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A quantum random walk optimization model and algorithm in network cluster server traffic control and task scheduling is
proposed. In order to solve the problem of server load balancing, we research and discuss the distribution theory of energy
field in quantum mechanics and apply it to data clustering. We introduce the method of random walk and illuminate what the
quantum random walk is. Here, we mainly research the standard model of one-dimensional quantum random walk. For the
data clustering problem of high dimensional space, we can decompose one 𝑚-dimensional quantum random walk into 𝑚 one-
dimensional quantum random walk. In the end of the paper, we compare the quantum random walk optimization method with
GA (genetic algorithm), ACO (ant colony optimization), and SAA (simulated annealing algorithm). In the same time, we prove its
validity and rationality by the experiment of analog and simulation.

1. Introduction

The server cluster technology may be connecting multiple
independent servers, and, in the same time, it must provide
services as a whole by a cluster. In the server cluster, how to
solve the problem of server traffic control and task scheduling
is very important.

In order to reduce the access time, optimize the overall
performance and achieve parallel program in a high effi-
ciency; the task request must be allocated to each on the
server. So, load balancing mechanism is the core of cluster
technologies.

In the literature [1], it expands the analogies employed
on the development of quantum evolutionary algorithms by
putting forward quantum-inspired Hadamard walks, called
QHW. In order to solve combinatorial optimization prob-
lems, a quantum evolutionary algorithm, abbreviatedHQEA,
is proposed. From the results of the experiments carried
out on the knapsack problem, HQEA performs noticeably
better than a conventional genetic algorithm, in terms of
convergence speed and accuracy. The literature [2] explores
how a spectral technique suggested through coined quantum

walks can be used to differentiate between graphs which
are cospectral as for standard matrix representations. This
algorithm runs in polynomial time; it can differentiate many
graphs for there is no subexponential time algorithm which
is proven to be able to differentiate between them.

By the literature [3], they propose a quantum algorithm
to evaluate formulas by an extended gate set, including two-
and three-bit binary gates.This algorithm is more optimal on
read, once formulas for that each gate’s inputs are balanced in
a certain sense. It describes a very compact triaxial instru-
ment in the literature [4]. The triaxial instrument is based
on a rhombic dodecahedral geometry that can accommodate
three nonplanar ring light paths with orthogonal sensing
axes. Component count can be substantially reduced by a
discharge of layout to use a single cathode and two anodes
running all three axes in balanced plasma currents. Two
Monte Carlo-based approaches to assess parameter uncer-
tainty with complex hydrologic models are considered in
the literature [5]. The importance sampling has been carried
out in the generalized likelihood uncertainty estimation
framework by Beven and Binley. The metropolis algorithm
is different from importance sampling which uses a random
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walk that adapts to the real probability distribution describing
parameter uncertainty.

Because existing search protocols for unstructured peer-
to-peer systems to create huge burden on communications
or cause long response time and result in unreliable per-
formance. In the literature [6], in order to discover service
providers, it reports that an important function of a peer-to-
peer system is a distributed message relaying. They present
an incentive mechanism which not only relieves the free-
riding problem but also accomplishes good system efficiency
in message relaying for peer discovery. The passed along
message propagation process is promised rewards in the
mechanism.

In the literature [7], it analyzes the discrete-time quan-
tum walk by separating the quantum evolution equation
into Markovian and its interference terms. Because of this
separation, it is possible to show analytically which quadratic
increase in the variation of the position of quantum walker
with time is a direct aftermath of the coherence of the
quantum evolution. As expected, the variation is shown to
increase linearly with time, if the evolution is decoherent, as
in the classical case.Moreover, it shows that the system has an
evolving operator analogous to which of a resonant quantum
kicked rotor. At the same time, the rotator can be described
by evolution of the quantum walker.

Quantum random walks on a graph, which is analogous
to classical stochastic walk, form the basis for many of
the recent quantum algorithms that promise to obviously
outperform existing classical random walk algorithms. A
number of studies have been done on the many applications
of quantum random walk to some important computing
problems. There are two kinds of quantum random walk
algorithms: continuous-time and discrete-time. It is reported
that a quantum arithmetic is defined by a sequence of
the operations that runs on an actual model of quantum
computation in the literature [8]. It proposes quantum circuit
designs for both kinds of random walk algorithms which
operate on various graphs. It considers two important prob-
lems to which random walk arithmetic are applicable: the
triangle finding problem and binary tree problem. Because of
it a few research works that are related to quantum random
walk circuit design on graphs exist; the circuit designs they
present here are the first of their kind. At the same time, they
also provide an estimate of the quantum cost of the circuits of
quantum systems. And it is based on the number of execution
cycles and quantum operations.

In the literature [9], the natural random walk causing
Brownianmotion occurs to be always biased in a very delicate
way: emphasizing some possibilities by only approximative
maximal uncertainty principle. It introduces a new method
of stochastic model, and they use the merely maximizing
entropy choice of transition probabilities.

Berry and Wang show numerically that a discrete time
quantum random walk of two irrelevant particles is able to
differentiate some nonisomorphic powerfully regular graphs
from the same household in the literature [10]. They analyt-
ically show how it is possible for the walks to differentiate
such graphs, while the continuous time quantumwalks of two
irrelevant particles cannot.

It is reported that the quantum walks are quantum
mechanical theory analog of random walks in the literature
[11]. By traversing the edges of a graph, a quantum “walker”
progresses between initial and final states. They present a
hybrid model for general quantum computing in which a
quantum walker gets discrete steps of continuous evolution.

Effective server traffic control can extend the “capacity”
of the server, and the task scheduling can improve system
throughput. In early research methods of it, such as Min-
Min algorithm,Max-Min algorithm, genetic algorithm (GA),
round robin (RR), simulated annealing algorithm (SAA),
dynamic feedback algorithm (DFA), and ant colony opti-
mization algorithm (ACO). These arithmetics have some
improvements in different degree on the task scheduling.

But these algorithms have this or that problem, such as
local premature problem and divergence problem.

In order to overcome the instability above the algorithms,
the quantum random walk algorithm is proposed, and it is
proved better than above GA, ACO, and SAA by simulation
experiments.

2. Quantum Random Walk

2.1. Random Walk. Random walk is a mathematical method
to study the formation of trajectory by a random sequence
of continuous; it is not only a means to study mathematics
but also a basic tool in the natural sciences. Any stage of the
random walk behavior is not limited to previous history of
migration; the process is also calledMarkov process. Random
walk can be simply described as follows.

Suppose in a straight line, there is a moving particle; it
is at the origin to move left or right one unit of distance;
the probability is 𝑝 and 𝑞 = 1 − 𝑝, respectively, each time
the particle in accordance with the probability to move a
unit distance to the left or right. Here we assume that the
probability of the particle is equal to the left or right; that is,
𝑝 = 𝑞 = 1/2; random variable can be used to represent the
probability 𝜎

𝑖
; its value is as follows:

𝜎
𝑖
=

{
{
{

{
{
{

{

−1, 𝑝 =

1

2
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1

2

.

(1)

If the particles every moment in a straight line position
constitute an independent identical distribution of random
variables sequence, denoted 𝜎

1
, 𝜎
2
, . . . , 𝜎

𝑡
, . . . is a sequence

of independent and identically distributed variables on meet
EX
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is called a random walk. After the particles move
𝑛 steps, the probability of it being found in position 𝑚 is

𝑝
𝑛

0,𝑚
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Among them, (𝑛 + 𝑚)/2 take only integer, (𝑛 + 𝑚)/2 ∈

0, 1, . . . , 𝑛; other cases were 0.
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Although the classical random walk has a broad applica-
tion, but compared with the quantum random walk, it feels
much ashamed of its inferiority.

Quantum random walk is a quantum computing model
proposed in recent years; scholars have also become increas-
ingly interested in research.

2.2. Quantum Random Walk. For discrete quantum random
walk, the system added an extra degree of freedom; some
literature defines it as chirality that can build an adaptation to
global local unitary process. This walk is also called quantum
Hadamard walk. The only possible remained unchanged in
the global process of unitary transformation is the only
mobile operator between adjacent lattice points to the left or
the right.

Significantly different between quantum Hadamard ran-
dom walk and classical quantum is the interference, the
diffusion rate of quantum walk square magnitude faster
than classical square. Due to the existence of quantum
superposition states, in quantum random walk, position
of the particle from the probability distribution may be
seen; particles may be in several locations simultaneously
with different probability. Quantum random walk process is
accomplished by a unitary matrix transformation [12].

2.2.1. One-Dimensional Quantum Random Walk. The ran-
dom walk model sets up corresponding quantum algorithms
and does quantum information processing. People com-
monly used coined quantum walks; it corresponds to Hilbert
space which can be expressed as follows:

𝐻 = 𝐻
𝐶

⊗ 𝐻
𝑉
, (3)

where 𝐻V = span{|V
𝑖
⟩}
|𝑉|

𝑖=1
is the random walk of grid space;

it corresponds to a classic case of 𝑑-degree regular graphs
𝐺(𝑉, 𝐸),𝐻

𝐶
= 𝐶
𝑑, which is a coin flip operator space (coin

space). The total unitary evolution matrix 𝑈 is by the two
independent parts, namely, flipping a coin and conditional
replacement

𝑈 = 𝑆 ∙ (𝐶 ⊗ 𝐼) . (4)

The first step of the quantumwalk is to perform a rotation
operation 𝐶 in coin space, equivalent to the classical random
walk in a coin toss, through this operation to get a coin
superposition state [13]. Then, the replacement operator 𝑆

makes the particles by a coin to decide an edge vertex adjacent
to move to the next. Starting from the initial state |𝜓(0)⟩,
repeat the walk after 𝑛 steps and obtain the probability
distribution of each vertex as follows:

𝑃 (V, 𝑛) = V⟨V| 𝑁𝑟
𝑐
[




𝜓 (𝑛)⟩ ⟨𝜓 (𝑛)





] |V⟩ V. (5)

Quantum randomwalks of a variety of ways common are
one-dimensional linear walk, ring walk, hypercube walk, and
so forth. For one-dimensional linear walk, 𝐻V = span{|𝑥⟩ :

𝑥 ∈ 𝑍},𝐻
𝑐
= span{|𝑅⟩, |𝐿⟩}, replacement operator applied to

the base is expressed as

𝑆 |𝑅, 𝑥⟩ = |𝑅, 𝑥 + 1⟩ , 𝑆 |𝐿, 𝑥⟩ = |𝐿, 𝑥 − 1⟩ . (6)

Starting from the initial state |Φin⟩ = | ↓⟩⊗|0⟩, continuous
action𝑈 = 𝑆∙(𝐶⊗𝐼); after each step, the distribution of every
point is as follows:





Φin⟩

𝑈

→

1

√2

(|↑⟩ ⊗ |1⟩ − |↓⟩ ⊗ |−1⟩ )

𝑈

→

1

2

[|↑⟩ ⊗ |2⟩ − (|↑⟩ − |↓⟩ ) ⊗ |↓⟩ ⊗ |−2⟩ ]

𝑈

→

1

2√2

[|↑⟩ ⊗ |3⟩ + |↓⟩ ⊗ |1⟩ + (|↑⟩ − 2 |↓⟩ )

⊗ |−1⟩ − |↓⟩ ⊗ |−3⟩ ] .

(7)

Not only is the distribution situation different with the
classical random walk, but one-dimensional linear walk is
also higher and faster than the classical random walk in the
diffusion velocity.

2.2.2. M-Dimensional Hypercube Quantum Random Walk.
For the 𝑀-dimensional hypercube quantum random walk,
it has 2

𝑚 vertices each vertex can be marked by an 𝑚 binary
string,

𝐻V = span{|�⃗�⟩:𝑥 ∈ [0, 2
𝑛
]}. Each vertex is 𝑚 degrees;

therefore, coin space 𝐻
𝑐

= 𝐶
𝑐, using |𝑑⟩ to mark the coin

space basis vectors, 𝑑 ∈ [0, 𝑛]; it indicates the direction of the
next step; each |𝑑⟩ corresponds to a 𝑀-dimensional vector
|e⃗
𝑑
⟩,






⃗𝑒
𝑑
⟩ =












0 ⋅ ⋅ ⋅ 0⏟⏟⏟⏟⏟⏟⏟⏟⏟

(𝑑−1)

10 ⋅ ⋅ ⋅ 0⏟⏟⏟⏟⏟⏟⏟⏟⏟

(𝑛−𝑑)

⟩ . (8)

| ⃗𝑒
𝑑
⟩, the number of 𝑑 bit is 1 and that of the other bits is 0.The

replacement operator walk on the hypercube is applied to the
base vectors and can be expressed as

𝑆 |𝑑, �⃗�⟩ =




𝑑, �⃗� ⊕ ⃗𝑒

𝑑
⟩ . (9)

It represents two points marked by𝑀 quantum bits; only
when they have only one bit is not the same when they
are connected directly via a side (e.g., 001101 and 011101 are
communicating). There are many ways to select hypercube
walking coin flip operators; however, the following form is
usually taken to maintain certain symmetry:

𝐶
𝛼,𝛽

= (

𝛼 𝛽 𝛽 . . . 𝛽 𝛽

𝛽 𝛼 𝛽 . . . 𝛽 𝛽

...
𝛽 𝛽 𝛽 . . . 𝛼 𝛽

𝛽 𝛽 𝛽 . . . 𝛽 𝛼

). (10)

The operator of such forms has the characteristics that in
all directions are a permutation invariant; it retains hypercube
replacement invariance. Such a form is a commonly used
Grover diffusion operator selection

𝐺 = −𝐼
𝑛
+ 2





𝑠
𝑐
⟩ ⟨𝑠
𝑐



. (11)

Among them, |𝑠𝑐⟩ = 1/√𝑚∑
𝑚

𝑑=1
|𝑑⟩ are equally weighted

superposition states in all directions. Grover operator is one
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of the permutation invariant operators, which is the farthest
with unit transformation 𝐼; It will effectivelymix all of the any
given initial state into the superposition of them. The total
random walk evolution operator can be expressed as

𝑈 = 𝑆 ⋅ (𝐺 ⊗ 𝐼) . (12)

Define the Hamming distance, starting from any point to
another point of the minimum number of edges experience
(i.e., the required number of steps), with 𝑑

ℎ
= 1. Marking

each vertex string the number of “1” is called Hamming
weights, for example, Hammingweight 010 to 1. Starting from
00 ⋅ ⋅ ⋅ 0, any Hamming weighing the same point total can
reach at the samenumber of steps.When the coins are formed
to the symmetry type such as (10), it has the same probability
starting from this point to reaching the point with the same
weight. This allows us to put all Hamming weight of the
same point “accumulation” to a point, thereby reducing the
symmetry of the random walk; the walk on the hypercube is
becoming walk in a straight line. It is noteworthy that this
walk difference on the straight is not unbiased; it differs from
the previously discussed one-dimensional linear walk. The
number of total vertices after walking on the variable linear is
𝑚 + 1; 𝑚 is the hypercube dimension.

By putting a hypercube walk into walk on straight line,
many problems can be resolved to simplify and get results.
Moor and Russell found that when 𝑇 = 𝜋 ⋅𝑚/4, randomwalk
is a balanced distribution. Kempe through the research on
the hitting time found hypercube quantum random walk to
reach vertical angles of time relative to the classic case which
is an exponential acceleration; this shows that the quantum
random walk has the potential to make quantum algorithm
acceleration.

3. The Model of Server Traffic Control and
Task Scheduling

In cluster services, the task scheduling can be described as
follows:𝑁 tasks need to be allocated to𝑚 nodes (these nodes
are the servers) with different handling capacity; the goal
is finding an optimization schedule to minimize the total
completion time. The system model is shown as follows.

We suppose there are 𝑚 nodes (or servers) and 𝑛 tasks.
Every task should be assigned to only one node. We use
𝑃 = {𝑝

1
, 𝑝
2
, . . . , 𝑝

𝑚
} denoting the nodes (or servers), in this

paper, where 𝑝
𝑖
denotes one of the nodes (or servers); 𝐿 =

{𝑙
1
, 𝑙
2
, . . . , 𝑙
𝑚
} expresses the current load, where 𝑙

𝑖
expresses

the current load of node𝑝
𝑖
. For instance, 𝑙

𝑖
= 0means that the

node (server) 𝑝
𝑖
has a current load of 0; in other words, the

node is idle.Here 𝑛 tasks are expressed by𝑋 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
},

where 𝑥
𝑗
is one of the tasks. A 𝑚 × 𝑛 matrix is built between

servers and tasks: 𝑊
𝑚𝑛
, where 𝑊

𝑖𝑗
is one of the elements. So,

there are two states as follows:

𝑊
𝑖𝑗

= {

1 Task 𝑥
𝑖
is assigned on node 𝑝

𝑖

0 Task 𝑥
𝑖
is not assigned on node 𝑝

𝑖
,

(13)

where, 𝑖 ∈ {1, 2, . . . , 𝑚}, 𝑗 ∈ {1, 2, . . . , 𝑛}.

We use 𝑡
𝑖𝑗
to express the time of processing on one task;

in other words, the time of task 𝑥
𝑗
processed on node 𝑝

𝑖
. The

processing time is denoted as follows:

𝑇
𝑖𝑗

= {

𝑡
𝑖𝑗

Task 𝑥
𝑖
is processed on node 𝑝

𝑖

0 Task 𝑥
𝑖
is not processed on node 𝑝

𝑖
,

(14)

where, 𝑖 ∈ {1, 2, . . . , 𝑚}, 𝑗 ∈ {1, 2, . . . , 𝑛}.
It is not difficult to see that 𝑇

𝑖𝑗
is also an 𝑚 × 𝑛 matrix.

Here, we define the optimal state occurring with these
conditions: (a) the total system has a relative short time of
processing; (b) the throughput of system is relatively larger
in unite time. We can describe this state using the following
equations:

𝑌max =

𝑚

∑

𝑖

𝜔 (𝑥
𝑖
, 𝑙
𝑖
, 𝑞
𝑖
)

𝜔 (𝑥
𝑖
, 𝑙
𝑖
, 𝑞
𝑖
) = 𝑐
1
((

𝑚

∑

𝑖=1

𝑛

∑

𝑗=1

𝑡
𝑖𝑗
+

𝑚

∑

𝑖=1

𝑞
𝑖
𝑡
𝑖
) − 𝑐
2

𝑚

∑

𝑖=1

𝑙
𝑖
)

2

,

(15)

where 𝑋 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
} is the new task, 𝐿 = {𝑙

1
, 𝑙
2
, . . . , 𝑙
𝑚
}

is the current total load at the node, 𝑞
𝑖
is the length of ready

queue at node 𝑝
𝑖
, 𝑡
𝑖
is the average processing time at node 𝑝

𝑖
,

𝑐
1
, 𝑐
2
are constant, 𝜔(𝑥

𝑖
, 𝑙
𝑖
, 𝑞
𝑖
) is a function which can show

the ability of node processing. The system is on the optimal
running state, when the capacity of processing tasks (or task
scheduling) reaches the maximal matching at one node.

4. The Method of Task Scheduling
Based on Quantum Random Walk (QRW)
Clustering Algorithm

In the paper, we mainly research the standard model of one-
dimensional quantum random walk. For the data clustering
problem of high dimensional space, we can decompose
one 𝑚-dimensional quantum random walk into 𝑚 one-
dimensional quantum random walk.

4.1. Clustering Algorithm Based on One-Dimensional
Quantum RandomWalk, Referred to as Quantum
RandomWalk Clustering Algorithm (QRWA)

Step 1. Assume an unlabeled data set 𝑋 = {𝑋
1

0
, 𝑋
2

0
, . . . , 𝑋

𝑛

0
},

where each data point with m features.

Step 2. Each data point in the data set can be considered
as a particle that transfers in the space according to the
probability.

Step 3. Establish clustering algorithm based on the one-
dimensional quantum random walk.

The clustering algorithm uses a distributed control strat-
egy, that is, each data point of the data set only affected by
its neighbor within the neighborhood. The neighbor of data
points available 𝑘-nearest neighbor method or the method of
default scope of 𝑅 to determine and use Γ

𝑡
(𝑖) indicates the set

of neighbors of a data point 𝑋𝑖
𝑡
in 𝑡 time.
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Step 4. Calculate the probability for each data point transfer
to all neighbors in the neighborhood 𝑝

𝑡
(𝑖, 𝑗), 𝑗 ∈ Γ

𝑡
(𝑖); the

formula is as follows:

𝑝
𝑡
(𝑖, 𝑗) =

{
{

{
{

{

𝑎
𝑡
(𝑖, 𝑗)

∑
𝑗∈Γ
𝑡
(𝑖)

𝑎
𝑡
(𝑖, 𝑗)

if 𝑗 ∈ Γ
𝑡 (

𝑖)

0 otherwise

𝑎
𝑡
(𝑖, 𝑗)

= ((

Deg
𝑡
(𝑗)

∑
𝑗∈Γ
𝑡
(𝑖)
Deg
𝑡
(𝑗)

)

×(

Deg
0
(𝑗)

∑
𝑗∈Γ
𝑡
(𝑖)
Deg
0
(𝑗)

))

× ((𝑑 (𝑋
𝑖

𝑡
, 𝑋
𝑗

𝑡
)) × (𝑑 (𝑋

𝑖

0
, 𝑋
𝑗

0
)))

−1

.

(16)

Among them, Deg
𝑡
(⋅) and Deg

0
(⋅), respectively, represent

the degree of current and initial data points; similarly,
𝑑(𝑋
𝑖

𝑡
, 𝑋
𝑗

𝑡
) and 𝑑(𝑋

𝑖

0
, 𝑋
𝑗

0
), respectively, represent the current

and initial data point distances between 𝑋
𝑖 and 𝑋

𝑗.

Step 5. Find the maximum transition probability 𝑝
𝑡
(𝑖, ℎ) and

the neighbors of greatest probability of metastasis 𝑋
ℎ

𝑡
, ℎ ∈

Γ
𝑡
(𝑖), ℎ ̸= 𝑖.

4.2. The Server Traffic Control Clustering Method of Quantum
Random Walk. As previously mentioned, 𝑚-dimensional
quantum random walk is decomposed into 𝑚 one-
dimensional quantum random walk. For each dimension,
data points 𝑋

𝑖

𝑡
can only move a step left or right, 𝑙

𝐿
or 𝑙
𝑅
.

Therefore, the maximum transition probability 𝑝
𝑡
(𝑖, ℎ) is

mapped to the interval 𝜌 = 𝑓(𝑝
𝑡
(𝑖, ℎ)) ∈ [0.5, 1], so, the

probability of transfer in the opposite direction is 1−𝜌. When
𝜌 = 0.5, and probability of metastasis in both directions is
equal, available aforementioned Hadamard transforms 𝐻

as a coin matrix. However, in normal conditions, 𝜌 ̸= 1 − 𝜌,
therefore, the coin matrix 𝐶 is used in the algorithm is

𝐶 = (
√𝜌 √1 − 𝜌

√1 − 𝜌 −√𝜌

) ,

𝜌 = 𝑓 (𝑝
𝑡 (

𝑖, ℎ)) = 𝑓(max
𝑗∈Γ
𝑡
(𝑖)

(𝑝
𝑡
(𝑖, 𝑗))) .

(17)

It is easy to verify that the matrix𝐶 is unitary matrix meeting
the reversibility requirements of quantum mechanics.

Since the quantum randomwalk clustering algorithmwill
use 𝑟 consecutive transformation𝑈 = 𝑆⋅(𝐶⊗𝐼) for initial state,
thus, every time it changes left and right transfer step 𝑙

𝐿
and

𝑙
𝑅
to the original 1/2, that is, 𝑙

𝐿
/𝑟 and 𝑙

𝑅
/𝑟, Then, conditional

operator 𝑆 will press type structure:

𝑆 = |↑⟩ ⟨↑| ⊗ ∑

𝑏










𝑏 + 𝑙
𝑅

𝑟

⟩ ⟨𝑏| + |↓⟩ ⟨↓|

⊗ ∑

𝑏










𝑏 − 𝑙
𝐿

𝑟

⟩ ⟨𝑏| .

(18)

As is known, in quantum mechanics, each one of
superposition states can be seen as a position of particle
and indicates the probability of finding the particle at this
location. If repeatedly used𝑈 transforms for initial state, then
the resulting superposition state |𝜓⟩ will contain more items;
this increases possible appearing position of the particle,
and this is not present in the classical random walk. It is
these possible positions that increase the searching range
of solution space and provide an opportunity for better
results. To calculate the probability of multiple locations of
particles and their appearance in the corresponding locations,
a unitary operation is sufficient because of the quantum
parallelism, but in the classical world, you need multiple
operations to complete; it also reflects an aspect of quantum
computing to accelerate the classical computing.

If the initial state of the particle is |𝜓
0
⟩ = | ↑⟩ ⊗ |0⟩, then,

after applying 𝑟 = 2 times transform 𝑈, get superposition
state |𝜓⟩ which is





𝜓
0
⟩

𝑈

→ √𝜌 |↑⟩ ⊗










𝑙
𝑅

𝑟

⟩ + √1 − 𝜌 |↓⟩ ⊗










−

𝑙
𝐿

𝑟

⟩

𝑈

→ 𝜌 |↑⟩ ⊗




𝑙
𝑅
⟩ + √𝜌 (1 − 𝜌) |↓⟩ ⊗











(𝑙
𝑅
− 𝑙
𝐿
)

𝑟

⟩

+ (1 − 𝜌) |↑⟩ ⊗











(𝑙
𝑅
− 𝑙
𝐿
)

𝑟

⟩

− √𝜌 (1 − 𝜌) |↓⟩ ⊗




−𝑙
𝐿
⟩ =





𝜓⟩ .

(19)

From (19) particles can be found not only with probability
𝜌
2 and 𝜌(1 − 𝜌) at the same time appear in the probability of

𝑙
𝑅
and 𝑙
𝐿
appearing in another new position (𝑙

𝑅
− 𝑙
𝐿
)/𝑟 could

be (1 − 𝜌). At this point, if projection measurement of the
superposition state |𝜓⟩, it will collapse to one of these three
positions according to the probability; then, the component
of particle in the 𝑗 dimension is updated with the following
formula:

𝑋
𝑖

𝑡+1
(𝑗) =

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝑋
𝑖

𝑡
(𝑗) + 𝑙

𝑅

After the measurement, if the position
of the particle at 𝑙

𝑅

𝑋
𝑖

𝑡
(𝑗) +

(𝑙
𝑅
− 𝑙
𝐿
)

𝑟

After the measurement, if the position

of the particle at
(𝑙
𝑅
− 𝑙
𝐿
)

𝑟

(𝑙
𝑅
− 𝑙
𝐿
) − 𝑙
𝐿

After the measurement, if the position
of the particle at − 𝑙

𝐿

𝐼 : 𝑙
𝑅

= 𝑙
𝐿
= (𝑋
ℎ

𝑡
(𝑗) − 𝑋

𝑖

𝑡
(𝑗)) , 𝑗 ∈ {1, 2, . . . , 𝑚} .

𝐼𝐼 : {

𝑙
𝑅

= 𝜌 × (𝑋
ℎ

𝑡
(𝑗) − 𝑋

𝑖

𝑡
(𝑗)) , 𝑗 ∈ {1, 2, . . . , 𝑚}

𝑙
𝐿
= (1 − 𝜌) × (𝑋

ℎ

𝑡
(𝑗) − 𝑋

𝑖

𝑡
(𝑗)) , 𝑗 ∈ {1, 2, . . . , 𝑚} .

(20)
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Figure 1: The topological structure of the network servers.

As data points are random walk in the space, its position
and its nearest neighbor are constantly changing with time.
Therefore, in the process of walking, the distance of the data
points and the degree of it need to be recalculated. Repeat
the entire process above until the sum of moving length of all
the particles is less than some preset threshold 𝜀. At this time,
some separating section of the natural emergence in the space
can be observed; each section corresponds a separate cluster.

5. Analog and Simulation Experiments

5.1. The Experimental Environment. In order to compare
quantum random walk clustering algorithm (QRWA),
genetic algorithm (GA), ant colony optimization (ACO), and
simulated annealing algorithm (SAA), we select six servers
as nodes. In the experiments, we select the number of task
from 0 to 2500 (or 3000). We compare the results of these
schemes by Matlab. The correlation parameters of selected
servers for experiments are in Table 1.

In Table 1, OS represents operation system; NA represents
network adapter; MS represents memory size; SM represents
specifications and models.

The topological structure of the network servers is as
shown in Figure 1.

5.2. Results. Figure 2 shows the system flow control rate of
QRWA is better than GA, SAA, and ACO. And the more the

Table 1: Parameters of selected servers.

SM Model CPU MS NA OS
SUN SPARC
Enterprise
T5120

UltraSPARC T2
1.2 G 32.0G 2 ∗ 1000M Solaris

IBM System
p5520Q

POWER5+
2.66G 32.0G 4 ∗ 1000M Linux

HP
rx4640

intel Itanium 2.
1.5 G 32.0G 2 ∗ 1000M Unix

task quantity is, the closer the flow control rate is. The task
quantity is from 0 to 2500.

Figure 3 shows the server traffic of GA, SAA, ACO, and
QRWA.That is to say, theQRWA is bigger thanGA, SAA, and
ACO.

The Figure 5 shows that the throughput of QRWA is
bigger than ACO, GA, and SAA.

The Figure 6 shows that the throughput of QRWA is
bigger than ACO, GA, and SAA.

Figures 4, 5, and 6 show the performances of QRWA are
better than GA, SAA, and ACO.

From the results, it is clear that quantum random walk
algorithm (QRWA) is better in server traffic control and
task scheduling than genetic algorithm (GA), simulated
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Figure 2: The flow control rate of SUN SPARC Enterprise T5120 in
GA, SAA, ACO, and QRWA.
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Figure 3:The server traffic of SUN SPARC Enterprise T5120 in GA,
SAA, ACO, and QRWA.

annealing algorithm (SAA), and ant colony optimization
(ACO). QRWA is more effective in task scheduling.

6. Conclusions

The paper gives a quantum random walk model and algo-
rithm on server traffic control and task scheduling. We
mainly research the standard model of one-dimensional
quantum random walk. For the data clustering problem
of high dimensional space, we can decompose one 𝑚-
dimensional quantum random walk into𝑚 one-dimensional
quantum random walk.
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Figure 4: In SUN SPARC Enterprise T5120, the relationship of the
flow control rate, task quantity and time. And the QRWA is better
than GA, SAA, and ACO.
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Figure 5: The throughput of HP rx4640 in ACO, GA, SAA, and
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The simulation results demonstrate the effectiveness and
superiority of QRWA.

The model and algorithm increases the throughput and
efficiency of the system, and it had some merits than tradi-
tional model and arithmetics.

We will research the two directions in the future. The
first one is the effects of noise on the scheme and model;
the second one is the method of how to apply in the field of
intelligence.
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