𝑇 :

𝐾 → 𝐾 be nonexpansive mapping. Then the mapping 𝐼 − 𝑇 is
demiclosed; that is, 𝑥

𝑛
⇀ 𝑥 ∈ 𝐾 and (𝐼 − 𝑇)𝑥

𝑛
→ 𝑦 implies

(𝐼 − 𝑇)𝑥 = 𝑦.

Lemma 8 (see [19]). Assume {𝑎
𝑛
} is a sequence of nonnegative

real numbers such that

𝑎
𝑛+1

≤ (1 − 𝛾
𝑛
) 𝑎
𝑛
+ 𝛾
𝑛
𝛿
𝑛
, 𝑛 ≥ 0, (13)

where {𝛾
𝑛
} is a sequence in (0,1) and {𝛿

𝑛
} is a real sequence such

that

(i) ∑∞
𝑛=1

𝛾
𝑛
= ∞;

(ii) lim sup
𝑛→∞

𝛿
𝑛
≤ 0 or ∑∞

𝑛=1
|𝛾
𝑛
𝛿
𝑛
| < ∞.

Then lim
𝑛→∞

𝑎
𝑛
= 0.

Proposition 9 (see Acedo and Xu [25]). Let𝐾 be a nonempty
closed convex subset of a Hilbert space 𝐻. Given an integer
𝑁 ≥ 1, assume that {𝑇

𝑖
}
𝑁

𝑖=1
: 𝐻 → 𝐻 is a finite family of

𝑘
𝑖
-strict pseudocontractions. Suppose that {𝜆

𝑖
}
𝑁

𝑖=1
is a positive

sequence such that ∑𝑁
𝑖=1

𝜆
𝑖
= 1. Then ∑

𝑁

𝑖=1
𝜆
𝑖
𝑇
𝑖
is a 𝑘-strict

pseudocontraction with 𝑘 = max{𝑘
𝑖
: 1 ≤ 𝑖 ≤ 𝑁}.

Proposition 10 (see Acedo and Xu [25]). Let {𝑇
𝑖
}
𝑁

𝑖=1
and

{𝜆
𝑖
}
𝑁

𝑖=1
be given as in Proposition 9. Then Fix(∑𝑁

𝑖=1
𝜆
𝑖
𝑇
𝑖
) =

⋂
𝑁

𝑖=1
Fix(𝑇
𝑖
).

3. Main Results

Lemma 11. Let 𝐻 be a real Hilbert space and let 𝐹 : 𝐻 →

𝐻 be a relaxed (𝛾, 𝑟)-cocoercive and 𝐿-Lipschitzian continuous
mapping. For 𝜆 ∈ (0, 1) and 0 < 𝜇 < 2(𝑟 − 𝛾𝐿

2
)/𝐿
2, we have

𝑇
𝜇

𝜆
𝑥 − 𝑇
𝜇

𝜆
𝑦
 ≤ (1 − 𝜆𝜏)

𝑥 − 𝑦
 , ∀𝑥, 𝑦 ∈ 𝐻, (14)

where 𝑇𝜇
𝜆
:= 𝐼 − 𝜆𝜇𝐹 and 𝜏 = 1 − √1 − 𝜇[2(𝑟 − 𝛾𝐿2) − 𝜇𝐿2] ∈

(0, 1).

Proof. By the properties defined on 𝐹, we obtain
𝑇
𝜇

𝜆
𝑥 − 𝑇
𝜇

𝜆
𝑦


2

=
𝑥 − 𝑦 − 𝜆𝜇 [𝐹 (𝑥) − 𝐹 (𝑦)]



2

=
𝑥 − 𝑦



2

− 2𝜆𝜇 ⟨𝐹 (𝑥) − 𝐹 (𝑦), 𝑥 − 𝑦⟩

+ 𝜆
2
𝜇
2𝐹 (𝑥) − 𝐹 (𝑦)



2

≤
𝑥 − 𝑦



2

− 2𝜆𝜇

× [−𝛾
𝐹 (𝑥) − 𝐹 (𝑦)



2

+ 𝑟
𝑥 − 𝑦



2

]

+ 𝜆
2
𝜇
2𝐹 (𝑥) − 𝐹 (𝑦)



2

≤ (1 − 2𝜆𝜇𝑟 + 2𝜆𝜇𝛾𝐿
2
+ 𝜆
2
𝜇
2
𝐿
2
)
𝑥 − 𝑦



2

≤ (1 − 𝜆𝜏)
2𝑥 − 𝑦



2

,

(15)

where 𝜏 = 1 − √1 − 𝜇[2(𝑟 − 𝛾𝐿2) − 𝜇𝐿2]. From 0 < 𝜇 < 2(𝑟 −

𝛾𝐿
2
)/𝐿
2, it is easy to obtain that 𝜏 ∈ (0, 1). We immediately

conclude the desired results. This completes the proof.

Theorem 12. Let𝐻 be a real Hilbert space and let𝐹 : 𝐻 → 𝐻

be a relaxed (𝛾, 𝑟)-cocoercive and 𝐿-Lipschitzian continuous
mapping. Let {𝑇

𝑖
}
𝑁

𝑖=1
: 𝐻 → 𝐻 be a finite family of 𝑘

𝑖
-strict

pseudocontractions such that 𝐾 = ⋂
𝑁

𝑖=1
Fix(𝑇
𝑖
) ̸= 𝜙. Suppose

{𝜂
(𝑛)

𝑖
}
𝑁

𝑖=1
are finite sequences of positive numbers such that

∑
𝑁

𝑖=1
𝜂
(𝑛)

𝑖
= 1 for all 𝑛 ≥ 0 and 𝜆

𝑛
∈ (0, 1), 0 < 𝜇 <

2(𝑟 − 𝛾𝐿
2
)/𝐿
2. In addition, for a given point 𝑥

0
∈ 𝐻, (C1),

(C2), and the following control conditions are satisfied:
(i) 0 < lim inf

𝑛→∞
𝛼
𝑛
≤ lim sup

𝑛→∞
𝛼
𝑛
< 1;

(ii) 𝛽
𝑛
∈ (0, 1−𝑘] and lim

𝑛→∞
𝛽
𝑛
= 𝜆, where 𝑘 = max{𝑘

𝑖
:

1 ≤ 𝑖 ≤ 𝑁};
(iii) lim

𝑛→∞
|𝜂
(𝑛+1)

𝑖
− 𝜂
(𝑛)

𝑖
| = 0.

Then the sequence {𝑥
𝑛
} generated by (7) converges strongly to

the unique element 𝑞 ∈ 𝐾 of the variational inequality (1).

Proof. Putting𝑊
𝑛
= ∑
𝑁

𝑖=1
𝜂
(𝑛)

𝑖
𝑇
𝑖
, we have that 𝑊

𝑛
: 𝐻 → 𝐻

is a 𝑘-strict pseudocontraction and Fix(𝑊
𝑛
) = ⋂

𝑁

𝑖=1
Fix(𝑇
𝑖
) by

Propositions 9 and 10, where 𝑘 = max{𝑘
𝑖
: 1 ≤ 𝑖 ≤ 𝑁}.
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First, we show that 𝑆
𝑛
= (1−𝛽

𝑛
)𝐼+𝛽
𝑛
𝑊
𝑛
is nonexpansive.

Indeed, for each 𝑥, 𝑦 ∈ 𝐻, we have

𝑆𝑛𝑥 − 𝑆
𝑛
𝑦


2

=
(1 − 𝛽

𝑛
) (𝑥 − 𝑦) + 𝛽

𝑛
(𝑊
𝑛
𝑥 −𝑊

𝑛
𝑦)


2

= (1 − 𝛽
𝑛
)
𝑥 − 𝑦



2

+ 𝛽
𝑛

𝑊𝑛𝑥 −𝑊
𝑛
𝑦


2

− 𝛽
𝑛
(1 − 𝛽

𝑛
)
𝑥 −𝑊

𝑛
𝑥 − (𝑦 −𝑊

𝑛
𝑦)


2

≤ (1 − 𝛽
𝑛
)
𝑥 − 𝑦



2

+ 𝛽
𝑛

× [
𝑥 − 𝑦



2

+ 𝑘
(𝐼 − 𝑊

𝑛
) 𝑥 − (𝐼 −𝑊

𝑛
) 𝑦



2

]

− 𝛽
𝑛
(1 − 𝛽

𝑛
)
(𝐼 − 𝑊

𝑛
) 𝑥 − (𝐼 −𝑊

𝑛
) 𝑦



2

=
𝑥 − 𝑦



2

− 𝛽
𝑛
(1 − 𝛽

𝑛
− 𝑘)

×
(𝐼 − 𝑊

𝑛
) 𝑥 − (𝐼 −𝑊

𝑛
) 𝑦



2

≤
𝑥 − 𝑦



2

.

(16)

It follows from that that the mapping 𝑆
𝑛
is nonexpansive. By

Lemma 5, we see that

Fix (𝑆
𝑛
) = Fix (𝑊

𝑛
) =

𝑁

⋂

𝑖=1

Fix (𝑇
𝑖
) . (17)

Note that 𝑦
𝑛
= 𝑆
𝑛
𝑥
𝑛
and 𝑝 = 𝑆

𝑛
𝑝 for each 𝑛 ≥ 1 as 𝑝 ∈ 𝐾.

From (7) and Lemma 11, we obtain

𝑥𝑛+1 − 𝑝


=
(1 − 𝛼

𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
(𝐼 − 𝜆

𝑛
𝜇𝐹) 𝑦

𝑛
− 𝑝



≤ (1 − 𝛼
𝑛
)
𝑥𝑛 − 𝑝



+ 𝛼
𝑛

(𝐼 − 𝜆
𝑛
𝜇𝐹) (𝑦

𝑛
− 𝑝) − 𝜆

𝑛
𝜇𝐹 (𝑝)



≤ (1 − 𝛼
𝑛
)
𝑥𝑛 − 𝑝

 + 𝛼
𝑛


𝑇
𝜇

𝜆
𝑛

𝑦
𝑛
− 𝑇
𝜇

𝜆
𝑛

𝑝


+ 𝛼
𝑛
𝜆
𝑛
𝜇
𝐹 (𝑝)



≤ (1 − 𝛼
𝑛
)
𝑥𝑛 − 𝑝

 + 𝛼
𝑛
(1 − 𝜆

𝑛
𝜏)

×
𝑆𝑛𝑥𝑛 − 𝑝

 + 𝛼
𝑛
𝜆
𝑛
𝜇
𝐹 (𝑝)



≤ (1 − 𝛼
𝑛
𝜆
𝑛
𝜏)

𝑥𝑛 − 𝑝
 + 𝛼
𝑛
𝜆
𝑛
𝜇
𝐹 (𝑝)

 ,

(18)

where 𝑇𝜇
𝜆
𝑛

:= 𝐼 − 𝜆
𝑛
𝜇𝐹. It follows from induction that

𝑥𝑛 − 𝑝
 ≤ max {𝑥0 − 𝑝

 ,
𝜇

𝜏

𝐹 (𝑝)
} , 𝑛 ≥ 1, (19)

which shows that sequence {𝑥
𝑛
} is bounded and so are {𝑦

𝑛
}

and {𝐹(𝑦
𝑛
)}.

Next, put 𝑧
𝑛
= (𝐼 − 𝜆

𝑛
𝜇𝐹)𝑦
𝑛
. Then, from (7) and 𝑦

𝑛
=

𝑆
𝑛
𝑥
𝑛
, we have that

𝑥
𝑛+1

= (1 − 𝛼
𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
𝑧
𝑛
, (20)

𝑧𝑛+1 − 𝑧
𝑛

 =
(𝐼 − 𝜆

𝑛+1
𝜇𝐹) 𝑦

𝑛+1
− (𝐼 − 𝜆

𝑛
𝜇𝐹) 𝑦

𝑛



≤
𝑦𝑛+1 − 𝑦

𝑛



+
𝜆𝑛+1𝜇𝐹 (𝑦

𝑛+1
) − 𝜆
𝑛
𝜇𝐹 (𝑦

𝑛
)


≤
𝑦𝑛+1 − 𝑦

𝑛



+ 𝜆
𝑛+1

𝜇
𝐹 (𝑦
𝑛+1

)
 + 𝜆
𝑛
𝜇
𝐹 (𝑦
𝑛
)


≤
𝑆𝑛+1𝑥𝑛+1 − 𝑆

𝑛+1
𝑥
𝑛



+
𝑆𝑛+1𝑥𝑛 − 𝑆

𝑛
𝑥
𝑛

 + (𝜆
𝑛+1

+ 𝜆
𝑛
) 𝜇𝑀
1

≤
𝑥𝑛+1 − 𝑥

𝑛

 +
𝑆𝑛+1𝑥𝑛 − 𝑆

𝑛
𝑥
𝑛



+ (𝜆
𝑛+1

+ 𝜆
𝑛
) 𝜇𝑀
1
,

(21)

where𝑀
1
= sup

𝑛≥1
{‖𝐹(𝑦

𝑛
)‖}. Moreover, we note that

𝑆𝑛+1𝑥𝑛 − 𝑆
𝑛
𝑥
𝑛



=
(1 − 𝛽

𝑛+1
) 𝑥
𝑛
+ 𝛽
𝑛+1

𝑊
𝑛+1

𝑥
𝑛
− (1 − 𝛽

𝑛
) 𝑥
𝑛
− 𝛽
𝑛
𝑊
𝑛
𝑥
𝑛



=
(𝛽𝑛 − 𝛽

𝑛+1
) 𝑥
𝑛
+ (𝛽
𝑛+1

− 𝛽
𝑛
)𝑊
𝑛+1

𝑥
𝑛

+𝛽
𝑛
(𝑊
𝑛+1

𝑥
𝑛
−𝑊
𝑛
𝑥
𝑛
)


≤
𝛽𝑛+1 − 𝛽

𝑛



𝑥𝑛 −𝑊
𝑛+1

𝑥
𝑛

 + 𝛽
𝑛

𝑊𝑛+1𝑥𝑛 −𝑊
𝑛
𝑥
𝑛



≤
𝛽𝑛+1 − 𝛽

𝑛



𝑥𝑛 −𝑊
𝑛+1

𝑥
𝑛



+

𝑁

∑

𝑖=1


𝜂
(𝑛+1)

𝑖
− 𝜂
(𝑛)

𝑖



𝑇𝑖𝑥𝑛


≤
𝛽𝑛+1 − 𝛽

𝑛

𝑀2 +

𝑁

∑

𝑖=1


𝜂
(𝑛+1)

𝑖
− 𝜂
(𝑛)

𝑖


𝑀
2
,

(22)

where𝑀
2
= sup

𝑛≥1
{‖𝑇
𝑖
𝑥
𝑛
‖, ‖𝑥
𝑛
− 𝑊
𝑛+1

𝑥
𝑛
‖}. Combining (21)

and (22), we obtain
𝑧𝑛+1 − 𝑧

𝑛

 −
𝑥𝑛+1 − 𝑥

𝑛



≤(𝜆
𝑛+1

+𝜆
𝑛
) 𝜇𝑀
1
+
𝛽𝑛+1−𝛽𝑛

𝑀2+

𝑁

∑

𝑖=1


𝜂
(𝑛+1)

𝑖
− 𝜂
(𝑛)

𝑖


𝑀
2
.

(23)

By (C1) and conditions (ii)-(iii), we have that

lim sup
𝑛→∞

(
𝑧𝑛+1 − 𝑧

𝑛

 −
𝑥𝑛+1 − 𝑥

𝑛

) ≤ 0. (24)

It follows from (i) and Lemma 6 that

lim
𝑛→∞

𝑥𝑛 − 𝑧
𝑛

 = 0. (25)
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From (20), we have that 𝑥
𝑛+1

− 𝑥
𝑛
= 𝛼
𝑛
(𝑧
𝑛
− 𝑥
𝑛
) and

lim
𝑛→∞

𝑥𝑛+1 − 𝑥
𝑛

 = 0. (26)

On the other hand, we note that

𝑥𝑛 − 𝑆
𝑛
𝑥
𝑛



≤
𝑥𝑛 − 𝑥

𝑛+1

 +
𝑥𝑛+1 − 𝑆

𝑛
𝑥
𝑛



=
𝑥𝑛 − 𝑥

𝑛+1

 +
(1 − 𝛼

𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
(𝐼 − 𝜆

𝑛
𝜇𝐹) 𝑦

𝑛
− 𝑆
𝑛
𝑥
𝑛



≤
𝑥𝑛 − 𝑥

𝑛+1

 + (1 − 𝛼
𝑛
)
𝑥𝑛 − 𝑆

𝑛
𝑥
𝑛



+ 𝛼
𝑛
𝜆
𝑛
𝜇
𝐹 (𝑦
𝑛
)
 ,

(27)

which implies that

𝛼
𝑛

𝑥𝑛 − 𝑆
𝑛
𝑥
𝑛

 ≤
𝑥𝑛 − 𝑥

𝑛+1

 + 𝛼
𝑛
𝜆
𝑛
𝜇
𝐹 (𝑦
𝑛
)
 . (28)

This together with (i), (C1), and (26), we obtain

lim
𝑛→∞

𝑥𝑛 − 𝑆
𝑛
𝑥
𝑛

 = 0; (29)

that is,

lim
𝑛→∞

𝑥𝑛 − 𝑦
𝑛

 = 0. (30)

Furthermore, we observe that

𝑥𝑛 − 𝑆
𝑛
𝑥
𝑛

 = 𝛽
𝑛

𝑥𝑛 −𝑊
𝑛
𝑥
𝑛

 . (31)

It follows from condition (ii) that

lim
𝑛→∞

𝑥𝑛 −𝑊
𝑛
𝑥
𝑛

 = 0. (32)

By condition (iii), we may assume that 𝜂(𝑛)
𝑖

→ 𝜂
𝑖
as 𝑛 → ∞

for every 1 ≤ 𝑖 ≤ 𝑁. It is easily seen that each 𝜂
𝑖
> 0 and

∑
𝑁

𝑖=1
𝜂
𝑖
= 1. Define 𝑊 = ∑

𝑁

𝑖=1
𝜂
𝑖
𝑇
𝑖
; then 𝑊 : 𝐾 → 𝐻 is

a 𝑘-strict pseudocontraction such that Fix(𝑊) = Fix(𝑊
𝑛
) =

⋂
𝑁

𝑖=1
Fix(𝑇
𝑖
) by Propositions 9 and 10. Consequently,

𝑥𝑛 −𝑊𝑥
𝑛

 ≤
𝑥𝑛 −𝑊

𝑛
𝑥
𝑛

 +
𝑊𝑛𝑥𝑛 −𝑊𝑥

𝑛



≤
𝑥𝑛 −𝑊

𝑛
𝑥
𝑛

 +

𝑁

∑

𝑖=1


𝜂
(𝑛)

𝑖
− 𝜂
𝑖



𝑇𝑖𝑥𝑛
 ,

(33)

which implies that

lim
𝑛→∞

𝑥𝑛 −𝑊𝑥
𝑛

 = 0. (34)

Combining (32) and (34), we obtain

lim
𝑛→∞

𝑊𝑛𝑥𝑛 −𝑊𝑥
𝑛

 = 0. (35)

Define 𝑆 : 𝐾 → 𝐻 by 𝑆𝑥 = (1 − 𝜆)𝑥 + 𝜆𝑊𝑥. By condition
(ii) again, we have lim

𝑛→∞
𝛽
𝑛
= 𝜆 ∈ (0, 1 − 𝑘]. Then, 𝑆 is

nonexpansive with Fix(𝑆) = Fix(𝑊) by Lemma 5. Notice that

𝑥𝑛 − 𝑆𝑥
𝑛



≤
𝑥𝑛 − 𝑆

𝑛
𝑥
𝑛

 +
𝑆𝑛𝑥𝑛 − 𝑆𝑥

𝑛



=
𝑥𝑛 − 𝑆

𝑛
𝑥
𝑛



+
(1 − 𝛽

𝑛
) 𝑥
𝑛
+ 𝛽
𝑛
𝑊
𝑛
𝑥
𝑛
− (1 − 𝜆) 𝑥

𝑛
− 𝜆𝑊𝑥

𝑛



≤
𝑥𝑛 − 𝑆

𝑛
𝑥
𝑛



+
𝛽𝑛 − 𝜆



𝑥𝑛 −𝑊𝑥
𝑛

 + 𝛽
𝑛

𝑊𝑛𝑥𝑛 −𝑊𝑥
𝑛

 .

(36)

It follows from (29), (34), and (35) that

lim
𝑛→∞

𝑥𝑛 − 𝑆𝑥
𝑛

 = 0. (37)

Now, we show that lim sup
𝑛→∞

⟨𝐹(𝑞), 𝑞 − 𝑦
𝑛
⟩ ≤ 0, where

𝑞 ∈ 𝐾. Since {𝑥
𝑛
} is bounded, there exists a subsequence

{𝑥
𝑛
𝑗

} of {𝑥
𝑛
}. Without loss of generality, we suppose that the

sequence {𝑥
𝑛
𝑗

} converges weakly to 𝑞 such that

lim sup
𝑛→∞

⟨𝐹 (𝑞), 𝑞 − 𝑥
𝑛
⟩ = lim
𝑗→∞

⟨𝐹 (𝑞) , 𝑞 − 𝑥
𝑛
𝑗

⟩ . (38)

It follows from (37) and Lemma 7 that 𝑞 ∈ 𝐾 = Fix(𝑆) =

Fix(𝑊
𝑛
) = ⋂

𝑁

𝑖=1
Fix(𝑇
𝑖
). Consequently, by (1), it implies that

lim
𝑗→∞

⟨𝐹 (𝑞), 𝑞 − 𝑥
𝑛
𝑗

⟩ ≤ 0. (39)

Similarly, by (30), there exists a subsequence {𝑦
𝑛
𝑗

} of {𝑦
𝑛
} that

converges weakly to 𝑞 such that

lim sup
𝑛→∞

⟨𝐹 (𝑞), 𝑞 − 𝑦
𝑛
⟩ = lim
𝑗→∞

⟨𝐹 (𝑞), 𝑞 − 𝑦
𝑛
𝑗

⟩ ≤ 0. (40)

Finally, we prove that 𝑥
𝑛

→ 𝑞 as 𝑛 → ∞ as follows.
From (7), Lemmas 4 and 11 again, we have

𝑥𝑛+1 − 𝑞


2

=
(1 − 𝛼

𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
(𝐼 − 𝜆

𝑛
𝜇𝐹) 𝑦

𝑛
− 𝑞



2

≤ (1 − 𝛼
𝑛
)
𝑥𝑛 − 𝑞



2

+ 𝛼
𝑛

(𝐼 − 𝜆
𝑛
𝜇𝐹) (𝑦

𝑛
− 𝑞) − 𝜆

𝑛
𝜇𝐹 (𝑞)



2

≤ (1 − 𝛼
𝑛
)
𝑥𝑛 − 𝑞



2

+ 𝛼
𝑛
{(1 − 𝜆

𝑛
𝜏)

𝑦𝑛 − 𝑞


2

− 2𝜆
𝑛
𝜇 [⟨𝐹 (𝑞), 𝑦

𝑛
− 𝑞⟩ − 𝜆

𝑛
𝜇 ⟨𝐹 (𝑞), 𝐹 (𝑦

𝑛
)⟩]}
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≤ (1 − 𝛼
𝑛
)
𝑥𝑛 − 𝑞



2

+ 𝛼
𝑛
(1 − 𝜆

𝑛
𝜏)

𝑆𝑛𝑥𝑛 − 𝑞


2

− 2𝛼
𝑛
𝜆
𝑛
𝜇 ⟨𝐹 (𝑞), 𝑦

𝑛
− 𝑞⟩

+ 2𝛼
𝑛
𝜆
2

𝑛
𝜇
2 𝐹 (𝑞)



𝐹 (𝑦
𝑛
)


≤ (1 − 𝛼
𝑛
𝜆
𝑛
𝜏)

𝑥𝑛 − 𝑞


2

− 2𝛼
𝑛
𝜆
𝑛
𝜇 ⟨𝐹 (𝑞), 𝑦

𝑛
− 𝑞⟩

+ 2𝛼
𝑛
𝜆
2

𝑛
𝜇
2 𝐹 (𝑞)



𝐹 (𝑦
𝑛
)


= (1 − 𝛼
𝑛
𝜆
𝑛
𝜏)

𝑥𝑛 − 𝑞


2

+ 𝛼
𝑛
𝜆
𝑛
𝜏 [

2𝜇

𝜏
⟨𝐹 (𝑞), 𝑞 − 𝑦

𝑛
⟩

+2𝜆
𝑛

𝜇
2

𝜏

𝐹 (𝑞)


𝐹 (𝑦
𝑛
)
] .

(41)

By virtue of Lemma 8with (C1), (C2), and (40), we obtain that

lim
𝑛→∞

𝑥𝑛 − 𝑞
 = 0; (42)

that is, the sequence {𝑥
𝑛
} generated by (7) converges strongly

to the unique element 𝑞 ∈ 𝐾 of the variational inequality (1).
This completes the proof.

Theorem 13. Let𝐻 be a real Hilbert space and let𝐹 : 𝐻 → 𝐻

be a relaxed (𝛾, 𝑟)-cocoercive and 𝐿-Lipschitzian continuous
mapping with 0 < 𝜇 < 2(𝑟 − 𝛾𝐿

2
)/𝐿
2. Let {𝑇

𝑖
}
𝑁

𝑖=1
: 𝐻 → 𝐻

be a finite family of nonexpansive mappings such that 𝐾 =

⋂
𝑁

𝑖=1
Fix(𝑇
𝑖
) ̸= 𝜙. Define sequence {𝑥

𝑛
} by 𝑥

0
∈ 𝐾 in the

following manner:

𝑦
𝑛
= 𝜂
(𝑛)

1
𝑇
1
𝑥
𝑛
+ 𝜂
(𝑛)

2
𝑇
2
𝑥
𝑛
+ ⋅ ⋅ ⋅ + 𝜂

(𝑛)

𝑁
𝑇
𝑁
𝑥
𝑛
,

𝑥
𝑛+1

= (1 − 𝛼
𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
(𝐼 − 𝜆

𝑛
𝜇𝐹) 𝑦

𝑛
, 𝑛 ≥ 0,

(43)

where {𝛼
𝑛
} ⊂ (0, 1) and {𝜂(𝑛)

𝑖
}
𝑁

𝑖=1
are finite sequences of positive

numbers such that∑𝑁
𝑖=1

𝜂
(𝑛)

𝑖
= 1 for all 𝑛 ≥ 0. If (C1), (C2), and

the following control conditions are satisfied:

(i) 0 < lim inf
𝑛→∞

𝛼
𝑛
≤ lim sup

𝑛→∞
𝛼
𝑛
< 1,

(ii) lim
𝑛→∞

|𝜂
(𝑛+1)

𝑖
− 𝜂
(𝑛)

𝑖
| = 0,

then {𝑥
𝑛
} converges strongly to the unique element 𝑞 ∈ 𝐾 of the

variational inequality (1).

Proof. Clearly, a 𝑘-strict pseudocontraction reduces to a
nonexpansive mapping as 𝑘 = 0. Putting 𝛽 = 1, iterative
scheme (7) reduces to (43), and the desired conclusion follows
immediately from Lemma 11 andTheorem 12.This completes
the proof.

Theorem 14. Let 𝐻 be a real Hilbert space and let 𝐹 : 𝐻 →

𝐻 be a 𝑟-strongly monotone and 𝐿-Lipschitzian continuous
mapping with 0 < 𝜇 < 2𝑟/𝐿

2. Let 𝑇 : 𝐻 → 𝐻 be a 𝑘-strict

pseudocontractions such that Fix(𝑇) ̸= 𝜙. Define sequence {𝑥
𝑛
}

by 𝑥
0
∈ 𝐾 in the following manner:

𝑦
𝑛
= (1 − 𝛽

𝑛
) 𝑥
𝑛
+ 𝛽
𝑛
𝑇𝑥
𝑛
,

𝑥
𝑛+1

= (1 − 𝛼
𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
(𝐼 − 𝜆

𝑛
𝜇𝐹) 𝑦

𝑛
, 𝑛 ≥ 0,

(44)

where {𝜆
𝑛
}, {𝛼
𝑛
}, and {𝛽

𝑛
} are some positive sequences in (0, 1).

If (C1), (C2), and the following control conditions are satisfied:

(i) 0 < lim inf
𝑛→∞

𝛼
𝑛
≤ lim sup

𝑛→∞
𝛼
𝑛
< 1,

(ii) 𝛽
𝑛
∈ (0, 1 − 𝑘] and lim

𝑛→∞
𝛽
𝑛
= 𝜆,

then {𝑥
𝑛
} converges strongly to the unique element 𝑞 ∈ Fix(𝑇)

of the variational inequality (1).

Proof. By Remark 3, a relaxed (𝛾, 𝑟)-cocoercive mapping
includes 𝑟-strongly monotonic mapping as a special case.
Putting 𝑁 = 1, that is, 𝑊

𝑛
= 𝑇, iterative scheme (7) reduces

to (44), and the desired conclusion follows immediately from
Lemma 11 andTheorem 12. This completes the proof.
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