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SatisfiabilityModuloTheories (SMT) techniques are widely used nowadays. SMT solvers are typically used as verification backends.
When an SMT solver is invoked, it is quite important to ensure the correctness of its results. To address this problem, we propose a
unified certificate framework based on DPLL(T), including a uniform certificate format, a unified certificate generation procedure,
and a unified certificate checking procedure. The certificate format is shown to be simple, clean, and extensible to different
background theories. The certificate generation procedure is well adapted to most DPLL(T)-based SMT solvers. The soundness
and completeness for DPLL(T) + certificates were established. The certificate checking procedure is straightforward and efficient.
Experimental results show that the overhead for certificates generation is only 10%, which outperforms other methods, and the
certificate checking procedure is quite time saving.

1. Introduction

1.1. Background and Motivation. Satisfiability Modulo The-
ories (SMT) techniques are getting increasingly popular in
many verification applications. An SMT solver takes as input
an arbitrary formula given in a specific fragment of first order
logic with interpreted symbols. It returns a judgment telling
whether the formula is satisfiable. By satisfiable, it means
that there exists at least one interpretation under which the
formula evaluates to true.

SMT solvers are typically used as verification backends.
During a verification process, SMT solver may be invoked
many times. Each time the SMT solver is given a complex
logical formula and is expected to give a correct judg-
ment. However, SMT solvers employ many sophisticated
data structures and tricky algorithms, which make their
implementations prone to error. For instance, there are some
solvers disqualified in SMT-COMP due to their incorrect
judgments [1].We therefore strongly believe that SMT solvers
should be supported with a formal assessment of their
correctness.

Ensuring the correctness of an SMT solver is never easy.
Generally, there are two approaches: to verify the SMT solver
or to certify their judgments. For the former approach, it
proves directly that the solver is correct. So, its judgements
are naturally correct. Though rigor in logic, this method
is not generally practical because verifying an SMT solver
requires great workload. Not only the algorithm but also the
implementation should be verified in a formal way. To the
best of our knowledge, no state-of-the-art SMT solver has
been completely verified. More importantly, this approach is
solver dependent. Even if a solver is completely verified, the
whole verification has to be done again when the solver is
modified.

The rationale of the latter approach is as follows: instead
of proving the correctness of the solver, we prove its judg-
ment. For this purpose, the solver is required to return a
piece of evidence to support its judgment. This evidence is
called certificate in this paper. Then, the correctness for the
judgment is ensured by the certificate. If so, a rigorous and
detailed proof can be constructed by referring to the certifi-
cate. Obviously, checking a certificate is much easier than
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Figure 1: The road map of our approach.

verifying a solver. If the certificates are presented in a proper
format, its checking algorithm could have low complexity. For
instance, linear time is required to check certain certificates
for unsatisfiable SAT problems. The certificate approach is
solver independent. We need not to look into the solvers; the
only requirement for solvers is to generate certificates. If the
certificate format is unified, the certificate checking can be a
uniform procedure. This benefit is vital since we need not to
develop a certificate checker for each SMT solver.

There are some SMT solvers that support certificate
generation, such as CVC3 [2] and Z3 [3]. However, their cer-
tificate formats are quite different. As a result, the generation
and checking procedures are tool specific. Although SMT
solvers differ in the algorithms, we believe that their formats
of certificates could be unified. The basic idea comes from
SAT. In an SAT community, people consider to generate cer-
tificates along with the DPLL framework, and the certificates
(for unsatisfiability instances) are unified as chains of linear
regular resolutions which can lead from the initial clauses to
an empty clause [4, 5]. With this uniform format, the gen-
eration and checking procedures for certificates can also be
unified.

This paper considers the DPLL(T) framework, which is
extended from DPLL and has been widely used in state-of-
the-art SMT solvers. A uniform format of SMT certificate is
defined in this paper.The roadmap of our approach is shown
in Figure 1. Note that the size of certificate can be exponential
or even largerwith respect to the input problem [6]. To reduce
storage space, the certificate format is defined carefully in
a concise way. Upon this format, a unified procedure for
certificates generation is proposed. This procedure can be
easily integrated intoDPLL(T)-based SMT solvers.Moreover,
a certificate checking procedure is also proposed in this paper.
The checking procedure is easy, fast, and memory saving. To
make it extensible, theory lemmas are checked by individual
lemma checkers. Experimental results show that the average
overhead for the certificates generation is about 10%.

1.2. Related Work. Propositional satisfiability problem (SAT)
is a well-known decision problem. It was proven to be NP-
complete by Cook [7] in 1971. All known algorithms for SAT
have exponential complexity. State-of-the-art SAT solvers are
based on DPLL [8] algorithm. The basic idea is to explore
all valuations by depth-first search in a branch and bound
manner. To reduce unnecessary search efforts, an optimi-
zation called clause learning is used, which learns a clause
whenever it recovers from a conflict.This optimization signif-
icantly increases the performance andmakes SAT algorithms

practical. During the clause learning process, each learned
clause is a resolvent of linear regular resolution from existing
clauses [4].

SMT is an extension of SAT. As the name implies, the
input formula may contain theory-specific predicates and
functions. For instance, while only boolean variables are
allowed in SAT, 𝑥 ≥ 𝑦 ∧ 𝑦 ≥ 𝑓(𝑎) + 𝑥 ∨ 𝑥 < 0 is a well-formed
SMT formula. The background theory T of SMT is usually
a composed theory from several individual theories. In this
paper, we focus on quantifier-free SMT problems, for which
the popular algorithm is DPLL(T) [9]. The DPLL(T) algo-
rithm is extended from DPLL. Since the DPLL(T) algorithm
is described as a transition system, solving an SMT problem
is actually seeking a path to the success or fail state while
respecting the guard conditions on transitions. Although
there are other heuristics and optimizations, currently it is
almost standard to develop SMT solvers based on DPLL(T).

Certificates are, informally, a set of evidence that can be
used to construct a rigorous proof for the judgment. For
satisfiable cases, the certificate could be a model. What is
more interesting is the certificates for unsatisfiable cases.
Deduction steps from the input problem to a conflict should
be reproducible by referring to the certificate. In this paper,
when saying certificates, we refer to those for unsatisfiable
cases.

Many of the state-of-the-art SAT solvers can generate
certificates, but their logical formats are very distinct from
each other. For example, the certificate generated by zChaff
[10] and MiniSat [11] are quite different. PicoSAT [12] gen-
erates concise and well-defined certificates. A tool called
TraceCheck can do certificate checking [12]. In PicoSAT’s cer-
tificates, there are initial clauses and resolvents. Resolvents are
obtained from linear regular resolution. If all the clauses form
a directional acyclic graph and the empty clause is derived,
then it implies that the initial clause set is unsatisfiable. As
shown in [4, 5], clause learning in DPLL corresponds to a
linear regular resolution. So, this certificate format is also
adoptable by other DPLL-based solvers.

For general SMT problems, quantifiers may be used. Fur-
thermore, theory-specific inference rules should be consid-
ered when deciding their satisfiability. Various logical frame-
works are developed to provide flexible languages to write
their proof, such reference could be found in [13–16]. If
we focus on quantifier-free problems, the proof format and
proof checking could be simplified. In practice, solvers such
as CVC3 and Z3 can generate certificates, but their formats
are also quite different because they use different proof
rules. Proof rules are a set of inference rules with respect to
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the background theory T. To be better suited for certificate
generation and checking, the certificate format should not
depend heavily on theory-specific proof rules.

The overhead for generating certificates should be as
small as possible. An approach with 30% overhead is pre-
sented in [17], which uses the Edinburgh Logical Framework
with Side Condition (LFSC). In our approach, we focus on
quantifier-free problems so that the overhead is further re-
duced. Certificate generation is related to unsatisfiable core
computation. In [18], a simple and flexible way of computing
small unsatisfiable core in SMT was proposed.They compute
by the propositional abstraction of SMT problem and invoke
an existing unsatisfiable core extractor for SAT. Although
the idea might be similar, unsatisfiable core computation
concerns which clauses lead to unsatisfiability, whereas cer-
tificate generation concerns how. It is convenient to generate
unsatisfiable core from certificates, but not vice versa.

To check certificates, people can either check the certifi-
cate directly, just as in the SAT case, or translate them into
inputs for some theorem provers such as HOL Light [19] or
Isabelle/HOL [20]. There is also research in checking certif-
icates using simple term rewriting [21]. A known fact is that
if certificates are checked by translating them to proof items
for theorem provers, it could take much longer time than
certificate finding [20].

1.3. Contribution. In thispaper, wepresent a certificate frame-
work for quantifier-free formulas. Compared to other works,
our approach has the following advantages.

(i) The certificate format is simple, clean, and extensible
to different underlying theories.

(ii) The certificate generation procedure is well adapted
to most DPLL(T)-based SMT solvers. We also imple-
ment it in our solver.

(iii) On average, the certificate generation induces about
10% overhead which is much less than other ap-
proaches.

(iv) The certificate checking procedure is simplified. It has
better performance.

The rest of this paper is organized as follows. In Section 2,
we recall the original DPLL(T) algorithm. The certificate
format is defined in Section 3. The framework of DPLL(T) +
certificate is described in Section 4, where the formal rules
are defined in Section 4.1, necessary implementation issues
are discussed in Section 4.2, the properties are discussed
in Section 4.3, and a couple of examples are shown in
Section 4.4. Section 5 discusses the certificate checking mat-
ters. Experiments’ results are shown in Section 6. Finally,
Section 7 concludes the paper.

2. The DPLL(T) Algorithm

The DPLL(T) algorithm was proposed in [9]. The input is
a quantifier-free first order formula in conjunctive normal
form (CNF) from the background theory T. DPLL(T) was
given as a transition system. Most features and optimizations
of SMT algorithms can be formalized in that way.

In first order logic, any CNF formula can be viewed as a
set of clauses. Each clause is disjunction of literals, and each
literal is a positive or negative form of an atom. A formula
is satisfiable if there exists an interpretation under which the
formula evaluates to true.

In DPLL(T), formula satisfiability is considered in some
background theory T (all interpreted symbols should be
from T). We use “⊨T” to denote theory entailment in T.
Given sets of formulas Σ and Γ, if any interpretation that
satisfies all formulas in Σ also satisfies all formulas Γ, we write
Σ⊨TΓ. Similarly, “⊨” denotes propositional entailment which
consider each atomic formula syntactically as a propositional
literal.

Each state is a 2-tuple “𝑀 ‖ 𝐹” where 𝑀 is a stack of
the currently asserted literals and 𝐹 the set of clauses to be
satisfied. The transition relations are given by the following
rules.

(i) Decide:

Precondition

(1) 𝑙 or ¬𝑙 occurs in a clause of 𝐹;

(2) 𝑙 is undefined in 𝑀,

𝑀 ‖ 𝐹 → 𝑀 𝑙
d

‖ 𝐹. (1)

(ii) UnitPropagate:

Precondition

(1) 𝑀 ⊨ ¬𝐶;

(2) 𝑙 is undefined in 𝑀,

𝑀 ‖ 𝐹, 𝐶 ∨ 𝑙 → 𝑀 𝑙 ‖ 𝐹, 𝐶 ∨ 𝑙. (2)

(iii) TheoryPropagate:

Precondition

(1) 𝑀⊨T𝑙;

(2) 𝑙 or ¬𝑙 occurs in 𝐹;

(3) 𝑙 is undefined in 𝑀,

𝑀 ‖ 𝐹 → 𝑀 𝑙 ‖ 𝐹. (3)

(iv) T-Backjump:

Precondition

(1) 𝑀 𝑙
d
𝑁 ⊨ ¬𝐶;

(2) there is some clause 𝐶


∨ 𝑙
 such that:

(a) 𝐹, 𝐶⊨T 𝐶


∨ 𝑙
 and 𝑀 ⊨ ¬𝐶

;
(b) 𝑙
 is undefined in 𝑀;

(c) 𝑙
 or ¬𝑙

 occurs in 𝐹 or in 𝑀 𝑙
d
𝑁,

𝑀 𝑙
d
𝑁 ‖ 𝐹, 𝐶 → 𝑀 𝑙


‖ 𝐹, 𝐶. (4)
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(v) T-Learn:

Precondition
(1) each atom of 𝐶 occurs in 𝐹 or in 𝑀;
(2) 𝐹⊨T𝐶,

𝑀 ‖ 𝐹 → 𝑀 ‖ 𝐹, 𝐶. (5)

(vi) T-Forget:

Precondition

𝐹⊨T𝐶,

𝑀 ‖ 𝐹, 𝐶 → 𝑀 ‖ 𝐹. (6)

(vii) Restart:

Precondition

T

𝑀 ‖ 𝐹 → 0 ‖ 𝐹. (7)

(viii) Fail:

Precondition
(1) 𝑀 ⊨ ¬𝐶;
(2) 𝑀 contains no decision literals,

𝑀 ‖ 𝐹, 𝐶 → ⟨Fail⟩ . (8)

In DPLL(T) algorithm, there is an assumption that there
exists a T-solver that can check the consistency of conjunc-
tions of literals given in T. This algorithm will terminate
under weak assumption and is proven sound and complete
[9].

3. The Certificate Format

If a formula is satisfiable, the certificate is simply an inter-
pretation under which the formula evaluates to true. On the
other hand, if it is unsatisfiable, the certificate could be much
more complicated. It should be proven that “all attempts to
find amodel failed.”More precisely, each branch of the search
treemust be tried. Technically speaking, this closed search tree
can be presented as a refutation procedure which contains
sequences of resolution procedures that produce the empty
clause [12]. It is imaginable that if the search tree is quite large
so is the set of refutation clauses.

Remember that in first order logic (FOL), constants are
considered as nullary functions. Then, a term is either a
variable or a function with arguments which are also terms.
For example, 𝑥, 𝑓(𝑥, 𝑦) and 𝜙(𝑠, 𝜓(𝑡)) are valid terms. An
atom (or atomic formula) is a predicate with arguments being
terms. Note that nullary predicates are actually propositional
variables.

Definition 1 (T-atom, T-literal). Given a background theory
T, a T-atom is an atom whose functions and predicates are in
the signature of T. A T-literal is the positive or negative form
of a T-atom.

For example, given T the theory of Equality with Unin-
terpreted Functions, if 𝑝 is a propositional variable, then 𝑝,
𝑥 = 𝑓(𝑦) are T-atoms and 𝑝, ¬𝑝, 𝑥 = 𝑓(𝑦) and 𝑥 ̸= 𝑓(𝑦) are
T-literals.

A proof rule is an inference rule which has several T-
literals as premises and one T-literal as the conclusion. For
proof rules whose conclusion is conjunction of 𝑛 T-literals,
we can split it to 𝑛 proof rules and one for each.) For example,
𝑥 = 𝑦 implies that 𝑓(𝑥) = 𝑓(𝑦) is a proof rule (the
monotonicity of equality).This rule holds for all T-terms 𝑥, 𝑦

and all function 𝑓. Each proof rule can be instantiated to a
theory lemma. For instance, if 𝑠, 𝑡 are two specific T-terms
and 𝑔 is a specific function, then (𝑠 = 𝑡) → (𝑔(𝑠) = 𝑔(𝑡)) is a
theory lemma.

Definition 2 (clause item). A clause item is one of the follow-
ing three forms.

(i) Init 𝑙
1

∨ ⋅ ⋅ ⋅ ∨ 𝑙
𝑛
: an initial clause 𝑙

1
∨ ⋅ ⋅ ⋅ ∨ 𝑙

𝑛
, where all

𝑙
𝑖
are T-literals.

(ii) Res {𝐶
1
, . . . , 𝐶

𝑛
}: a clause obtained from a linear

resolution of𝐶
1
, . . . , 𝐶

𝑛
, where all𝐶

𝑖
are clauses items.

(iii) Lemma 𝑙
1

∧ ⋅ ⋅ ⋅ ∧ 𝑙
𝑛

→ 𝑙
: a theory lemma where all

𝑙
𝑖
and 𝑙
 are T-literals. The defined clause is ¬𝑙

1
∨ ⋅ ⋅ ⋅ ∨

¬𝑙
𝑛

∨ 𝑙
.

A resolution chain 𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑛
is called a linear reg-

ular resolution chain if there exists a sequence of clauses
𝐷
1
, 𝐷
2
, . . . , 𝐷

𝑛−1
such that: (1) 𝐷

1
is the resolvent of 𝐶

1
and

𝐶
2
; (2) for 2 ≤ 𝑖 < 𝑛, 𝐷

𝑖
is the resolvent of 𝐷

𝑖−1
and 𝐶

𝑖+1
; (3)

all resolutions are applied on different T-atoms.
A clause item gives the syntax form for a clause. For

each clause item 𝐶, if it is well defined; the concrete form
of 𝐶 (given as disjunction of T-literals) can be calculated.
It is called a concrete clause, denoted by ⟦𝐶⟧. We do not
distinguish 𝐶 and ⟦𝐶⟧ when no ambiguity is caused.

Definition 3 (certificate item). A certificate item is either of
the following:

(i) Define ClauseItem,

(ii) Forget ClauseItem.

Definition 4 (certificate). A certificate 𝑃 with respect to an
SMT instance is a sequence of certificate items. The size of 𝑃,
denoted by |𝑃|, is the number of certificate items contained
in 𝑃. 𝑃[𝑖] is the 𝑖th element in 𝑃, for 𝑖 = 1, 2, . . . , |𝑃|.

Definition 5 (context). Given a certificate𝑃 and a number 0 ≤

𝑖 ≤ |𝑃|, the context with respect to 𝑖, denoted by ⌊𝑃⌋, is a set
of clause items such that:

⌊𝑃⌋
𝑖

=

{{{

{{{

{

0 if 𝑖 = 0

⌊𝑃⌋
𝑖−1

∪ {𝐶} if 𝑖 > 0 and 𝑃 [𝑖 − 1] is Define𝐶

⌊𝑃⌋
𝑖−1

\ {𝐶} if 𝑖 > 0 and 𝑃 [𝑖 − 1] is Forget𝐶.

(9)

Specially, denote ⌊𝑃⌋
|𝑃|

by ⌊𝑃⌋.



Journal of Applied Mathematics 5

Table 1: A certificate example.

Clause item ⟦𝐶⟧ Lemma
𝐶
1
Define Init ¬𝑙

1
∨ ¬𝑙
2

¬𝑙
1

∨ ¬𝑙
2

𝐶
2
Define Init 𝑙

1
𝑙
1

𝐶
3
Define Lemma 𝑙

1
→ 𝑙
2

¬𝑙
1

∨ 𝑙
2

The property of “=”
𝐶
4
Define Res 𝐶

1
, 𝐶
3
, 𝐶
2

◻ The empty clause

Example 6. Assume that 𝑙
1

: 𝑥 = 𝑦, 𝑙
2

: 𝑓(𝑥) = 𝑓(𝑦) and
𝐶
1

: ¬𝑙
1

∨ ¬𝑙
2
, 𝐶
2

: 𝑙
1
. A certificate for the unsatisfiability of

the clause set {𝐶
1
, 𝐶
2
} is presented in Table 1. In this example,

{𝐶
1
, 𝐶
2
} is intuitively unsatisfiable. Note that 𝐶

2
entails 𝑙

1

which implies 𝑙
2
in TEUF , while 𝐶

1
, 𝐶
2

⊨ ¬𝑙
2
.

Definition 7 (well-formed certificate). A certificate 𝑃 is well
formed if for all 1 ≤ 𝑖 ≤ |𝑃|:

(i) if 𝑃[𝑖] is a Define item then one of the following
conditions hold:
(a) it is of Init type;
(b) it is of Res {𝐶

1
, . . . , 𝐶

𝑛
} type where 𝐶

𝑘
∈ ⌊𝑃⌋

𝑖−1

for all 1 ≤ 𝑘 ≤ 𝑛, and there should be a linear
regular resolution from {⟦𝐶

1
⟧, ⟦𝐶
2
⟧, . . . , ⟦𝐶

𝑛
⟧}

to 𝑃[𝑖];
(c) it is of Lemma type and the concrete clause is

valid in theory T, that is, ⊨T⟦𝑃[𝑖]⟧;
(ii) otherwise 𝑃[𝑖] is a Forget item and the referred clause

must be defined in ⌊𝑃⌋
𝑖−1

.

4. Certificate Generation with DPLL(T)

The certificate generation algorithm is described in this sec-
tion. We first describe the abstract rule and implementation
issues, then prove some important properties, and finally give
a couple of examples.

4.1. The CDPLL(T) Algorithm. We describe here a certifi-
cate generation procedure that can be well adapted to the
DPLL(T) algorithm. The extension of DPLL(T) with certifi-
cate generation is called CDPLL(T).

Definition 8 (certificate refinement). The certificate obtained
by appending a certificate item 𝐶 to the end of the certificate
𝑃 is denoted by 𝑃 ⊲ 𝐶.

We use a transition system to model the CDPLL(T)
algorithm. Each state is represented as a 3-tuple “𝑀 ‖ 𝐹 ⊕ 𝑃,”
where𝑀 is the literal stack,𝐹 the clause set to be satisfied, and
𝑃 the current certificate.The transition rules inCDPLL(T) are
follows.

(i) Decide:

Precondition
(1) 𝑙 or ¬𝑙 occurs in a clause of 𝐹;
(2) 𝑙 is undefined in 𝑀,

𝑀 ‖ 𝐹 ⊕ 𝑃 → 𝑀 𝑙
d

‖ 𝐹 ⊕ 𝑃. (10)

(ii) UnitPropagate:

Precondition

(1) 𝑀 ⊨ ¬𝐶;
(2) 𝑙 is undefined in 𝑀,

𝑀 ‖ 𝐹, 𝐶 ∨ 𝑙 ⊕ 𝑃 → 𝑀 𝑙 ‖ 𝐹, 𝐶 ∨ 𝑙 ⊕ 𝑃. (11)

(iii) TheoryPropagate:

Precondition

(1) 𝑀⊨T𝑙;
(2) 𝑙 or ¬𝑙 occurs in 𝐹;
(3) 𝑙 is undefined in 𝑀,

𝑀 ‖ 𝐹 ⊕ 𝑃 → 𝑀 𝑙 ‖ 𝐹 ⊕ 𝑃. (12)

(iv) T-Backjump:

Precondition

(1) 𝑀 𝑙
d
𝑁 ⊨ ¬𝐶;

(2) there exists a clause 𝐶

∨ 𝑙
 such that: (a) 𝐹, 𝐶⊨T𝐶


∨ 𝑙


and 𝑀 ⊨ ¬𝐶
, (b) 𝑙

 is undefined in 𝑀, and (c) 𝑙
 or

¬𝑙
 occurs in 𝐹 or in 𝑀 𝑙

d
𝑁;

(3) 𝑅 = {𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑛
} is a set of clause items such that:

𝐶
𝑖

∈ ⌊𝑃⌋ for all 𝑖, and there exists a linear regular
resolution from {⟦𝐶

1
⟧, ⟦𝐶
2
⟧, . . . , ⟦𝐶

𝑛
⟧} to 𝐶


∨ 𝑙
,

𝑀 𝑙
d
𝑁 ‖ 𝐹, 𝐶 ⊕ 𝑃 → 𝑀 𝑙


‖ 𝐹, 𝐶 ⊕ (𝑃 ⊲ Res (𝑅)) . (13)

(v) T-Learn(I): this rule models the clause learning proce-
dure.

Precondition

(1) Each atom of 𝐶 occurs in 𝐹 or in 𝑀;

(2) 𝐹 ⊨ 𝐶;

(3) 𝑅 = {𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑛
} is a set of clause items such that:

𝐶
𝑖

∈ ⌊𝑃⌋ for all 𝑖, and there exists a linear regular
resolution from {⟦𝐶

1
⟧, ⟦𝐶
2
⟧, . . . , ⟦𝐶

𝑛
⟧} to 𝐶,

𝑀 ‖ 𝐹 ⊕ 𝑃 → 𝑀 ‖ 𝐹, 𝐶 ⊕ (𝑃 ⊲ Res (𝑅)) . (14)

(vi) T-Learn(II): this rule models the learning of theory
lemma.

Precondition

(1) Each atom of 𝐶 occurs in 𝐹 or in 𝑀;

(2) ⊨T𝐶,

𝑀 ‖ 𝐹 ⊕ 𝑃 → 𝑀 ‖ 𝐹, 𝐶 ⊕ (𝑃 ⊲ Lemma (𝐶)) . (15)
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(vii) T-Forget:

Precondition

𝐹⊨T𝐶,

𝑀 ‖ 𝐹, 𝐶 ⊕ 𝑃 → 𝑀 ‖ 𝐹 ⊕ (𝑃 ⊲ Forget (𝐶)) . (16)

(viii) Restart:

Precondition

T

𝑀 ‖ 𝐹 ⊕ 𝑃 → 0 ‖ 𝐹 ⊕ 𝑃. (17)

(ix) Fail:

Precondition

(1) 𝑀 ⊨ ¬𝐶;

(2) 𝑀 contains no decision literals;

(3) 𝑅 = {𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑛
} is a set of clause items such that:

𝐶
𝑖

∈ ⌊𝑃⌋ for all 𝑖, and there exists a linear regular
resolution from {⟦𝐶

1
⟧, ⟦𝐶
2
⟧, . . . , ⟦𝐶

𝑛
⟧} to ◻,

𝑀 ‖ 𝐹, 𝐶 ⊕ 𝑃 → ⟨Fail⟩ ⊕ (𝑃 ⊲ Res (𝑅)) . (18)

The initial state is 𝑀 ‖ 𝐹 ⊕ 𝑃
0
where 𝑃

0
is the certificate

that defines all initial clauses. When a final state ⟨Fail⟩ ⊕ 𝑃

is reached, 𝑃 is the obtained certificate for the unsatisfiability
judgment.

The major differences between CDPLL(T) and DPLL(T)
are as follows. (1) Certificate generation is added. Notice the
modifications to rules T-Backjump, T-Learn, T-Forget, and
T-Fail. (2) In order to generate well-formed certificates, the
original T-Learn rule is split into 2 cases, one for the learning
of resolvents (corresponds to clause learning) and the other
for the learning of theory lemmas (corresponds to deductions
inT).The first three rules are unchanged except the certificate
part.

4.2. Implementation of CDPLL(T). In a real implementation
of CDPLL(T), additional information need to be collected
to construct the certificate items. In this section, we discuss
these details.

Lemma 9. For any reachable state 𝑀 ‖ 𝐹 ⊕ 𝑃 in CDPLL(T)
and any clause 𝐶 ∈ 𝐹, there exists a clause item 𝐷 ∈ ⌊𝑃⌋ such
that ⟦𝐷⟧ = 𝐶.

Proof. We prove that by induction. Initially, this property
holds because all clauses in 𝐹

0
are initial clauses and 𝑃

0

consists of all initial clause items (by definition). At each valid
transition step, the clause set 𝐹 and the certificate 𝑃 may be
modified. However, each rule ensures that whenever a clause
𝐶 is added to 𝐹, there is always a clause item 𝐷 such that
⟦𝐷⟧ = 𝐶 added to 𝑃, for example, in the rule T-Learn(I).
Furthermore, whenever a clause item is removed from 𝑃,

the corresponding clause is removed in 𝐹, for example, in the
rule T-Forget. Thus, the property holds on all valid trace of
CDPLL(T).

4.2.1. Record Reasons. For any literal 𝑙 in 𝑀, it is either added
by the Decide rule or forced by a clause or theory lemma.
For the latter case, we need to record a clause item which is
a deduction of the lemma and from which the literal 𝑙 can
be enforced. We call this item the reason for literal 𝑙 being
in 𝑀.

Only rules UnitPropagate, TheoryPropagate, and T-
Backjump can enforce new literal to 𝑀. We discuss in the
following the reasons recorded by these three rules.

(i) UnitPropagate: the reason is a certificate item 𝐷 such
that ⟦𝐷⟧ = 𝐶 ∨ 𝑙 ∈ 𝐹. By Lemma 9, such item always
exists.

(ii) TheoryPropagate: assume that 𝑀 = 𝑙
1

∧ 𝑙
2

∧ ⋅ ⋅ ⋅ ∧ 𝑙
𝑚

and𝑀⊨T𝑙; then, the reason is a certificate item𝐷 such
that ⟦𝐷⟧ = ¬𝑙

1
∨ ¬𝑙
2

∨ ¬ ⋅ ⋅ ⋅ ∨ ¬𝑙
𝑚

∨ 𝑙.
(iii) T-Backjump: the reason for 𝑙

 is a certificate item
𝐷 such that ⟦𝐷⟧ = 𝐶


∨ 𝑙
. We will show in the

following that such certificate item always exists when
T-Backjump is applicable.

For convenience, a subscript is used to denote the reason, for
example, 𝑙

(𝐷)
denotes the literal 𝑙 asserted by the reason ⟦𝐷⟧.

4.2.2. Learn Clauses. In rules T-Backjump and Fail, once
there is a conflict, a backjump clause needs be learned. Fur-
thermore, if there are some branches that have not been
explored, T-Backjump is applied; otherwise, Fail is applied.
Each clause learning procedure introduces some new certifi-
cate items.

We use implication graph to analyze the clause learning
process. Remember that in DPLL all literals are propositional
atoms, the implication graph is simply a direct acyclic graph
(DAG) where each edge corresponds to a deduction step. In
CDPLL(T), the implication graph has two kinds of deduc-
tions: propositional deduction (which is similar to DPLL)
and theory deduction. Each deduction step in the implication
graph is labelled with a reason 𝐶.This graph can be viewed as
a generalized implication graph. Without causing ambiguity,
we still call it an implication graph.

In the implication graph of DPLL, each cut containing the
conflict literals corresponds to a learned clause (by resolving
all the associated clauses of edges in this cut) [4]. No matter
which criteria (e.g., 1-UIP) is used, the rule for clause learn-
ing is applicable. For CDPLL(T), when considering the gen-
eralized implication graphs, the clause learning rule is also
applicable.

There are two situations where T-Backjump can be ap-
plied. Given a state 𝑀 ‖ 𝐹 ⊕ 𝑃, the first situation is that
there exists a clause 𝐶 ∈ 𝐹 which is falsified by 𝑀, that is,
⊭ 𝑀, 𝐶. Then, 𝐶 is called the conflict clause. As in the rule,
some backjump clause 𝐶


∨ 𝑙
 should be learned by analyzing

the conflict. Usually,𝐶∨𝑙
 is a resolvent of a linear resolution.

A certificate item with resolution type will be learned.
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¬𝑙1

𝑙1

𝑙0𝑝

𝐶2

𝐶0

𝐶3

Cut1 Cut2

Figure 2: Example of a generalized implication graph.

The other situation is that 𝑀 itself becomes T-inconsist-
ent. Then, a subset {𝑙

1
, 𝑙
2
, . . . , 𝑙
𝑚

} of 𝑀 is unsatisfiable, that is,
⊨T¬𝑙
1

∨ ¬𝑙
2

∨ ⋅ ⋅ ⋅ ∨ ¬𝑙
𝑚
. This is also a conflict clause. It may

not belong to 𝐹, but it can definitely be learned from 𝐹 along
with some theory lemmas. The fact that 𝑙

1
, . . . , 𝑙
𝑚
leads to

conflict is represented in the generalized implication graph.
Furthermore, the clause 𝐶


∨ 𝑙
 that is required by the rule T-

Backjump can also be learned by generalized conflict clause
analysis.

In both situations, the backjump clauses are learned by
clause learning. The certificate for unsatisfiability is actually
a well-organized collection of these clause items. If Fail is
applicable, no literal in𝑀 is decision variable; then, the learnt
clause is the empty clause which shows 𝐹⊨T◻.

Example 10. A generalized implication graph is shown in
Figure 2, where the literals are as follows: 𝑙

0
: 𝑥 = 𝑦, 𝑙

1
:

𝑓(𝑥) = 𝑓(𝑦), and 𝑝 is a propositional literal. Clauses are as
follows:

𝐶
0

: ¬𝑙
0

∨ ¬𝑙
1

:= ¬ (𝑥 = 𝑦) ∨ (𝑓 (𝑥) = 𝑓 (𝑦)) ,

𝐶
1

: 𝑙
0

∨ 𝑝 := 𝑥 = 𝑦 ∨ 𝑝,

𝐶
2

: 𝑙
0

∨ ¬𝑝 := 𝑥 = 𝑦 ∨ ¬𝑝.

(19)

Assume the current assignment 𝑀 = 𝑝, 𝑙
0
, ¬𝑙
1
. Then,

there is a conflict between ¬𝑙
1
and 𝑙
1
. In all, there are 3

deductions in the implication graph: 𝑝 → 𝑙
0
forced by 𝐶

2
,

𝑙
0

→ ¬𝑙
1
by 𝐶
0
and 𝑙
0

→ 𝑙
1
by the theory lemma 𝐶

3
.

Among those reasons, solid lines correspond to existing
clauses in𝐹, while dashed lines correspond to theory lemmas.
𝐶
3
is actually a theory lemma 𝑙

0
→ 𝑙
1
(𝑥 = 𝑦 → 𝑓(𝑥) =

𝑓(𝑦)).
In the clause learning procedure, we start from the

conflict (¬(𝑙
1

∧ ¬𝑙
1
) = ¬𝑙

1
∨ 𝑙
1
) and trace back (apply a

sequence of resolutions). If the 1st UIP schema [4] is used,
it is possible to learn ¬𝑝 or ¬𝑙

0
(corresponds to cut

1
and

cut
2
, resp.). The resolution steps for learning ¬𝑝 are shown

in Figure 3. Actually, ¬𝑝 is the resolvent of {𝐶
3
, 𝐶
0
, 𝐶
2
} which

are exactly the reasons labeled on the edges from the conflict
to the cut. Among those, 𝐶

0
, 𝐶
2
are normal clauses, and 𝐶

3
is

a theory lemma.
Based on the above discussions, the related rules can be

interpreted more precisely as follows.

𝐶3: ¬𝑙0 ∨ 𝑙1
¬𝑙0

𝑙1

𝑙0¬𝑝

𝐶2: ¬𝑝 ∨ 𝑙0
𝐶0: ¬𝑙0 ∨ ¬𝑙1

Figure 3: Resolution steps for learning ¬𝑝.

(i) TheoryPropagate:

𝑀 ‖ 𝐹 ⊕ 𝑃 → 𝑀 𝑙
(𝐶)

‖ 𝐹 ⊕ 𝑃. (20)

The precondition requires that 𝑀⊨T𝑙. Let 𝑀
 be a subset of

𝑀 which entails 𝑙 (possibly 𝑀


= 𝑀). Let 𝐶 = ¬𝑀


∨ 𝑙, then
⊨T𝐶. Furthermore, 𝑀, 𝐶⊨T𝑙, which means 𝐶 is a unit clause
under the assignment 𝑀. Thus, 𝐶 is the reason of 𝑙.

(ii) UnitPropagate:

𝑀 ‖ 𝐹, 𝐶 ∨ 𝑙 ⊕ 𝑃 → 𝑀 𝑙
(𝐶∨𝑙)

‖ 𝐹, 𝐶 ∨ 𝑙 ⊕ 𝑃. (21)

The precondition requires that 𝑀 ⊨ ¬𝐶; thus, 𝐶 ∨ 𝑙 is a unit
clause under 𝑀. So, the reason of 𝑙 is 𝐶 ∨ 𝑙.

(iii) T-Backjump:

𝑀 𝑙
d
𝑁 ‖ 𝐹, 𝐶 ⊕ 𝑃 → 𝑀 𝑙



(𝐶

∨𝑙

)

‖ 𝐹, 𝐶 ⊕ (𝑃 ⊲ Res (𝑅)) .

(22)

The precondition requires that there exits some clause 𝐶


∨ 𝑙


such that 𝐹, 𝐶⊨T𝐶


∨ 𝑙
 and 𝑀 ⊨ ¬𝐶

. The clause 𝐶


∨ 𝑙
 is

then used as the reason for 𝑙
. As the clause learning is always

applicable [9], this clause always exists. If the assignment
𝑀 𝑙

d
𝑁 is T-consistent, then there must be some conflict

clause 𝐶 ∈ 𝐹. As explained above, the clause learning will
then be applied, and the learned clause will be 𝐶


∨ 𝑙
. On the

other hand, when 𝑀 𝑙
d
𝑁 is T-inconsistent, clause learning

is also applicable in the generalized implication graph and
generates a candidate 𝐶


∨ 𝑙
. In both cases, 𝐶


∨ 𝑙
 can be

learned by applying linear regular resolutions on a clause
set 𝑅 [4]. Moreover, such 𝑅 is the union of a subset of reasons
in 𝑀 𝑙

d
𝑁 and a group of theory lemmas.

(iv) Fail:

𝑀 ‖ 𝐹, 𝐶 ⊕ 𝑃 → ⟨Fail⟩ ⊕ (𝑃 ⊲ Res (𝑅)) . (23)

The Fail rule is similar to T-Backjump except that the learned
clause is the empty clause.

4.3. Properties of CDPLL(T). The soundness and complete-
ness of CDPLL(T) are proven in this subsection.

Lemma11. Awell-formed certificatemodified byT-Backjump,
T-Learn(I), T-Learn(II), Fail, or T-Forget is still well
formed.

Proof. Each of the 4 rules appends a new item to the cer-
tificate. Assume that the certificate 𝑃 is modified to 𝑃


=

𝑃 ⊲ 𝐼 where 𝐼 is the appended certificate item. The well-
formed property of 𝑃

 is checked by case studying the rules
applied.
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(i) For T-Backjump: a certificate item of resolution type
is appended. According to the precondition, the
certificate items referred by 𝐼 are already defined in
⌊𝑃⌋. So, 𝑃

 is still well formed.

(ii) For T-Learn(I): similar to the previous case. The de-
pendency of appended certificate item is satisfied.

(iii) For T-Learn(II): a theory lemma item 𝐶 is appended.
It is required that ⊨T𝐶. Thus, 𝑃

 is still well formed.

(iv) For Fail: similar to the T-Backjump case.

(v) For T-Forget: the rule requires that the forgotten
clause is in the clause set. By Lemma 9, we know that
there is a certificate item in 𝑃 which defines 𝐶. Thus,
the well formedness is ensured.

With the help of this lemma, it can be proven that
CDPLL(T) procedure always generates well-formed certifi-
cates.

Lemma 12. Given any reachable state 𝑀 ‖ 𝐹 ⊕ 𝑃 in any
CDPLL(T) procedure, 𝑃 is a well-formed certificate.

Proof. First of all, the initial certificate 𝑃
0
is well formed

because it only contains initial items. Secondly, the certificate
is only modified in T-Backjump, T-Learn(I), T-Learn(II),
Fail, and T-Forget. By Lemma 11, these rules will preserve
well formedness. So, following any path of CDPLL(T) will
always generate a well-formed certificate. That completes the
proof.

Theorem 13 (soundness). Given a clause set 𝐹
0
, for any

certificate 𝑃, if 𝑀
𝑥

‖ 𝐹
𝑥

⊕ 𝑃
𝑥
is reachable in a CDPLL(T)

procedure, then 𝑀
𝑥

‖ 𝐹
𝑥
is also reachable in a DPLL(T)

procedure. Specially, if ⟨Fail⟩ ⊕ 𝑃 is reachable in CDPLL(T),
then ⟨Fail⟩ is also reachable in DPLL(T).

Proof. For each transition step in CDPLL(T):

𝑀 ‖ 𝐹 ⊕ 𝑃→CDPLL(T)𝑀


‖ 𝐹


⊕ 𝑃

, (24)

it holds that

𝑀 ‖ 𝐹→DPLL(T)𝑀


‖ 𝐹

. (25)

So, given a CDPLL(T) trace, a trace in DPLL(T) can be
obtained by removing the certificate part. If 𝑀

𝑥
‖ 𝐹
𝑥

⊕ 𝑃
𝑥

is reachable in CDPLL(T) so is 𝑀
𝑥

‖ 𝐹
𝑥
in DPLL(T).

Theorem 14 (completeness). Given a clause set 𝐹
0
, if the state

𝑀
𝑥

‖ 𝐹
𝑥
is reachable in a DPLL(T) procedure, then there

must be a certificate 𝑃
𝑥
such that 𝑀

𝑥
‖ 𝐹
𝑥

⊕ 𝑃
𝑥
is reachable

in a DPLL(T) procedure. Furthermore, if ⟨Fail⟩ is reachable
in a DPLL(T) procedure, then ⟨Fail⟩ ⊕ 𝑃

𝑥
is reachable in a

CDPLL(T) and ◻ ∈ ⌊𝑃
𝑥
⌋.

Proof. For rules Decide, TheoryPropagate, UnitPropagate, T-
Learn(II), T-Forget and Restart, the preconditions are equal
to those in CDPLL(T). So, if there is a transition in DPLL(T)

labelled with one of these rules, there could also be the same
transition in CDPLL(T).

For other rules, T-Backjump, T-Learn(I), and Fail, we
need to prove that: if 𝑀

𝑥
‖ 𝐹
𝑥
is reachable, then there is some

certificate 𝑃
𝑥
such that 𝑀

𝑥
‖ 𝐹
𝑥

⊕ 𝑃
𝑥
is reachable. We prove

that by induction. Initially, this condition holds because the
initial state 𝑀

0
‖ 𝐹
0
corresponds to 𝑀

0
‖ 𝐹
0

⊕ 𝑃
0
. Inductively,

if

𝑀 ‖ 𝐹→DPLL(T)𝑀


‖ 𝐹
 (26)

is a possible transition in DPLL(T), and there is some 𝑃 such
that 𝑀 ‖ 𝐹 ⊕ 𝑃 is reachable in CDPLL(T).

(i) If it is labelled with T-Learn(I), because the learned
clause is from clause learning, and clause learning
corresponds to linear regular resolution. It is always
possible that necessary theory lemmas in the impli-
cation graph are learned at first by Learn(II) and get
to a state 𝑀 ‖ 𝐹 ⊕ 𝑃

, on which the preconditions of
Learn(I) are satisfied. Then, 𝑀


‖ 𝐹


⊕ 𝑃
 is reached.

(ii) If it is labelled with T-Backjump or Fail, the situation
is similar.

Our approach can be well adapted to any DPLL(T)-based
SMT solver. It is sound and complete regardless of the theory
learning scheme used or the order of the decision procedure.
It works well as long as clause learning is based on the
generalized implication graph.

4.4. Examples. A couple of examples are discussed in this
subsection. The first example is given as a CNF formula
on propositional variables. In this case, the SMT problem
reduces to an SAT problem. No theory deduction is involved
in this example; so, we can get a general idea of the structure
of certificates.

Example 1. Consider the following clause set:

𝐶
1

= ¬𝑙
1

∨ ¬𝑙
2

∨ ¬𝑙
3
,

𝐶
2

= ¬𝑙
1

∨ ¬𝑙
2

∨ 𝑙
3
,

𝐶
3

= ¬𝑙
1

∨ 𝑙
2
,

𝐶
4

= 𝑙
1

∨ ¬𝑙
2
,

𝐶
5

= 𝑙
1

∨ 𝑙
2
.

(27)

Let 𝐹
0

= {𝐶
1
, 𝐶
2
, 𝐶
3
, 𝐶
4
, 𝐶
5
}; assume that 𝑃

0
defines

everything in 𝐹
0
as initial clause; then, a possible CDPLL(T)

procedure is shown in Table 2, where “∼” means this field is
the same as that in the previous row.

In step 4, 𝐶
2

= ¬𝑙
1

∨ ¬𝑙
2

∨ 𝑙
3
is falsified. By analysing

the implication graph, a clause is learned from 𝐶
1
, 𝐶
2
, 𝐶
3
.

Among‘the referred clauses,𝐶
2
is a falsified clause, and𝐶

1
, 𝐶
3

are in the reasons. In step 7, 𝐶
4
is falsified, but there is no

decision variable. By analysing the implication graph, we can
find a resolution from 𝐶

4
, 𝐶
5
, 𝐶
6
to the empty clause. Among

the referred clauses, 𝐶
4
is a falsified clause, and 𝐶

5
, 𝐶
6
are in

the reasons.
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Table 2: The CDPLL(T) procedure for Example 1.

No. 𝑀‖ 𝐹 ⊕P Reason Explanation
1 0‖ 𝐹

0
⊕𝑃
0

0 Initial state
2 𝑙

d
1


∼ ⊕ ∼ 0 Decide

3 𝑙
d
1
, 𝑙
2


∼ ⊕ ∼ 𝑙

2
→ 𝐶
3 UnitPropagate

4 𝑙
d
1
, 𝑙
2
, ¬𝑙
3


∼ ⊕ ∼

𝑙
2

→ 𝐶
3

¬𝑙
3

→ 𝐶
1

UnitPropagate

now 𝐶
2
is falsified

5 ¬𝑙
1



𝐹
0

𝐶
6

= ¬𝑙
1

⊕ [
𝑃
0

⊲

Res{𝐶
1
, 𝐶
2
, 𝐶
3
} = 𝐶

6

] ¬𝑙
1

→ 𝐶
6

𝐶
6

= ¬𝑙
1
is learned

T-Backjump

6 ¬𝑙
1
, ¬𝑙
2

 ∼ ⊕ ∼
¬𝑙
1

→ 𝐶
6

¬𝑙
2

→ 𝐶
4

UnitPropagate

7 ⟨Fail⟩‖ ∼ ⊕

[
[
[

[

𝑃
0

⊲

Res{𝐶
1
, 𝐶
2
, 𝐶
3
} = 𝐶

6

Res{𝐶
4
, 𝐶
5
, 𝐶
6
} = ◻

]
]
]

]

0 Fail

Example 2. Consider the background theory TEUF and a
clause set 𝐹 containing the following:

(𝐶
1
) 𝑎 = 𝑏 ∨ 𝑔 (𝑎) ̸= 𝑔 (𝑏) ,

(𝐶
2
) ℎ (𝑎) ̸= ℎ (𝑐) ∨ 𝑝,

(𝐶
3
) 𝑔 (𝑎) = 𝑔 (𝑏) ∨ ¬𝑝,

(𝐶
4
) ℎ (𝑎) = ℎ (𝑐) ∨ 𝑎 = 𝑐,

(𝐶
5
) 𝑓 (𝑎) ̸= 𝑓 (𝑏) ,

(𝐶
6
) 𝑏 = 𝑐.

(28)

Its boolean structure is

𝐶
1

= 𝑙
1

∨ ¬𝑙
5
,

𝐶
2

= ¬𝑙
6

∨ 𝑝,

𝐶
3

= 𝑙
5

∨ ¬𝑝,

𝐶
4

= 𝑙
6

∨ 𝑙
2
,

𝐶
5

= ¬𝑙
4
,

𝐶
6

= 𝑙
3
,

(29)

where

𝑙
1
: 𝑎 = 𝑏,

𝑙
2
: 𝑎 = 𝑐,

𝑙
3
: 𝑏 = 𝑐,

𝑙
4
: 𝑓 (𝑎) = 𝑓 (𝑏) ,

𝑙
5
: 𝑔 (𝑎) = 𝑔 (𝑏) ,

𝑙
6
: ℎ (𝑎) = ℎ (𝑐) .

(30)

A possible CDPLL(T) procedure is shown in Table 3,
where the referred certificates are as follows:

𝑃
1

= [
𝑃
0

⊲

Lemma (¬𝑙
1

∨ 𝑙
4
) = 𝐶
7

] ,

𝑃
2

= [

[

𝑃
0

⊲

Lemma (¬𝑙
1

∨ 𝑙
4
) = 𝐶
7

Lemma (𝑙
2

∧ 𝑙
3

→ 𝑙
1
) = 𝐶
8

]

]

,

𝑃
3

=

[
[
[

[

𝑃
0

⊲

Lemma (¬𝑙
1

∨ 𝑙
4
) = 𝐶
7

Lemma (𝑙
2

∧ 𝑙
3

→ 𝑙
1
) = 𝐶
8

Res {𝐶
8
, 𝐶
7
, 𝐶
4
, 𝐶
6
, 𝐶
2
, 𝐶
3
, 𝐶
1
} = ◻

]
]
]

]

.

(31)

In step 4, 𝑀 becomes T-inconsistent. The generalized
implication graph is shown in Figure 4. A theory lemma𝐶

7
=

¬𝑙
1

∨ 𝑙
4
is learned (instantiated the monotonicity property of

the equality) firstly, then the backjump rule is applicable. In
steps 11 and 12, 𝑀 becomes T-inconsistent again. A theory
lemma 𝐶

8
= 𝑙
2

∧ 𝑙
3

→ 𝑙
1
is then learned (transitivity

of equality), and then clause learning is performed which
learns the empty clause. The implication graph is shown in
Figure 5.

5. The Certificate Checking

Lemma 15. For any initial clause set 𝐹
0
, given a well-formed

certificate 𝑃 and 0 ≤ 𝑖 ≤ |𝑃|, if 𝑃[𝑖] is a certificate item that
defines a clause, then 𝐹

0
⊨T⟦𝑃[𝑖]⟧.

Proof. We prove that by induction. The base case is easy to
prove because for any initial item 𝑃[𝑖] that defines a clause,
𝑃[𝑖] ∈ 𝐹

0
. Therefore, it is trivial that 𝐹

0
⊨ ⟦𝑃[𝑖]⟧. Thus,

𝐹
0
⊨T⟦𝑃[𝑖]⟧.

(i) For resolution certificate items, assume that 𝑃[𝑖] =

Res{𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑛
}. By definition, all 𝐶

𝑖
are all

defined in ⌊𝑃⌋
𝑖−1

. Then by the inductive hypothesis,
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Table 3: A possible CDPLL(T) procedure.

No. 𝑀‖ 𝐹 ⊕𝑃 Reason Explanation
1 0‖ 𝐹

0
⊕𝑃
0

0 Initial state
2 ¬𝑙

4

 ∼ ⊕ ∼ ¬𝑙
4

→ 𝐶
5 UnitPropagation

3 ¬𝑙
4
, 𝑙
3

 ∼ ⊕ ∼
¬𝑙
4

→ 𝐶
5

𝑙
3

→ 𝐶
6

UnitPropagation

4 ¬𝑙
4
, 𝑙
3
, 𝑙
d
1


∼ ⊕ ∼ ∼

Decide

𝑀 becomes T-inconsistent
5 ∼‖ 𝐹

0
∪ {𝐶
7
} ⊕𝑃

1
∼ T-Learn(II), 𝐶

7
is learned

6 ¬𝑙
4
, 𝑙
3
, ¬𝑙
1

 ∼ ⊕ ∼

¬𝑙
4

→ 𝐶
5

𝑙
3

→ 𝐶
6

¬𝑙
1

→ 𝐶
7

T-Backjump

7 ¬𝑙
4
, 𝑙
3
, ¬𝑙
1
, ¬𝑙
5

 ∼ ⊕ ∼

¬𝑙
4

→ 𝐶
5

𝑙
3

→ 𝐶
6

¬𝑙
1

→ 𝐶
7

¬𝑙
5

→ 𝐶
1

UnitPropagation

8 ¬𝑙
4
, 𝑙
3
, ¬𝑙
1
, ¬𝑙
5
, ¬𝑝

 ∼ ⊕ ∼

¬𝑙
4

→ 𝐶
5

𝑙
3

→ 𝐶
6

¬𝑙
1

→ 𝐶
7

¬𝑙
5

→ 𝐶
1

¬𝑝 → 𝐶
3

UnitPropagation

9 ¬𝑙
4
, 𝑙
3
, ¬𝑙
1
, ¬𝑙
5
, ¬𝑝, ¬𝑙

6

 ∼ ⊕ ∼

¬𝑙
4

→ 𝐶
5

𝑙
3

→ 𝐶
6

¬𝑙
1

→ 𝐶
7

¬𝑙
5

→ 𝐶
1

¬𝑝 → 𝐶
3

¬𝑙
6

→ 𝐶
2

UnitPropagation

10 ¬𝑙
4
, 𝑙
3
, ¬𝑙
1
, ¬𝑙
5
, ¬𝑝, ¬𝑙

6
, 𝑙
2

 ∼ ⊕ ∼

¬𝑙
4

→ 𝐶
5

𝑙
3

→ 𝐶
6

¬𝑙
1

→ 𝐶
7

¬𝑙
5

→ 𝐶
1

¬𝑝 → 𝐶
3

¬𝑙
6

→ 𝐶
2

𝑙
2

→ 𝐶
4

UnitPropagation

𝑀 becomes T-inconsistent

11 ∼‖ 𝐹
0

∪ {𝐶
7
, 𝐶
8
} ⊕𝑃

2
∼ T-Learn(II), 𝐶

8
is learned

12 ∼‖ 𝐹
0

∪ {𝐶
7
, 𝐶
8
} ⊕𝑃

3
∼ Fail, ◻ derived

we know 𝐹
0

⊨T⟦𝐶
𝑖
⟧. By the property of resolution, it

is true that 𝐹
0

⊨T⟦𝑃[𝑖]⟧.
(ii) For theory lemma, it is true that ⊨T⟦𝑃[𝑖]⟧. So,

𝐹
0
⊨T⟦𝑃[𝑖]⟧.

Theorem 16. Given a clause set 𝐹
0
, if a certificate 𝑃 for 𝐹

0
is

well formed and ◻ ∈ ⌊𝑃⌋, then 𝐹
0
is unsatisfiable.

Proof. By Lemma 15, we know that 𝐹
0
⊨T◻ in this case.

By Theorem 16, certificate checking is actually checking
whether the certificate is well formed and contains the
empty clause. Checking the well formedness of a certifi-
cate can directly follow Definition 7. Only one traverse

from the first item to the last one is needed. Moreover,
the following properties make the checking process even
easier.

(i) Only checking for theory lemma is performed in
theory T. Once a theory lemma is proved valid, it can
be treated as a propositional clause.

(ii) For each individual proof rule, we have a dedicated
checker to check if the theory lemma is an instance
of the rule. In this way, the certificate checker is
extensible. Given a new proof rule, we need only to
add the corresponding lemma checker. Notice that
each proof rule defines an atomic deduction step; the
checking effort is much less than solving a constraint
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Table 4: Experiment results.

Case Input CDPLL (T) Certificate Checking
Lit Clause Learnt Time Lemmas Res Forget Mem Time

1 2 3 0 0.01 s 2 2 0 4 0.01 s
2 10 15 1 0.01 s 4 8 3 10 0.00 s
3 17 25 3 0.01 s 8 14 4 17 0.00 s
4 66 95 1069 0.08 s 1024 550 490 66 0.05 s
5 87 125 9537 0.71 s 8192 4146 4043 87 0.18 s
6 1157 2611 5197 1.39 s 22383 3711 2635 1051 0.23 s
7 1582 2173 16735 21.30 s 859886 8529 7438 1148 1.16 s
8 811 1037 5164 5.80 s 248159 4286 3580 555 0.41 s
9 4687 9433 759 1.00 s 1021 751 430 617 0.03 s
10 167 308 60 0.04 s 934 77 48 79 0.02 s
11 447 883 1464 0.53 s 15894 965 995 399 0.09 s
12 3930 6584 3046 2.22 s 8555 2468 1617 1639 0.14 s
13 3362 5154 2310 1.68 s 6204 1916 1251 1467 0.13 s
14 4615 7036 3244 3.71 s 9521 2308 1633 1776 0.13 s
15 2422 3726 828 0.43 s 587 616 509 428 0.03 s
16 5226 8614 9781 7.85 s 6305 3457 1723 2199 0.12 s
17 3073 4821 128729 87.65 s 74289 85711 84269 5899 5.16 s
18 2415 3710 2511 1.29 s 2165 1781 1377 1367 0.27 s
19 4151 6492 32991 21.26 s 26011 21015 20792 4497 1.24 s

⊤

𝐶6

𝐶5

𝑙1

𝑙4

¬𝑙4

𝑎 = 𝑏 → 𝑓(𝑎) = 𝑓(𝑏)

𝑙3

Figure 4: The implication graph in step 4.

in the theory T. For instance, only pattern matching
is needed to check if a theory lemma is an instance of
the monotonicity property of equality.

6. Experiments

Two criteria are adopted to assess our certificate approach:
the overhead for generating certificates, and the cost for
certificate checking. We implemented an SMT solver aCiNO
based on the CDPLL(T) algorithm. It uses the Nelson-Oppen
framework to solve combined theory. Currently, TEUF and

⊤

𝐶6

𝐶5

𝐶7

¬𝑙4

𝑙3

¬𝑙1

𝐶1

¬𝑙5 ¬𝑙6𝐶3
𝐶2

𝐶4

¬𝑃 𝑙2

𝑙1

Figure 5: The implication graph in steps 11 and 12.

TLRA are considered. The experiments are carried out on a
machinewith a E7200 dual core CPU (2.53GHz per core) and
2.0GB RAM.

All test cases are taken from SMT-LIB [22]. Our approach
is tested on 19 unsatisfiable instances from different folders
(in order to test it on different kinds of problem instances).
Experiment results are shown in Table 4.

In Table 4, the first column-group describes the scale of
the input problem. The input is transformed to its equivalent
conjunctive normal form, and the number of literals and
clauses are counted. In the CDPLL(T) procedure, once a
closed branch is encountered, a new clause will be learned.
The number of learned clauses is listed in the second column-
group. This number is equal to that in DPLL(T) since
certificate generation will not affect the search procedure of
the SMT problem. As in the DPLL(T) algorithm, the number
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Table 5: Overhead of our approach.

Test Case With cert (sec.) Without cert (sec.) Overhead (%)
NEQ.NEQ004 size4.smt2 0.63 0.60 4.62
NEQ.NEQ004 size5.smt2 19.87 18.27 8.74
PEQ.PEQ002 size5.smt2 5.29 4.85 9.07
PEQ.PEQ020 size5.smt2 1.29 1.20 7.47
QG-classification.loops6.dead dnd001.smt2 1.34 1.20 11.94
QG-classification.loops6.gensys brn004.smt2 1.06 0.95 11.81
QG-classification.loops6.gensys icl001.smt2 2.59 2.22 16.62
QG-classification.loops6.iso brn005.smt2 0.18 0.14 27.33
QG-classification.loops6.iso icl030.smt2 3.32 3.05 8.68
QG-classification.qg5.dead dnd007.smt2 35.62 34.55 3.09
QG-classification.qg5.gensys brn007.smt2 0.74 0.71 4.52
QG-classification.qg5.gensys icl100.smt2 14.29 13.60 5.07
SEQ.SEQ004 size5.smt2 0.68 0.54 26.93
SEQ.SEQ050 size3.smt2 0.19 0.18 7.03

of clause learning can be quite large (e.g., the 17th case). The
time used in CDPLL(T) is also presented. The third column-
group summarises the generated certificates. It is obvious that
the number of theory lemma items is usually very large. The
column of “Forget” is the number of forget items that forgets
an initial or resolution certificate item. All theory lemmas are
eventually forgotten, these items are not counted here. For
SMT problem, this is not surprising since the major work of
SMT solvers is in reasoning in the background theory. The
resources and time required to check the certificates are listed
in the Checking column-group. All certificates are checked to
be well formed.The “Mem” column is not the size of memory
consumed but the maximal number of clause items that are
stored in the memory during checking. Also, the time for
certificate checking is listed besides.

Regarding the certificate checking, the number of initial
clauses andmemory consumption is compared in Figure 6. It
is rather interesting that although the certificate itself could
be exponentially large with respect to the input problem,
the memory consumption will not grow in the same way.
The reason is that we have explicitly forgotten many items.
In particular, many theory lemma are referred locally. They
are only available in a short period of time, after which
they are forgotten. With the technique of forgetting items,
the certificate checking becomes more efficient. This is also
supported by data from the “Time” column in Table 4.

Towards the overhead of our approach, the experiment
is shown in Table 5. Tested cases are also from SMT-LIB. In
order to suppress the inaccurate measurement of time, we
intentionally selected time consuming cases (e.g., longer than
0.01 sec). The maximal overhead is about 27.33%, and the
average overhead is about 10.5%. It ismuch smaller compared
to other approaches [17, 21].

7. Conclusion

In this paper, a unified certificate framework for quantifier-
free SMT instances was presented. The certificate format is
simple, clean, and extensible to other background theories.
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Figure 6: Comparison between the number of initial clauses and
memory usage.

The certificate generation procedure can be easily integrated
to any DPLL(T)-based SMT solver. Soundness and com-
pleteness of the extension of DPLL(T) with the certificate
generation procedure were established. Experimental results
show that our certificate framework outperforms others in
both certificate generation and certificate checking.
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