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Nonlinear faults are difficultly separated for amounts of redundancy process variables in process industry. This paper introduces
an improved kernel fisher distinguish analysis method (KFDA). All the original process variables with faults are firstly optimally
classified inmulti-KFDA (MKFDA) subspace to obtain fisher criterion values.Multikernel is used to consider different distributions
for variables. Then each variable is eliminated once from original sets, and new projection is computed with the same MKFDA
direction. From this, differences between new Fisher criterion values and the original ones are tested. If it changed obviously, the
effect of eliminated variable should be much important on faults called false nearest neighbors (FNN). The same test is applied to
the remaining variables in turn. Two nonlinear faults crossed in Tennessee Eastman process are separated with lower observation
variables for further study. Results show that the method in the paper can eliminate redundant and irrelevant nonlinear process
variables as well as enhancing the accuracy of classification.

1. Introduction

With developments of modern process industry, multivariate
monitor from sensors has showed their multicollinearity,
nonlinear correlative coupling, time delay, and redundancy.
It makes complexity increasing with exponent to fault separa-
tion and diagnosis, called “Curse of Dimension” [1, 2]. On the
other hand, right ratio of fault classification decreases with
multivariate and redundancy process variables. Therefore,
many attentions have been paid on two points of view that are
variable selection and dimension reduction [3, 4].

Among the study of variable selection, the existed meth-
ods can be broadly classified into three categories: random
search techniques, measure-based method, and intelligent
computation. In random search, each process variable is dir-
ectly deleted or involved in the classification model one time
in turn to search the most suitable input sets under a certain
criterion, such as forward selection, backward selection, and
stepwise that are simple and easily realized methods [5].

While it was studied by Masion and Gunst [6] that these
methodswould result inmistaken results, variable set appears
multicollinearity. Measure-based method appears to select
variable with computing relevancy among all variables, as
well as that between variables and labels. The variables with
highest similar characteristic will be gathered in one kind.
According to different definition, K-L information measure,
minimum description length, and mutual information are
used [7–9]. Intelligent computation deepens to solve nonlin-
ear variable selection problem, such as neurnal network that
is once used to nonlinearmodel, while its selection criterion is
uncertain [10].

Dimension reduction is different from variable selection,
which mainly depends on transformation and information
extraction of original variablematrix. It projects original vari-
ables with a certain mapping to a new subspace and extracts
information in lower dimension, such as principal compon-
ent analysis (PCA) [11] and partial least squares (PLS) [12].
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Figure 1: The fault diagnosis with multivariate.

Original variables with linear-relative process variables are
linearly projected according to the maximum direction of
covariance matrix. Meanwhile, the maximum original infor-
mation can be kept as most as possible. Contribution chart
method is theway to calculate contribution of each variable to
certain fault with 𝑇

2 statics and SPE [13, 14] for PCA. The
above linear methods have been extended to nonlinear ones
after kernel method presented [15–20], such as kernel princi-
pal component analysis (KPCA), kernel partial least squares
(KPLS), and kernel fisher discriminant analysis (KFDA). Ker-
nel method converts a linear classification learning algorithm
into nonlinear one, bymapping the original observations into
a higher-dimensional space. So that linear classifier in the
new space equals to a nonlinear classifier in the original space.

However, nonlinear information projected to the new fea-
ture space has higher dimension, and data matrix has lost
their original physicalmeaning in original sample space. If we
separated nonlinear faults crossed together in original space,
the dimension of classifier with kernelmethodwould become
huge, while right ratio would decrease with redundancy and
multicollinearity variables.

The objective of this paper is to deepen dimension reduc-
tion method for the above problems with measure method in
variable selection called MKFDA-FNN. Nonlinear process
variables are projected in higher-dimension space with
MKFDA. Discriminant vector and its corresponding feature
vector with maximum separation are computed to cluster
original variables with highest similarity. With embed-
dimension increasing, false nearest neighbors (FNN) with
high similarity are able to be removed in turn.Thus, nonlinear
redundancy and multicollinearity process variables can be
removed from input sets to nonlinear classifier. Finally, we
give an actual fault separation problem in classical chemical
process Tennessee Eastman (TE) to further study.

2. Problem Description

In fault separation problem presented above, it equals to
screen original process variables related to certain faults as
most as possible.Multivariate datamatrix considered initially
with normal and fault information is described in Figure 1,
where𝑋
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Figure 2: Nonlinear fault diagnosis with redundancy process
variables based on FNN in MKFDA subspace.
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where 𝑓, 𝑔, and ℎ present maximum delay order of process/
control variables 𝑥

1
, 𝑥
2
, and 𝑥

𝑛
, 𝑘 presents current sample

time, and 𝑙 is sample length.

3. Multivariate Fault Separation
Based on MKFDA-FNN

To fault separation problem with nonlinear redundancy pro-
cess/control variables, an approach is proposed in Figure 2.
Correlated nonlinear variables are firstly projected to a
higher-dimension MKFDA subspace. Furthermore, in order
to find fairly useful variables, the importance of each input is
measured in subspace with distance measure inspired by
FNN. Accordingly, redundant variables are recognized. It
makes separation of faults crossed together easily.

3.1. False Nearest Neighbors. FNN is the feature selection
method on the basis of phase space reconstruction (PSR) in
high-dimension data space [21]. With embed-dimension
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increasing, movement locus becomes open, and false nearest
neighbors with high similarity are able to be removed in turn.
It restores the locus of chaos. Its algorithm is as follows.

In 𝑑-dimension phase space including original variables
and their time delay, each phase vector 𝑥(𝑖) = {𝑥(𝑖), 𝑥(𝑖 + 𝜏),

. . . , 𝑥(𝑖 + (𝑑 − 1)𝜏)} has one nearest neighbors 𝑥𝑁𝑁(𝑖). Their
2-norm distance is

𝑅
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𝑑+1
(𝑖) in

𝑅
𝑑
(𝑖) =

󵄩󵄩󵄩󵄩󵄩
𝑥 (𝑖) − 𝑥

𝑁𝑁
(𝑖)
󵄩󵄩󵄩󵄩󵄩
. (3)

If𝑅
𝑑+1

(𝑖)wasmuch bigger than𝑅
𝑑
(𝑖), itmeans the projec-

tion of two nonneighbor phase vector fromhigher dimension
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val (10, 50).Once there appeared noise in process data, the fol-
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𝑥
𝑁𝑁

(𝑖) should be nearest fault neighbor of 𝑥(𝑖), where 𝑅
𝐴
is
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The distance measure between vectors can explain the
similarity of false nearest neighbors factually in (6). Assume
that there was a data space𝑄 with 𝑑-dimension variable, and
one sample vector is 𝐴 = (𝑞

1
, 𝑞
2
, . . . , 𝑞

𝑖
, . . . , 𝑞

𝑑
). We set vari-

able 𝑞
𝑖
as zero, standing for vector𝐴without variable 𝑞
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that is

noted as 𝐵 = (𝑞
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, . . . , 0, . . . , 𝑞
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) in Figure 3.

The similarity between 𝐴 and 𝐵 is

𝛿 = ‖𝐴 − 𝐵‖
2
. (6)

If distance measure is small, it shows that vectors𝐴 and 𝐵
have highly similarity. That is, the removed variable 𝑞

𝑖
makes

little impact on nonlinear pattern, and process variable 𝑞
𝑖
has

low interpreting ability. Otherwise, if it was much bigger, it
reveals that 𝐵 much differs from 𝐴. Process variable 𝑞

𝑖
is

important to interpreting of nonlinear pattern.𝐵 is false near-
est neighbors of 𝐴.

3.2. Kernel Fisher Discriminant Analysis. KFDA is most use-
ful to nonlinear classification problems [22]. Nonlinear dis-
criminant vector in original space is extracted to linear opti-
mal discriminate vector in high-dimension feature space 𝐻
with conventional fisher discriminant analysis (FDA). Since
dimension of𝐻 is much higher, it is hard to directly confirm
nonlinear mapping function from original space to the
feature space. Reproducing kernel-based method widely
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Figure 3: Data space 𝑄 with 𝑑-dimension variable.

developed in machine learning (ML) can achieve this goal.
Nonlinear mapping is indirectly found according to 𝑘(x, y) =
Φ(x)𝑇Φ(y) in Gram-space [23], where Φ : R𝑑 → 𝐻.

Conventional kernel function can be selected as follows
[6].

(i) Polynomial kernel function𝐾(x, x󸀠) = (x ⋅x󸀠+𝑐)𝑑, 𝑑 =

1, 2, . . . , 𝑁, 𝑐 is constant.
(ii) Gaussian kernel function 𝐾(x, x󸀠) = exp(−(‖x −

x󸀠‖/2𝜎2)), 𝛿 is the parameter of breadth.
(iii) Sigmoid kernel function𝐾(x, x󸀠) = tanh(𝑓⟨x, x󸀠⟩+𝜃).

Assume that original sample set was𝑋 = {𝑥
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}

with 𝑑-dimension and𝑁-samples, where 𝑋
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is the sample of

𝑖th type,𝑁
𝑖
= |𝑋
𝑖
|, and 𝑖 = 1, 2. There exists nonlinear map-

ping functionΦ : R𝑑 → 𝐻. It transforms nonlinear original
sample space R𝑑 to linear classification in high-dimension
data space𝐻; that is,Φ(x) ∈ 𝐻, 𝑥 ∈ R𝑑. In space𝐻, distance
scatter of intraclass and classes with training data is S

𝜔
and S
𝑏

in (7) and (9), respectively,
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wherem
𝑖
is the mean of 𝑖th type in feature space. KFDA is to

find a projection direction w, which meets the following two
properties: (1) data that has similar characteristic should be
gathered together as most as possible; (2) the ones with dif-
ferent characteristic should be gathered as far as possible. So a
key is to search projection directionw∗ and its corresponding
discriminant function 𝑔(x) = (w∗)𝑇x − y

0
. Similarly with

linear FDA, the optimal projection direction w∗ is to search
vector w, which maximizes fisher criterion function (10),
where w∗ is optimal projection direction:

𝐽
𝐻
(w) = w𝑇S

𝑏
w

w𝑇S
𝜔
w
. (10)

Since dimension of feature space𝐻 is usually high andΦ
is indirect mapping function, discriminant vector is hard to
compute directly. Thus, each solutionw is expressed as linear
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Table 1: Steps designed in this paper.

Inputs 𝑇 = {(x
1
, 𝑦
1
), (x
2
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), . . . , (x

𝑁
, 𝑦
𝑁
)}, x
𝑖
∈ R𝑑, 𝑦

𝑖
∈ {+1, −1}, 𝑖 = 1, 2, . . . , 𝑁

Step 1 Initiate 𝜆 ∈ [0, 1] and compute u
𝑖
, 𝑖 = 1, 2

Step 2 Select suitable multikernel function

Step 3 Compute the kernel mean vector between two kinds with k
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= ∑
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Step 4 Compute the kernel scatter matrix of intraclass k
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𝑤2

Step 5 Compute 𝛼∗ = k−1
𝑤
(u
1
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2
), y
0
= 𝛼
𝑇
(u
1
− u
2
)

Step 6 Get the optimal solution of (16)
Step 7 Place the inspected process variable as zero in original samples
Step 8 Project the new samples into the feature space
Step 9 Compute the contribution of one variable at one time with FNN in MKFDA
Step 10 Repeat the above course for the remaining variables
Outputs The distance measure 𝛿 = [𝛿

1
, 𝛿
2
, . . . , 𝛿

𝑛
] of each original variable is obtained

combination of samples in (11), according to kernel-based
method,
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From (11), for all x ∈ R𝑑, assume that k
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, x), . . . , 𝑘(x

2
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direction w∗ in feature space𝐻 is
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where u
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)Φ(x𝑖
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𝑖
) ∑
𝑁𝑖

𝑗=1
Φ(x
2
Φ(x𝑖
𝑗
),

. . . , )
𝑇.
From (12) and (13), we have

w𝑇S
𝑏
w = 𝛼

𝑇k
𝑏
𝛼,

w𝑇S
𝜔
w = 𝛼

𝑇k
𝜔
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(14)

where k
𝑏
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1
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)(u
1
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𝑇, k
𝑤
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𝑤1

+ k
𝑤2
, k
𝑤𝑖
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∑
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𝑥
𝑖
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)(k
𝑥
𝑖

𝑗

− u
𝑖
)
𝑇.

Since fisher criterion function is optimal solution of (15),
vector w can be resolved as 𝛼 in the following fisher criterion
(16) [24]:

𝐽
𝐻
(w) = w𝑇S

𝑏
w

w𝑇S
𝑏
w
, (15)

𝐽
𝐻
(𝛼) =
𝛼
𝑇k
𝑏
𝛼

𝛼
𝑇k
𝑤
𝛼

. (16)

Furthermore, the solution of optimal vector𝛼∗ and y
0
can

be solved [25] with

𝛼
∗
= k−1
𝑤

(u
1
− u
2
) ,

y
0
=

(w∗)𝑇m
1
+ (w∗)𝑇m

2

2
=

(𝛼
∗
)
𝑇

(u
1
+ u
2
)

2
.

(17)

Thus, the corresponding function of kernel fisher discri-
minant function is obtained as

𝑔 (x) = (𝑎
∗
)
𝑇kx − y

0
. (18)

3.3. Multikernel Fisher Discriminant Analysis. From
Section 3.2, the solution of maximizing (15) equals to the sol-
ution of maximizing (16). Assume that 𝛼∗ = k−1

𝑤
(u
1
− u
2
) is

optimal solution to classification effect, whereas 𝛼∗ is both
determined by kernel scatter matrix k

𝑤
and difference of

kernel mean vector (u
1
−u
2
). In the condition of independent

and identically distributed, kernel mean of samples is inde-
pendent with number of samples. It indicates difference of
kernel mean vector (u

1
− u
2
) doing nothing with the un-

balance of samples. So𝛼∗ is only determined by kernel scatter
matrix k

𝑤
for intraclass. If distribution of different variables

differed, it should result in the contributions k
𝑤1
, k
𝑤2
, . . . , k

𝑤

not in the similar interval. Besides that the solution of 𝛼∗ is
not the optimal one. Hence, in order to avoid the influence
of different distribution for samples, we presented multi-
kernel fisher discriminant analysis method. It advances the
kernel criterion function k

𝑤
= (k
𝑤1

+ k
𝑤2
) into

k
𝑤
= 𝜆k
𝑤1

+ (1 − 𝜆) k
𝑤2
, (19)
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Figure 4: The technological process of Tennessee Eastman.

where 𝜆(𝜆 ∈ [0, 1]) is the adjustableMATLAB parameter and
k
𝑤1
and k
𝑤2
are the kernelmatrix computedwith each suitable

kernel function from Section 3.2 (i)/(ii)/(iii).
In this way, the influence with different sample distribu-

tions is considered with the suitable kernel function.
The above algorithm in this paper can be chiefly described

in Table 1. In this way, the contribution of each original pro-
cess variable 𝑞

𝑖
to the certain fault is measured.

4. Fault Separation of Tennessee Eastman with
Redundancy Variables

4.1. Tennessee EastmanChemical Process. Tennessee Eastman
(TE) is a classical chemical process created by Eastman
Chemical Company in 1993 [26]. Its technological process is
shown in Figure 4. There are four reactants (A, C, D, and E)
and two products (G,H). Besides that, there is one inertmate-
rial B and byproduct F.

In TE process, the dynamic TEmodel is composed of five
major units: a reactor, a separator, a stripper, a condenser, and
a compressor. Each unit can be expressed with some equa-
tions, in all of 148 algebraic equations and 30 differential
equations. So it becomes one of themost complexmodels and
is widely used to test study algorithm with control, system

monitor, fault diagnosis, and so forth. Here, we take Ten-
nessee Eastman as the study object to measure its fault sepa-
ration ability with our method.

4.2. Nonlinear Fault Separation of Redundancy Variables. In
TE process, there are 41 observed variables and 12 manipu-
lated variables from controller, some of which are nonlinear
redundancy variables. Moreover, there are 20 types of clas-
sical fault in TE process shown in Table 2. Since Fault9 and
Fault11 are nonlinear overlapped together shown in Figure 5,
we take their fault separation as the study goal, meanwhile, 53
process variables must be screened for their multicollinearity
and nonlinear redundancy. Process data of TE is simulated at
one-minute sampling time in MATLAB software from
Downs [27]. All the measurements have Gaussian noise. A
total of 1000 samples are collected for training,where 800 data
are collected for Fault9 and 200 for Fault11. In addition, 835
samples are applied to test separation validity with 644 for
Fault9 and 171 for Fault11.

4.3. Results and Discussion. If we distinguished Fault9 and
Fault11, there are 53 variables to be considered in all. There-
fore, we compute the contribution of 53 variables with men-
tionedmethod to see the importance of each process variables
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Figure 6: Contribution of all the 53 process variables to distinguish
Fault9 and Fault11.

on faults. Multikernel function is selected as Gaussian kernel
and polynomial kernel, each comprised of 50%.The contribu-
tions of each variable to the faults are computed with steps in
Section 3.3 that is shown in Figure 6 and Table 3. From large
to small, the proper importance of all the 53 process variables
is reordered as {Vab.21, Vab.13, Vab.9, Vab.16, Vab.7, Vab.20,
Vab.11, Vab.2, Vab.12, Vab.8, Vab.19, Vab.5, Vab.22, Vab.6,
Vab.3, Vab.18, Vab.14, Vab.15, Vab.17, Vab.10, Vab.41, Vab.40,
Vab.27,Vab.23,Vab.29,Vab.31,Vab.26,Vab.33,Vab.25,Vab.32,
Vab.4, Vab.24, Vab.30, Vab.35, Vab.34, Vab.37, Vab.36, Vab.28,
Vab.39, Vab.38, Vab.1, Vab.53, Vab.52, Vab.51, Vab.50, Vab.49,
Vab.48, Vab.47, Vab.46, Vab.45, Vab.44, Vab.43, Vab.42}.

In the Following, the curves of the first two important
Vab.21 and Vab.13 in TE process are given in Figures 7(a) and
7(b) and Figures 8(a) and 8(b), respectively. It expresses the
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Figure 7: The changing of process Vab.21 in actual TE.

strong variation of process variables Vab.21 and Vab.13,
actually.

According to the sequence of each process variable, the
different feature sets are constructed as {Vab.21}, {Vab.21,
Vab.13}, {Vab.21, Vab.13, Vab.9}, and so on. Nonlinear pattern
classification of Fault9 and Fault11 is tested with support vec-
tor machine (SVM), which is widely used in pattern recog-
nition. The parameters of SVM are optimized with cross-
validation 𝑐 = 2035 and 𝑔 = 1024. With the above variable
sets, the accuracy of fault separation between Fault9 and
Fault11 is successively tested.The results are shown in Figure 9
and Table 4. It reveals that the separation accuracy becomes
lower when the considered variables increase.

From the above results, we conclude that (1) if all the 53
process variables were used to separate Fault9 and Fault 11,
right ratio ismerely 72.12%. It indicates that not all of the vari-
ables are directly related to certain fault. Some redundancy or
irrelevant variables may decrease the classification accuracy



Journal of Applied Mathematics 7

Product separation pressure
3000

2900

2800

2700

2600

2500

2400
0 0.5 1 1.5 2 2.5

Hours

G
au

ge
 (k

Pa
)

(a) Process Vab.13 (product separation pressure) in Fault9

Product separation pressure
2950

2900

2850

2800

2750

2700

2650

2600
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Hours

G
au

ge
 (k

Pa
)

(b) Process Vab.13 (product separation pressure) in Fault11

Figure 8: The changing of process Vab.13 in actual TE.
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Table 2: State distribution in TE process.

Fault Disturbance Type
1 A/C feed ratio, B composition constant Step
2 B composition, A/C ratio constant Step
3 D feed temperature Step
4 Reactor cooling water inlet temperature Step
5 Condenser cooling water inlet temperature Step
6 A feed loss Step
7 C header pressure loss-reduced availability Step
8 A, B, C feed composition Random
9 D feed temperature Random
10 C feed temperature Random
11 Reactor cooling water inlet temperature Random
12 Condenser cooling water inlet temperature Random
13 Reaction kinetics Slow drift
14 Reactor cooling water valve Sticking
15 Condenser cooling water valve Sticking
16–20 Unknown Unknown

Table 3: The contributions of 53 process variables to fault separa-
tion.

Process variable Contribution Process variable Contribution
Vab.21 2.8273 Vab.17 0.0000
Vab.13 2.1145 Vab.10 0.0000
Vab.9 1.2318 Vab.41 0.0000
Vab.16 1.1313 Vab.40 0.0000
Vab.7 0.2687 Vab.27 0.0000
Vab.20 0.1319 Vab.23 0.0000
Vab.11 0.0522 Vab.29 0.0000
Vab.2 0.0355 Vab.31 0.0000
Vab.12 0.0259 Vab.26 0.0000
Vab.8 0.0191 Vab.33 0.0000
Vab.19 0.0092 Vab.25 0.0000
Vab.5 0.0012 Vab.32 0.0000
Vab.22 0.0006 Vab.4 0.0000
Vab.6 0.0004 Vab.24 0.0000
Vab.3 0.0002 Vab.30 0.0000
Vab.18 0.0000 Vab.35 0.0000

Vab.14 0.0000
...

...
Vab.15 0.0000 Vab.42 0.000

and must be eliminated. (2) If the feature were selected as the
first five process variables {Vab.21, Vab.13, Vab.9, Vab.16,
Vab.7}, the accuracy increases to the highest as 94.55%. It
means that the above five process variables are key to the fault
separation. (3) If the model should be simplified at most, the
process variable {Vab.21} is the best feature variable. We can
recognize Fault9 and Fault11 according to the process chang-
ing of Vab.21.

On the other hand, Fault9 stands for the random distur-
bance to𝐷 feed temperature. Fault11 is randomdisturbance to
reactor cooling water inlet temperature. While {Vab.21,
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Table 4: The accuracy with different feature sets with testing data.

Feature
set Combination of variables Accuracy

Set1 Vab.21 83.521%
Set2 Vab.21, Vab.13 85.731%
Set3 Vab.21, Vab.13, Vab.9 89.652%
Set4 Vab.21, Vab.13, Vab.9, Vab.16 92.123%
Set5 Vab.21, Vab.13, Vab.9, Vab.16, Vab.7 94.547%
Set6 Vab.21, Vab.13, Vab.9, Vab.16, Vab.7, Vab.20 92.532%
...

...
...

Set53
Vab.21, Vab.13, Vab.9, Vab.16, Vab.7, Vab.20,

. . . Vab.42 72.1199

Vab.13, Vab.9, Vab.16, Vab.7} are the reactor coolant tempera-
ture, product separation pressure, reactor temperature, strip-
per pressure, reactor pressure, respectively, it is easy to see
that the five selected variables are fairly relative to Fault9 and
Fault11. The simulation results keep pace with the reality.

5. Conclusions

Nonlinear redundancy and multicollinearity variables can
decrease the accuracy in classifier that must be eliminated.
For the problem, FNN in MKFDA subspace is studied in
the paper. Nonlinear variables are projected to a new linear
higher dimension subspace with single-kernel fisher discri-
ment analysis to get optimal classification with the intra-class
nearest and inter-class farthest as most as possible. Further-
more, conventional single-kernel KFDA is expanded to mul-
tikernelmethod to solve the influence of each process variable
with different distribution function. In order to reduce the
higher dimension emerging inmulti-KFDA subspace, FNN is
composed to recognize the importance of each process vari-
ables on faults. According to simulation results in TE process,
original variables are reduced to 5 in this paper, and the accu-
racy of tested right ratio reaches to 94.55% compared with
tested right ratio 72.12% in the classifier between Fault9 and
Fault11.
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