
Research Article
A Class of Stochastic Nonlinear Delay System with Jumps

Ling Bai,1 Kai Zhang,1 and Wenju Zhao2

1 College of Mathematics, Jilin University, Changchun 130061, China
2 Florida State University, Department of Scientific Computing, Tallahassee, FL 32306, USA

Correspondence should be addressed to Ling Bai; bailing@jlu.edu.cn and Kai Zhang; kzhang@jlu.edu.cn

Received 30 August 2013; Revised 25 November 2013; Accepted 9 December 2013; Published 30 January 2014

Academic Editor: Chong Lin

Copyright © 2014 Ling Bai et al.This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We consider stochastic suppression and stabilization for nonlinear delay differential system. The system is assumed to satisfy local
Lipschitz condition and one-side polynomial growth condition. Since the system may explode in a finite time, we stochastically
perturb this system by introducing independent Brownian noises and Lévy noise feedbacks. The contributions of this paper are as
follows. (a) We show that Brownian noises or Lévy noise may suppress potential explosion of the solution for some appropriate
parameters. (b) Using the exponential martingale inequality with jumps, we discuss the fact that the sample Lyapunov exponent is
nonpositive. (c) Considering linear Lévy processes, by the strong law of large number for local martingale, sufficient conditions for
a.s. exponentially stability are investigated inTheorem 13.

1. Introduction

Usually, for a given nonlinear system
𝑥̇ (𝑡) = 𝑓 (𝑥 (𝑡) , 𝑡) or delay system
𝑥̇ (𝑡) = 𝑓 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝛿 (𝑡)) , 𝑡) ,

(1)

𝑓 satisfies the polynomial growth condition; the solutions
may explode in finite time. It is well know that noises can
stabilize the given unstable system or make this system even
more stable if it is already stable. To stabilize the system,
the authors in [1] introduced a polynomial Brownian noise
to suppress potential explosion and then considered another
linear Brownian noise to stabilize the suppressed equation.
For more details, refer to [1–3].

For example, considering a simple logistic equation
𝑥̇ (𝑡) = 𝑥 (1 + 𝑥) , (2)

with initial value 𝑥(0) = 1, the expression of the solution is
𝑥(𝑡) = 1/(−1 + 2𝑒

−𝑡

), and there has been only a local solution
for 1 ≤ 𝑡 ≤ log 2; that is, 𝑥(𝑡) will explode and the explosion
time is 𝜏

𝑒

= log 2. To suppress explosion and stabilize system
(2), the dependent scalar Brownian noises are introduced in
[1] and they disturbed system (2) into

𝑥̇ (𝑡) = 𝑥 (𝑡) [1 + 𝑥 (𝑡)] 𝑑𝑡 + 2𝑥 (𝑡) 𝑑𝑊

1

(𝑡) + 𝑥

2

(𝑡) 𝑑𝑊

2

(𝑡) ;

(3)

the theoretical proof and simulations show that noises may
not only suppress explosion of solution (3), but also stabilize
unstable system (2).

However, all of the papers mentioned above only con-
sidered the perturbation by Brownian noises. Recently,
there has been increasing attention devoted to the effect
of different noises. Non-Gaussian random processes also
play an important role in modelling stochastic dynamics.
Typical examples of non-Gaussian stochastic processes are
Lévy processes and processes arising from Poisson random
measures. Further we assume that the different stochastic
processes are independent.

Motivated by the previous articles [1–3], we will study the
following delay SDE with jumps:

𝑑𝑥 (𝑡) = 𝑓 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑡) 𝑑𝑡 + 𝜎|𝑥 (𝑡)|

𝛽

𝑥 (𝑡) 𝑑𝑊

1

(𝑡)

+ 𝑞|𝑥 (𝑡 − 𝜏)|

𝛽

󸀠

𝑥 (𝑡) 𝑑𝑊

2

(𝑡)

+ 𝑥 (𝑡) ∫

Y

𝐻(𝑥 (𝑡

−

) , 𝑥(𝑡 − 𝜏)

−

, 𝑢)

̃

𝑁 (𝑑𝑡, 𝑑𝑢) ,

(4)

with initial data

{𝑥 (𝑡) : −𝜏 ≤ 𝑡 ≤ 0} = {𝜉 (𝑡) : −𝜏 ≤ 𝑡 ≤ 0 ∈ 𝐶

𝑏

F
0

([−𝜏, 0])} .

(5)
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Here 𝑊
𝑖

(𝑡) (𝑖 = 1, 2) is defined on the probability space,
(Ω,F, {F

𝑡

}

𝑡≥0

, 𝑃) being a complete probability space with a
filtration {F

𝑡

}

𝑡≥0

satisfying the usual conditions (i.e., it is right
continuous andF

0

contains all P-null sets).𝑁(𝑑𝑡, 𝑑𝑢) is real-
valued Poisson countingmeasurewith characteristicmeasure
𝜆 on a measurable subset Y of [0,∞) with 𝜆(Y ) < ∞,
̃

𝑁(𝑑𝑡, 𝑑𝑢) = 𝑁(𝑑𝑡, 𝑑𝑢) − 𝜆(𝑑𝑢)𝑑𝑡. 𝑊

𝑖

(𝑡) is the 1-dimensional
standard Brownian motion with𝑊

𝑖

(0) = 0. We assume that
𝑊

𝑖

(𝑡) and Poisson process 𝑁 are independent. Let 𝜏 > 0

and 𝐶([−𝜏, 0]; 𝑅𝑛

) denote the family of continuous function
𝜙 from [−𝜏, 0] to 𝑅

𝑛, which is a Banach space with the
norm ‖𝜙‖ = sup

−𝜏≤𝜃≤0

|𝜙(𝜃)|. Denote by 𝐶𝑏

F
0

([−𝜏, 0]; 𝑅

𝑛

) the
family of all bounded,F

0

-measurable, 𝐶([−𝜏, 0]; 𝑅𝑛

)-valued
random variable.

We will impose the following assumptions on 𝑓 : 𝑅

𝑛

×

𝑅

𝑛

× 𝑅

+

→ 𝑅

𝑛 as local Lipschitz continuous and satisfy the
polynomial growth condition.

Assumption 1. For any 𝑡 ≥ 0, 𝑢 ∈ Y , 𝑥, 𝑦 ∈ 𝑅

𝑛, and
𝐻(𝑥, 𝑦, 𝑢) > −1. For each integer 𝑘 ≥ 1, . . ., there is a positive
number 𝐿

𝑘

such that
󵄨

󵄨

󵄨

󵄨

𝑓 (𝑥

1

, 𝑦

1

, 𝑡) − 𝑓 (𝑥

2

, 𝑦

2

, 𝑡)

󵄨

󵄨

󵄨

󵄨

2

+ ∫

Y

󵄨

󵄨

󵄨

󵄨

𝑥

1

𝐻(𝑥

1

, 𝑦

1

, 𝑢) − 𝑥

2

𝐻(𝑥

2

, 𝑦

2

, 𝑢)

󵄨

󵄨

󵄨

󵄨

2

𝜆 (𝑑𝑢)

≤ 𝐿

𝑘

(

󵄨

󵄨

󵄨

󵄨

𝑥

1

− 𝑥

2

󵄨

󵄨

󵄨

󵄨

2

+

󵄨

󵄨

󵄨

󵄨

𝑦

1

− 𝑦

2

󵄨

󵄨

󵄨

󵄨

2

) ,

(6)

for all 𝑡 ≥ 0 and those 𝑥
1

, 𝑥

2

, 𝑦

1

, 𝑦

2

∈ 𝑅

𝑛 with |𝑥
1

| ∨ |𝑥

2

| ∨

|𝑦

1

| ∨ |𝑦

2

| ≤ 𝑘.

Assumption 2. There are some nonnegative numbers 𝛼, 𝜅, 𝜅,
and 𝛾 such that

⟨𝑥, 𝑓 (𝑥, 𝑦, 𝑡)⟩ ≤ |𝑥|

2

(𝜅|𝑥|

𝛼

+ 𝜅

󵄨

󵄨

󵄨

󵄨

𝑦

󵄨

󵄨

󵄨

󵄨

𝛼

+ 𝛾) (7)

for all (𝑥, 𝑦, 𝑡) ∈ 𝑅𝑛

× 𝑅

𝑛

× 𝑅

+

.

In reference to the existing results in the literature, our
contributions are as follows.

(i) Use stochastic delay differential equation with jump
diffusion to model the evolutions of nonlinear
dynamics.

(ii) Discuss the global solution of the stochastic equation
under polynomial growth condition; in particular, we
compare the effect of suppression solution of different
type of noises.

(iii) For stabilization of noise, we can verify that the linear
jumpprocess has an effect on a.s. exponential stability.

To the best of our knowledge, under the assumption of
polynomial growth condition, analysis of nonlinear stochas-
tic system with jumps has not been fully investigated and
few results have been available so far. We aim to discuss the
question in this work.

The organization of the paper is as follows. Section 2
shows the global solution of system (4), which indicates that
Brownian noises or Lévy noise may suppress potential explo-
sion of the solution for some appropriate parameters. The

results of Section 3 guarantee that SDE (4) is stochastically
ultimate boundedness. Ourmain results emerge in Section 4.
We discuss the sample Lyapunov exponent is nonpositive and
reveal the stabilization effect of Lévy noise. Conclusions and
extensions are made in Section 5.

2. Global Solution

Now we first prove the existence of the global solution to (4).

Theorem 3. Under the conditions of Assumptions 1 and 2, for
any given initial data {𝜉(𝑡) : −𝜏 ≤ 𝑡 ≤ 0 ∈ 𝐶

𝑏

F
0

([−𝜏, 0])},
supposing that 2𝛽 > max{𝛼, 2𝛽󸀠

} and 𝜎 ̸= 0, there a.s. exists a
unique global solution 𝑥(𝑡) to (4) on 𝑡 ∈ [−𝜏,∞).

Proof. Since both the drift term and the diffusion terms of (4)
are locally Lipschitz, by similar standard truncated argument
[4, 5], there is a unique local maximal solution 𝑥(𝑡) on 𝑡 ∈

[−𝜏, 𝜏

𝑒

), where 𝜏
𝑒

is the explosion time defined by

𝜏

𝑒

=: inf {𝑡 > 0 : |𝑥 (𝑡)| = ∞} . (8)

To show that this solution is actually global, we need to
prove that 𝜏

𝑒

= ∞ a.s.
Let 𝑚

0

be a sufficiently large positive number such that
|𝜉(0)| ≤ 𝑚

0

. For each𝑚 ≥ 𝑚

0

, we define the stopping time

𝜏

𝑚

= inf {𝑡 ∈ [0, 𝜏
𝑒

) : |𝑥 (𝑡)| > 𝑚} . (9)

Clearly 𝜏
𝑚

is increasing as𝑚 → ∞ and lim
𝑚→∞

𝜏

𝑚

=: 𝜏

∞

≤

𝜏

𝑒

; if we can obtain that 𝜏
∞

= ∞ a.s., then 𝜏
𝑒

= ∞ a.s.; that is,
to complete the proof, all we need to show is that 𝜏

∞

= ∞ a.s.;
this is also equivalent to proving that, for any 𝑡 > 0, 𝑃(𝜏

𝑚

≤

𝑡) → 0 as 𝑚 → ∞. For 𝑝 ∈ (0, 1), define a 𝐶2-function:
𝑅

𝑛

× S → 𝑅

+

by

𝑉 (𝑥) = |𝑥 (𝑡)|

𝑝

. (10)

If, for any 𝑚 > 0 and |𝑥| > 𝑚, one can apply Itô formula to
compute that

𝑑𝑉 (𝑥) = 𝐿𝑉 (𝑥, 𝑦) 𝑑𝑡 + 𝑝𝜎|𝑥 (𝑡)|

𝛽+𝑝

𝑑𝑊

1

(𝑡)

+ 𝑝𝑞|𝑥 (𝑡)|

𝑝

|𝑥 (𝑡 − 𝜏)|

𝛽

󸀠

𝑑𝑊

2

(𝑡)

+ ∫

Y
|𝑥|

𝑝

[(1 + 𝐻 (𝑥, 𝑦, 𝑢))

𝑝

− 1]

̃

𝑁 (𝑑𝑡, 𝑑𝑢) ,

(11)

where 𝑦(𝑡) = 𝑥(𝑡 − 𝜏) and 𝐿𝑉 is defined as

𝐿𝑉 (𝑥, 𝑦)

= 𝑝|𝑥|

𝑝−2

⟨𝑥, 𝑓 (𝑥, 𝑦, 𝑡)⟩ +

𝑝 (𝑝 − 1)

2

𝑞

2

|𝑥|

𝑝
󵄨

󵄨

󵄨

󵄨

𝑦

󵄨

󵄨

󵄨

󵄨

2𝛽

󸀠

+

𝑝 (𝑝 − 1)

2

𝜎

2

|𝑥|

2𝛽+𝑝

+ ∫

Y

{|𝑥|

𝑝

[

󵄨

󵄨

󵄨

󵄨

1 + 𝐻 (𝑥, 𝑦, 𝑢)

󵄨

󵄨

󵄨

󵄨

𝑝

− 1 − 𝑝𝐻 (𝑥, 𝑦, 𝑢)]} 𝜆 (𝑑𝑢) ,

(12)
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therefore we get from Dynkin’s formula [6], taking expecta-
tion from two sides of (11)

E𝑉 (𝑥 (𝜏

𝑚

∧ 𝑇)) = E𝑉 (𝜉 (0)) + E∫
𝜏

𝑚
∧𝑇

0

𝐿𝑉 (𝑥 (𝑠) , 𝑦 (𝑠)) 𝑑𝑠.

(13)

Using the inequality 𝑥𝑟

≤ 1 + 𝑟(𝑥 − 1), 𝑥 ≥ 0, 0 ≤ 𝑟 ≤ 1,
we have

(1 + 𝐻 (𝑥, 𝑦, 𝑢))

𝑝

− 1 − 𝑝𝐻 (𝑥, 𝑦, 𝑢) ≤ 0 (14)
because𝐻(𝑥, 𝑦, 𝑢) > −1.

Combining (11) and (14) and recalling the well-known
Young inequality, we therefore have

𝐿𝑉 (𝑥, 𝑦) ≤ 𝑝|𝑥|

𝑝−2

|𝑥|

2

(𝜅|𝑥|

𝛼

+ 𝜅

󵄨

󵄨

󵄨

󵄨

𝑦

󵄨

󵄨

󵄨

󵄨

𝛼

+ 𝛾)

+

𝑝 (𝑝 − 1)

2

𝑞

2

|𝑥|

𝑝
󵄨

󵄨

󵄨

󵄨

𝑦

󵄨

󵄨

󵄨

󵄨

2𝛽

󸀠

+

𝑝 (𝑝 − 1)

2

𝜎

2

|𝑥|

2𝛽+𝑝

≤

𝑝 (𝑝 − 1)

2

𝜎

2

|𝑥|

2𝛽+𝑝

+ 𝑝𝜅|𝑥|

𝛼+𝑝

+ 𝑝𝜅|𝑥|

𝑝
󵄨

󵄨

󵄨

󵄨

𝑦

󵄨

󵄨

󵄨

󵄨

𝛼

+ 𝑝𝛾|𝑥|

𝑝

+ 𝑞

2

|𝑥|

𝑝
󵄨

󵄨

󵄨

󵄨

𝑦

󵄨

󵄨

󵄨

󵄨

2𝛽

󸀠

≤

𝑝 (𝑝 − 1)

2

𝜎

2

|𝑥|

2𝛽+𝑝

+ 𝑝(𝜅 +

𝜅𝑝

𝛼 + 𝑝

) |𝑥|

𝛼+p

+

𝑝𝑞

2

2𝛽

󸀠

+ 𝑝

|𝑥|

2𝛽

󸀠
+𝑝

+

2𝑞

2

𝛽

󸀠

2𝛽

󸀠

+ 𝑝

󵄨

󵄨

󵄨

󵄨

𝑦

󵄨

󵄨

󵄨

󵄨

2𝛽

󸀠
+𝑝

+ 𝑝

𝜅𝛼

𝛼 + 𝑝

󵄨

󵄨

󵄨

󵄨

𝑦

󵄨

󵄨

󵄨

󵄨

𝛼+𝑝

+ 𝑝𝛾|𝑥|

𝑝

;

(15)

then we have from (15) that
E𝑉 (𝑥 (𝜏

𝑚

∧ 𝑇))

= 𝑉 (𝜉 (0)) + E∫
𝜏

𝑚
∧𝑇

0

𝑁(𝑥 (𝑠)) 𝑑𝑠

+

𝛼𝜅𝑝

𝛼 + 𝑝

E∫
𝜏

𝑚
∧𝑇

0

[|𝑥 (𝑠 − 𝜏)|

𝛼+𝑝

− |𝑥 (𝑠)|

𝛼+𝑝

] 𝑑𝑠

+

2𝑞

2

𝛽

󸀠

2𝛽

󸀠

+ 𝑝

E∫
𝜏

𝑚
∧𝑇

0

[|𝑥 (𝑠 − 𝜏)|

2𝛽

󸀠
+𝑝

− |𝑥 (𝑠)|

2𝛽

󸀠
+𝑝

] 𝑑𝑠,

(16)

where

∫

𝜏

𝑚
∧𝑇

0

[|𝑥 (𝑠 − 𝜏)|

𝛼+𝑝

− |𝑥 (𝑠)|

𝛼+𝑝

] 𝑑𝑠

≤ ∫

𝜏

𝑚
∧𝑇−𝜏

−𝜏

|𝑥 (𝑠)|

𝛼+𝑝

𝑑𝑠 − ∫

𝜏

𝑚
∧𝑇

0

|𝑥 (𝑠)|

𝛼+𝑝

𝑑𝑠

≤ ∫

𝜏

𝑚
∧𝑇

−𝜏

|𝑥 (𝑠)|

𝛼+𝑝

𝑑𝑠 − ∫

𝜏

𝑚
∧𝑇

0

|𝑥 (𝑠)|

𝛼+𝑝

𝑑𝑠

≤ ∫

0

−𝜏

󵄨

󵄨

󵄨

󵄨

𝜉 (𝑠)

󵄨

󵄨

󵄨

󵄨

𝛼+𝑝

𝑑𝑠 < +∞,

∫

𝜏

𝑚
∧𝑇

0

[|𝑥 (𝑠 − 𝜏)|

2𝛽

󸀠
+𝑝

− |𝑥 (𝑠)|

2𝛽

󸀠
+𝑝

] 𝑑𝑠

≤ ∫

0

−𝜏

󵄨

󵄨

󵄨

󵄨

𝜉 (𝑠)

󵄨

󵄨

󵄨

󵄨

2𝛽

󸀠
+𝑝

𝑑𝑠 < +∞,

𝑁 (𝑥) =

𝑝 (𝑝 − 1)

2

𝜎

2

|𝑥|

2𝛽+𝑝

+ 𝑝 (𝜅 + 𝜅) |𝑥|

𝛼+𝑝

+ 𝑞

2

|𝑥|

2𝛽

󸀠
+𝑝

+ 𝑝𝛾|𝑥|

𝑝

.

(17)

Noting that 𝑝 ∈ (0, 1), and 2𝛽 > max{𝛼, 2𝛽󸀠

}, by
the boundedness of polynomial function 𝑁(𝑥), there is a
constant𝑁 such that𝑁(𝑥) ≤ 𝑁. Consider

E𝑉 (𝑥 (𝜏

𝑚

∧ 𝑇))

≤ 𝑉 (𝜉 (0)) + 𝑁𝑇 +

𝛼𝜅𝑝

𝛼 + 𝑝

∫

0

−𝜏

󵄨

󵄨

󵄨

󵄨

𝜉 (𝑠)

󵄨

󵄨

󵄨

󵄨

𝛼+𝑝

𝑑𝑠

+

2𝑞

2

𝛽

󸀠

2𝛽

󸀠

+ 𝑝

∫

0

−𝜏

󵄨

󵄨

󵄨

󵄨

𝜉 (𝑠)

󵄨

󵄨

󵄨

󵄨

2𝛽

󸀠
+𝑝

𝑑𝑠 =: 𝑁

𝑇

,

(18)

where𝑁
𝑇

is independent of𝑚.
By the definition of 𝜏

𝑚

, |𝑥(𝜏

𝑚

)| = 𝑚, let Ω
𝑚

= {𝜏

𝑚

≤ 𝑇}

for sufficient large𝑚 and for every 𝜔 ∈ Ω

𝑚

such that 𝑥(𝜏
𝑚

, 𝜔)

equals𝑚; hence,

𝑃 (𝜏

𝑚

≤ 𝑇)

󵄨

󵄨

󵄨

󵄨

𝑥 (𝜏

𝑚

)

󵄨

󵄨

󵄨

󵄨

𝑝

= 𝑃 (𝜏

𝑚

≤ 𝑇)𝑉 (𝑥 (𝜏

𝑚

))

≤ E [𝐼
{𝜏

𝑚
≤𝑇}

𝑉 (𝑥 (𝜏

𝑚

∧ 𝑇))]

≤ E𝑉 (𝑥 (𝜏

𝑚

∧ 𝑇)) ≤ 𝑁

𝑇

.

(19)

Letting𝑚 → ∞ implies that

lim sup
𝑚→∞

𝑃 (𝜏

𝑚

≤ 𝑇) = 0. (20)

So we must obtain 𝜏

∞

= ∞ a.s., as required. The proof is
complete.

The key of this proof in Theorem 3 is the boundedness
of 𝐿𝑉(𝑥, 𝑦), under the conditions of Assumptions 1 and 2
and 2𝛽 > max{𝛼, 2𝛽󸀠

}, which imply that the Brownian
noise 𝜎(𝑟(𝑡))|𝑥(𝑡)|

𝛽

𝑥(𝑡)𝑑𝑊

1

(𝑡) plays the important role to
suppress potential explosion of the solution and guarantees
the existence of the global solution.

In what follows, in order to highlight the explosive
suppression by jumpprocesses, wewill consider the following
suitable condition.

Assumption 4. For any 𝑡 ≥ 0, 𝑥 ∈ 𝑅

𝑛

, 𝑢 ∈ Y , and𝐻(𝑥, 𝑦, 𝑢) >
−1. If 𝑝 ∈ (0, 1), there exists 𝛼󸀠

, 𝛼

󸀠󸀠

, 𝛿, 𝛿

1

, 𝛿

2

≥ 0 and 𝛼󸀠

> 𝛼

󸀠󸀠

such that

𝐽 (𝑥, 𝑦, 𝑝) =: ∫

Y

[

󵄨

󵄨

󵄨

󵄨

1 + 𝐻 (𝑥, 𝑦, 𝑢)

󵄨

󵄨

󵄨

󵄨

𝑝

− 1 − 𝑝𝐻 (𝑥, 𝑦, 𝑢)] 𝜆 (𝑑𝑢)

≤ 𝛿 − 𝛿

1

|𝑥|

𝛼

󸀠

+ 𝛿

2

󵄨

󵄨

󵄨

󵄨

𝑦

󵄨

󵄨

󵄨

󵄨

𝛼

󸀠󸀠

.

(21)

We still obtain the existence of global solution of (4).

Theorem 5. Under the conditions of Assumptions 1, 2, and 4,
if for any given initial data {𝜉(𝑡) : −𝜏 ≤ 𝑡 ≤ 0 ∈ 𝐶

𝑏

F
0

([−𝜏, 0])},
2𝛽 ≤ 𝛼 ≤ 𝛼

󸀠, there a.s. exists a unique global solution 𝑥(𝑡) to
(4) on 𝑡 ∈ [−𝜏,∞).
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Proof. Since the proof is similar to that ofTheorem 3, we here
only sketch the proof to point out the variation between them.
Noting (12), (15), and (16), we obtain from Assumption 4 that
for 𝑝 ∈ (0, 1), that

𝐿𝑉 (𝑥, 𝑦)

≤

𝑝 (𝑝 − 1)

2

𝜎

2

|𝑥|

2𝛽+𝑝

+ 𝑝(𝜅 +

𝜅𝑝

𝛼 + 𝑝

) |𝑥|

𝛼+𝑝

+ 𝑝

𝜅𝛼

𝛼 + 𝑝

󵄨

󵄨

󵄨

󵄨

𝑦

󵄨

󵄨

󵄨

󵄨

𝛼+𝑝

+ 𝑝𝛾|𝑥|

𝑝

+ ∫

Y

{|𝑥|

𝑝

[|1 + 𝐻 (𝑥, 𝑘, 𝑢)|

𝑝

− 1 − 𝑝𝐻 (𝑥, 𝑘, 𝑢)]} 𝜆 (𝑑𝑢)

≤

𝑝 (𝑝 − 1)

2

𝜎

2

|𝑥|

2𝛽+𝑝

− 𝛿

1

|𝑥|

𝛼

󸀠
+𝑝

+ 𝑝(𝜅 +

𝜅𝑝

𝛼 + 𝑝

) |𝑥|

𝛼+𝑝

+

𝛿

2

𝑝

𝛼

󸀠󸀠

+ 𝑝

|𝑥|

𝛼

󸀠󸀠
+𝑝

+ 𝑝

𝜅𝛼

𝛼 + 𝑝

󵄨

󵄨

󵄨

󵄨

𝑦

󵄨

󵄨

󵄨

󵄨

𝛼+𝑝

+

𝛿

2

𝛼

󸀠󸀠

𝛼

󸀠󸀠

+ 𝑝

󵄨

󵄨

󵄨

󵄨

𝑦

󵄨

󵄨

󵄨

󵄨

𝛼

󸀠󸀠
+𝑝

+ (𝑝𝛾 + 𝛿) |𝑥|

𝑝

.

(22)

Therefore, we have

E𝑉 (𝑥 (𝜏

𝑚

∧ 𝑇))

= 𝑉 (𝜉 (0)) + E∫
𝜏

𝑚
∧𝑇

0

𝑁

1

(𝑥 (𝑠)) 𝑑𝑠 +

𝛼𝜅𝑝

𝛼 + 𝑝

× E∫
𝜏

𝑚
∧𝑇

0

[|𝑥 (𝑠 − 𝜏)|

𝛼+𝑝

− |𝑥 (𝑠)|

𝛼+𝑝

] 𝑑𝑠

+

𝛿

2

𝛼

󸀠󸀠

𝛼

󸀠󸀠

+ 𝑝

E∫
𝜏

𝑚
∧𝑇

0

[|𝑥 (𝑠 − 𝜏)|

𝛼

󸀠󸀠
+𝑝

− |𝑥 (𝑠)|

𝛼

󸀠󸀠
+𝑝

] 𝑑𝑠,

(23)

where

𝑁

1

(𝑥) =

𝑝 (𝑝 − 1)

2

𝜎

2

|𝑥|

2𝛽+𝑝

− 𝛿

1

|𝑥|

𝛼

󸀠
+𝑝

+𝑝 (𝜅 + 𝜅) |𝑥|

𝛼+𝑝

+ 𝛿

2

|𝑥|

𝛼

󸀠󸀠
+𝑝

+ (𝑝𝛾 + 𝛿) |𝑥|

𝑝

.

(24)

Noting that 𝑝 ∈ (0, 1) and 𝛼󸀠

> 𝛼 ≥ 2𝛽, by the bound-
edness of polynomial functions, there is a constant 𝑁

1

such
that𝑁

1

(𝑥) ≤ 𝑁

1

,

E𝑉 (𝑥 (𝜏

𝑚

∧ 𝑇))

≤ 𝑉 (𝜉 (0)) + 𝑁

1

𝑇 +

𝛼𝜅𝑝

𝛼 + 𝑝

∫

0

−𝜏

󵄨

󵄨

󵄨

󵄨

𝜉 (𝑠)

󵄨

󵄨

󵄨

󵄨

𝛼+𝑝

𝑑𝑠

+

𝛿

2

𝛼

󸀠󸀠

𝛼

󸀠󸀠

+ 𝑝

∫

0

−𝜏

󵄨

󵄨

󵄨

󵄨

𝜉 (𝑠)

󵄨

󵄨

󵄨

󵄨

𝛼

󸀠󸀠
+𝑝

=: 𝑁

𝑇

,

(25)

where𝑁
𝑇

is independent of𝑚.
By 𝑝 ∈ (0, 1) and 𝛼

󸀠

> 𝛼 ≥ 2𝛽, the boundedness of
𝐿𝑉(𝑥, 𝑦) follows; thus, the desired assertion can be carried
out the same procedure as the last part of Theorem 3.

Remark 6. Theorem 5 indicates under Assumptions 1, 2, and
4 and 2𝛽 ≤ 𝛼 < 𝛼

󸀠 that jump diffusion process becomes the
leading role of suppressing the explosion of the solution.

Therefore, we give two simulations underTheorems 3 and
5. See Figure 1.

3. Stochastic Ultimate Boundedness

Theorems 3 and 5 show that the solution of SDE (4) with a
given initial datawill not explode.This nice property provides
us with a great opportunity to discuss how the solution
varies in 𝑅

𝑛 in more details. In this section, we will give
two definitions and then give sufficient conditions which
guarantee SDE (4) is stochastically ultimate boundedness.

Definition 7. The solutions 𝑥(𝑡) of SDE (4) are said to be
asymptotically bounded in pth moment if there is a positive
constant 𝐾

𝑝

such that the solution of SDE (4) with a given
initial value has the property that

lim sup
𝑡→∞

E|𝑥 (𝑡)|
𝑝

≤ 𝐾

𝑝 (26)

for any initial data {𝜉(𝑡) : −𝜏 ≤ 𝑡 ≤ 0 ∈ 𝐶

𝑏

F
0

([−𝜏, 0])}.

Definition 8. SDE (4) is said to be stochastically ultimate
boundedness if, for any 𝜀 ∈ (0, 1), there exist positive
constants 𝜒 = 𝜒(𝜖) such that

lim sup
𝑡→+∞

𝑃 {|𝑥 (𝑡)| ≤ 𝜒} ≥ 1 − 𝜖, (27)

where 𝑥(𝑡) is the solution of SDE (4) with any positive initial
data.

In the light of Markov inequality, it is obvious that if a
stochastic equation is pthmoment boundedness, its solutions
must be stochastically ultimately bounded. So we will begin
with the following lemma and make use of it to obtain the
stochastically ultimate boundedness of SDE (4).

Lemma 9. Under the conditions of Assumptions 1 and 2, for
𝑝 ∈ (0, 1), if 2𝛽 > 𝛼, 𝜎 ̸= 0, there exists a constant 𝐾

𝑝

such
that the global solution 𝑥(𝑡) of SDE (4) with any initial data
{𝜉(𝑡) : −𝜏 ≤ 𝑡 ≤ 0 ∈ 𝐶

𝑏

F
0

([−𝜏, 0])} has the property that

lim sup
𝑡→∞

E (|𝑥 (𝑡)|
𝑝

) ≤ 𝐾

𝑝

, (28)

where𝐾
𝑝

is dependent on𝑝 and independent of the initial data.

Proof. First, Theorem 3 indicates that the solution 𝑥(𝑡) of (4)
will exist for 𝑡 ∈ [−𝜏,∞)with probability 1. For any 𝜀 > 0 and
𝑝 ∈ (0, 1), by virtue of Dynkin’s formula to 𝑒𝜀𝑡𝑉(𝑥), we obtain

E𝑉 (𝑥) = 𝑒

−𝜀𝑡

𝑉 (𝜉 (0))

+ 𝑒

−𝜀𝑡E∫
𝑡

0

𝑒

𝜀𝑠

[𝐿𝑉 (𝑥 (𝑠) , 𝑦 (𝑠)) + 𝜀𝑉 (𝑥 (𝑠))] 𝑑𝑠.

(29)
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Figure 1: The simulation solutions of delay stochastic system (4) under the different conditions of Theorems 3 and 5.

Here 𝐿𝑉(𝑥, 𝑦) is defined as (12). Therefore, by Assumptions 1
and 2, (11)–(15), we have

𝐿𝑉 (𝑥, 𝑦) + 𝜀𝑉 (𝑥)

≤

𝑝 (𝑝 − 1)

2

𝜎

2

|𝑥|

2𝛽+𝑝

+ 𝑝(𝜅 +

𝜅𝑝

𝛼 + 𝑝

) |𝑥|

𝛼+𝑝

+ 𝑝

𝜅𝛼

𝛼 + 𝑝

󵄨

󵄨

󵄨

󵄨

𝑦

󵄨

󵄨

󵄨

󵄨

𝛼+𝑝

+ (𝑝𝛾 + 𝜀) |𝑥|

𝑝

.

(30)

Similar to the proof ofTheorem 3, we have from (29) and (30)
that
E𝑉 (𝑥 (𝑡))

= 𝑒

−𝜀𝑡

𝑉 (𝜉 (0)) + 𝑒

−𝜀𝑡

E∫
𝑡

0

𝑒

𝜀𝑠

𝑁

∗

(𝑥 (𝑠)) 𝑑𝑠

+ 𝑒

−𝜀𝑡

𝛼𝜅𝑝

𝛼 + 𝑝

E∫
𝑡

0

𝑒

𝜀𝑠

[|𝑥 (𝑠 − 𝜏)|

𝛼+𝑝

− 𝑒

𝜀𝜏

|𝑥 (𝑠)|

𝛼+𝑝

] 𝑑𝑠,

(31)
where

𝑁

∗

(𝑥) =

𝑝 (𝑝 − 1)

2

𝜎

2

|𝑥|

2𝛽+𝑝

+ 𝑝(𝜅 +

𝜅𝑝

𝛼 + 𝑝

) |𝑥|

𝛼+𝑝

+ 𝑒

𝜀𝜏

𝑝𝜅𝛼

𝛼 + 𝑝

|𝑥|

𝛼+𝑝

+ (𝑝𝛾 + 𝜀) |𝑥|

𝑝

,

(32)

∫

𝑡

0

𝑒

𝜀𝑠

[|𝑥 (𝑠 − 𝜏)|

𝛼+𝑝

− 𝑒

𝜀𝜏

|𝑥 (𝑠)|

𝛼+𝑝

] 𝑑𝑠

= ∫

𝑡−𝜏

−𝜏

𝑒

𝜀(𝑠+𝜏)

|𝑥 (𝑠)|

𝛼+𝑝

𝑑𝑠 − ∫

𝑡

0

e𝜀(𝑠+𝜏)|𝑥 (𝑠)|𝛼+𝑝𝑑𝑠

≤ ∫

0

−𝜏

𝑒

𝜀(𝑠+𝜏)
󵄨

󵄨

󵄨

󵄨

𝜉 (𝑠)

󵄨

󵄨

󵄨

󵄨

𝛼+𝑝

𝑑𝑠 < ∞.

(33)
Notice that 𝜎 ̸= 0; if 𝑝 ∈ (0, 1) and 2𝛽 > 𝛼, (32) has upper

boundedness𝑁∗

(𝑥) ≤ 𝑁

∗, whichmeans that, combinedwith
(31),

E𝑉 (𝑥) ≤ 𝑒

−𝜀𝑡

𝑉 (𝜉 (0)) +

𝑁

∗

𝜀

(1 − 𝑒

−𝜀𝑡

)

+ 𝑒

−𝜀𝑡

𝛼𝜅𝑝

𝛼 + 𝑝

∫

0

−𝜏

𝑒

𝜀(𝑠+𝜏)
󵄨

󵄨

󵄨

󵄨

𝜉 (𝑠)

󵄨

󵄨

󵄨

󵄨

𝛼+𝑝

𝑑𝑠.

(34)

Letting 𝑡 → ∞ gives

lim sup
𝑡→∞

E|𝑥 (𝑡)|
𝑝

≤

𝑁

∗

𝜀

.
(35)

Lemma 9󸀠. Under the conditions of Assumptions 1, 2, and 4,
supposing that 𝑝 ∈ (0, 1) and 2𝛽 ≤ 𝛼 < 𝛼

󸀠, there exists a
constant 𝐾

𝑝

such that the global solution 𝑥(𝑡) of SDE (4) with
any given positive initial value has the property that

lim sup
𝑡→∞

E (|𝑥 (𝑡)|
𝑝

) ≤ 𝐾

𝑝

, (36)

where 𝐾
𝑝

is dependent on 𝑝 and independent of the initial
value.

In order to complete the proof, we only show the key step,
from (29), combined with (22), which was rewritten as
E𝑉 (𝑥 (𝑡))

= 𝑒

−𝜀𝑡

𝑉 (𝜉 (0)) + 𝑒

−𝜀𝑡

E∫
𝑡

0

𝑒

𝜀𝑠

𝑁

∗

1

(𝑥 (𝑠)) 𝑑𝑠

+ 𝑒

−𝜀𝑡

𝛼𝜅𝑝

𝛼 + 𝑝

E∫
𝑡

0

𝑒

𝜀𝑠

[|𝑥 (𝑠 − 𝜏)|

𝛼+𝑝

− 𝑒

𝜀𝜏

|𝑥 (𝑠)|

𝛼+𝑝

] 𝑑𝑠

+ 𝑒

−𝜀𝑡

𝛿

2

𝛼

󸀠󸀠

𝛼

󸀠󸀠

+ 𝑝

E∫
𝑡

0

𝑒

𝜀𝑠

[|𝑥 (𝑠 − 𝜏)|

𝛼

󸀠󸀠
+𝑝

− 𝑒

𝜀𝜏

|𝑥 (𝑠)|

𝛼

󸀠󸀠
+𝑝

] 𝑑𝑠,

(37)
where
𝑁

∗

1

(𝑥)

=

𝑝 (𝑝 − 1)

2

𝜎

2

|𝑥|

2𝛽+𝑝

− 𝛿

1

|𝑥|

𝛼

󸀠
+𝑝

+ 𝑝(𝜅 +

𝜅𝑝

𝛼 + 𝑝

) |𝑥|

𝛼+𝑝

+

𝛿

2

𝑝

𝛼

󸀠󸀠

+ 𝑝

|𝑥|

𝛼

󸀠󸀠
+𝑝

+ 𝑝

𝑒

𝜀𝜏

𝜅𝛼

𝛼 + 𝑝

|𝑥|

𝛼+𝑝

+

𝑒

𝜀𝜏

𝛿

2

𝛼

󸀠󸀠

𝛼

󸀠󸀠

+ 𝑝

|𝑥|

𝛼

󸀠󸀠
+𝑝

+ (𝑝𝛾 + 𝛿 + 𝜀) |𝑥|

𝑝

,

(38)

∫

𝑡

0

𝑒

𝜀𝑠

[|𝑥 (𝑠 − 𝜏)|

𝛼

󸀠󸀠
+𝑝

− 𝑒

𝜀𝜏

|𝑥 (𝑠)|

𝛼

󸀠󸀠
+𝑝

] 𝑑𝑠

≤ ∫

0

−𝜏

𝑒

𝜀(𝑠+𝜏)
󵄨

󵄨

󵄨

󵄨

𝜉 (𝑠)

󵄨

󵄨

󵄨

󵄨

𝛼

󸀠󸀠
+𝑝

𝑑𝑠 < ∞.

(39)
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Because of 2𝛽 ≤ 𝛼 < 𝛼

󸀠, 𝛼󸀠󸀠

< 𝛼

󸀠, the coefficient
of polynomial in (38) is negative, it follows boundedness of
𝑁

∗

1

(𝑥). Repeating the procedure of Lemma 9, we have from
(37) and (38) that

E𝑉 (𝑥) ≤ 𝑒

−𝜀𝑡

𝑉 (𝜉 (0)) +

𝑁

∗

1

𝜀

(1 − 𝑒

−𝜀𝑡

)

+ 𝑒

−𝜀𝑡

𝛼𝜅𝑝

𝛼 + 𝑝

∫

0

−𝜏

𝑒

𝜀(𝑠+𝜏)
󵄨

󵄨

󵄨

󵄨

𝜉 (𝑠)

󵄨

󵄨

󵄨

󵄨

𝛼+𝑝

𝑑𝑠

+ 𝑒

−𝜀𝑡

𝛿

2

𝛼

󸀠󸀠

𝛼

󸀠󸀠

+ 𝑝

∫

0

−𝜏

𝑒

𝜀(𝑠+𝜏)
󵄨

󵄨

󵄨

󵄨

𝜉 (𝑠)

󵄨

󵄨

󵄨

󵄨

𝛼

󸀠󸀠
+𝑝

𝑑𝑠;

(40)

the rest of proof can be completed. Omit it here.

This means that the solution is bounded in the pth
moment; stochastically ultimate boundedness will follow
directly. It shows that the solution trajectory is bounded with
large probability.

Theorem 10. The solution of (4) is stochastically ultimately
bounded under the condition of Lemma 9 or Lemma 9󸀠; that
is, for any 𝜖 ∈ (0, 1), there is a positive constant 𝜒(= 𝜒(𝜖)) such
that for any positive initial value, the solution of (4) has the
property that

lim sup
𝑡→+∞

𝑃 {|𝑥 (𝑡)| > 𝜒} < 𝜖. (41)

Proof. This can be easily verified by Chebyshev’s inequality
and Lemma 9 or Lemma 9󸀠, by choosing 𝜒 = (𝐾

𝑝

/𝜖)

1/𝑝 to be
sufficiently large because of the following

𝑃 (|𝑥 (𝑡)| > 𝜒) ≤

E [|𝑥|
𝑝

]

𝜒

𝑝

. (42)

Hence,

lim sup
𝑡→+∞

𝑃 (|𝑥 (𝑡)| ≤ 𝜒) ≥ 1 −

lim sup
𝑡→+∞

E [|𝑥|
𝑝

]

𝜒

𝑝

≥ 1 − 𝜀

(43)

as required.

4. Stabilization of Noises

From Sections 2 and 3, we know that both the Brownian
noises and jump processes can suppress the potential explo-
sion of the solution and guarantee this global solution to
be bounded in the sense of the pth moment. This section is
devoted to considering the stable effect of noises under some
appropriate conditions; we show that jump processes may
stabilize the given unstable nonlinear delay system 𝑥̇(𝑡) =

𝑓(𝑥(𝑡), 𝑥(𝑡 − 𝜏), 𝑡).

Theorem 11. Suppose that for the initial data 𝜉 ∈ 𝐶([−𝜏, 0];

𝑅

𝑛

) satisfying 𝑥(0) ̸= 0, the solution 𝑥(𝑡) of SDE (4) is
𝑃(𝑥(𝑡) ̸= 0, 𝑡 ≥ 0) = 1. Under Assumptions 1, 2, and 4, if,
for 𝜎 ̸= 0, the solution 𝑥(𝑡) of SDE (4) with any initial data
𝜉 ∈ 𝐶([−𝜏, 0]; 𝑅

𝑛

) satisfying 𝑥(0) ̸= 0 has the property

lim sup
𝑡→∞

1

𝑡

log |𝑥 (𝑡)| ≤ 0 a.s. (44)

Proof. ByTheorem 3, suppose that almost all sample paths of
𝑥(𝑡) of (4) starting from a nonzero state will never reach the
origin for all 𝑡 ≥ 0. Applying the Itô formula to the function
𝑒

𝑡 log |𝑥(𝑡)| leads to

𝑒

𝑡 log |𝑥 (𝑡)|
= log |𝑥 (0)|

+ ∫

𝑡

0

𝑒

𝑠

{ log |𝑥 (𝑠)| + |𝑥 (𝑠)|−2 ⟨𝑥 (𝑠) , 𝑓 (𝑥 (𝑠) , 𝑦 (𝑠) , 𝑠)⟩

−

1

2

[𝜎

2

|𝑥 (𝑠)|

2𝛽

+ 𝑞

2

|𝑥 (𝑠 − 𝜏)|

2𝛽

󸀠

] 𝑑𝑠

+∫

Y

[ln 󵄨󵄨󵄨
󵄨

1 + 𝐻 (𝑥, 𝑦, 𝑢)

󵄨

󵄨

󵄨

󵄨

− 𝐻 (𝑥, 𝑦, 𝑢)] 𝜆 (𝑑𝑢)} 𝑑𝑠

+ ∫

𝑡

0

𝑒

𝑠

𝜎|𝑥 (𝑠)|

𝛽

𝑑𝑊

1

(𝑠) + ∫

𝑡

0

𝑒

𝑠

𝑞|𝑥 (𝑠 − 𝜏)|

𝛽

󸀠

𝑑𝑊

2

(𝑠)

+ ∫

𝑡

0

∫

Y

𝑒

𝑠 ln 󵄨󵄨󵄨
󵄨

1 + 𝐻 (𝑥, 𝑦, 𝑢)

󵄨

󵄨

󵄨

󵄨

̃

𝑁 (𝑑𝑠, 𝑑𝑢) .

(45)

By virtue of exponentialmartingale inequalitywith jumps
[7, Theorem 5.2.9, page 291].

P{ sup
0≤𝑡≤𝑇

[∫

𝑡

0

𝑒

𝑠

𝜎|𝑥 (𝑠)|

𝛽

𝑑𝑊

1

(𝑠) −

1

2𝑒

𝑘

∫

𝑡

0

𝑒

2𝑠

𝜎

2

|𝑥 (𝑠)|

2𝛽

𝑑𝑠

+ ∫

𝑡

0

∫

Y

𝑒

𝑠 ln 󵄨󵄨󵄨
󵄨

1 + 𝐻 (𝑥, 𝑦, 𝑢)

󵄨

󵄨

󵄨

󵄨

̃

𝑁 (𝑑𝑠, 𝑑𝑢)

−

1

𝑒

−𝑘

∫

𝑡

0

∫

Y

(𝑒

𝑒

𝑠−𝑘 ln |1+𝐻(𝑥,𝑦,𝑢)|

− 1

−𝑒

𝑠−𝑘 ln 󵄨󵄨󵄨
󵄨

1 + 𝐻 (𝑥, 𝑦, 𝑢)

󵄨

󵄨

󵄨

󵄨

) 𝜆 (𝑑𝑢) 𝑑𝑠]

≥ 2𝑒

𝑘 ln 𝑘} ≤ 𝑘

−2

.

(46)

Choose 𝑇 = 𝑘, and 𝑘 ∈ N in the above equation. Since
∑

𝑘=1

∞

𝑘

−2

≤ ∞, by the Borel-Cantelli lemma, there existsΩ
0

⊂

Ω with P(Ω
0

) = 1 such that for any 𝜔 ∈ Ω

0

, there exists an
integer 𝑘 = 𝑘(𝜔) that can be found satisfying

∫

𝑡

0

𝑒

𝑠

𝜎|𝑥 (𝑠)|

𝛽

𝑑𝑊

1

(𝑠)

+ ∫

𝑡

0

∫

Y

𝑒

𝑠 ln 󵄨󵄨󵄨
󵄨

1 + 𝐻 (𝑥, 𝑦, 𝑢)

󵄨

󵄨

󵄨

󵄨

̃

𝑁 (𝑑𝑠, 𝑑𝑢)

≤ 2𝑒

𝑘 ln 𝑘 + 𝑒

−𝑘

2

∫

𝑡

0

𝑒

2𝑠

𝜎

2

|𝑥 (𝑠)|

2𝛽

𝑑𝑠

+

1

𝑒

−𝑘

∫

𝑡

0

∫

Y

(

󵄨

󵄨

󵄨

󵄨

1 + 𝐻 (𝑥, 𝑦, 𝑢)

󵄨

󵄨

󵄨

󵄨

𝑒

𝑠−𝑘

− 1

−𝑒

𝑠−𝑘 ln 󵄨󵄨󵄨
󵄨

1 + 𝐻 (𝑥, 𝑦, 𝑢)

󵄨

󵄨

󵄨

󵄨

) 𝜆 (𝑑𝑢) 𝑑𝑠

(47)

whenever 𝑘 ≥ 𝑘(𝜔), 𝑘 − 1 ≤ 𝑡 ≤ 𝑘.
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Next, for any 𝜔 ∈ Ω

0

and 𝑘 ≥ 𝑘(𝜔), we still make use
of exponential martingale inequality, (choose 𝛼 = 𝑒

−𝑘

, 𝛽 =

2𝑒

𝑘 ln 𝑘)

P{ sup
0≤𝑡≤𝑇

[∫

𝑡

0

𝑒

𝑠

𝑞|𝑥 (𝑠 − 𝜏)|

𝛽

󸀠

𝑑𝑊

2

(𝑠)

−

1

2𝑒

𝜅

∫

𝑡

0

𝑒

2𝑠

𝑞

2

|𝑥 (𝑠 − 𝜏)|

2𝛽

󸀠

𝑑𝑠]≥2𝑒

𝜅 ln 𝜅}≤𝜅−2.

(48)
Thus, for all 𝜔 ∈ Ω

0

and 𝑘 − 1 < 𝑠 < 𝑡 ≤ 𝑘, 𝑘 ≥ 𝑘(𝜔), we also
have

∫

𝑡

0

𝑒

𝑠

𝑞|𝑥 (𝑠 − 𝜏)|

𝛽

󸀠

𝑑𝑊

2

(𝑠)

≤ 2𝑒

𝑘 ln 𝑘 + 1

2𝑒

𝑘

∫

𝑡

0

𝑒

2𝑠

𝑞

2

|𝑥 (𝑠 − 𝜏)|

2𝛽

󸀠

𝑑𝑠

≤ 2𝑒

𝑘 ln 𝑘 + 1

2

∫

𝑡

0

𝑒

𝑠

𝑞

2

|𝑥 (𝑠 − 𝜏)|

2𝛽

󸀠

𝑑𝑠.

(49)

In the following, we divide two cases.
(1) If 𝛼 > 2𝛽, noting inequality 𝑥𝑟

≤ 1 + 𝑟(𝑥 − 1), 𝑥 ≥ 0,
0 ≤ 𝑟 ≤ 1, and 𝑒𝑠−𝑘 < 1 for 𝜔 ∈ Ω

0

and 𝑘 − 1 ≤ 𝑠 ≤ 𝑡 ≤

𝑘, 𝑘 ≥ 𝑘

0

(𝜔), substituting (47)-(49) into (45) gives
log |𝑥 (𝑡)|

≤ 𝑒

−𝑡 log𝑥 (0) + 4𝑒𝑘−𝑡 ln 𝑘

+ ∫

𝑡

0

𝑒

𝑠−𝑡

[log |𝑥 (𝑠)| −
𝜎

2

(1 − 𝑒

𝑠−𝑘

)

2

|𝑥 (𝑠)|

2𝛽

+𝜅|𝑥 (𝑠)|

𝛼

+ 𝜅

󵄨

󵄨

󵄨

󵄨

𝑦 (𝑠)

󵄨

󵄨

󵄨

󵄨

𝛼

+ 𝛾]𝑑𝑠

+

1

𝑒

−𝑘

∫

𝑡

0

𝑒

−𝑡

∫

Y

(

󵄨

󵄨

󵄨

󵄨

1 + 𝐻 (𝑥, 𝑦, 𝑢)

󵄨

󵄨

󵄨

󵄨

𝑒

𝑠−𝑘

−1 − 𝑒

𝑠−𝑘
󵄨

󵄨

󵄨

󵄨

𝐻 (𝑥, 𝑦, 𝑢)

󵄨

󵄨

󵄨

󵄨

) 𝜆 (𝑑𝑢) 𝑑𝑠

≤ 𝑒

−𝑡 log𝑥 (0) + 4𝑒𝑘−𝑡 ln 𝑘 + 𝜅∫
0

−𝜏

𝑒

𝑠+𝜏
󵄨

󵄨

󵄨

󵄨

𝜉 (𝑠)

󵄨

󵄨

󵄨

󵄨

𝛼

𝑑𝑠

+ ∫

𝑡

0

𝑒

𝑠−𝑡

[−

𝜎

2

(1 − 𝑒

𝑠−𝑘

)

2

|𝑥 (𝑠)|

2𝛽

+ (𝜅 + 𝜅𝑒

𝜏

) |𝑥 (𝑠)|

𝛼

+𝛾 + log |𝑥 (𝑠)| ] 𝑑𝑠,

(50)

where

𝜙 (𝑥) =: −

𝜎

2

(1 − 𝑒

𝑠−𝑘

)

2

|𝑥|

2𝛽

+ (𝜅 + 𝜅𝑒

𝜏

) |𝑥|

𝛼

+ 𝛾 + log |𝑥| .
(51)

Also, 𝛼 > 2𝛽means that there exists a constant𝑀
1

such that
𝜙(𝑥) ≤ 𝑀

1

, which leads to

log |𝑥 (𝑡)| ≤ 𝑒

−𝑡 log𝑥 (0) + 𝜅∫
0

−𝜏

𝑒

𝑠+𝜏
󵄨

󵄨

󵄨

󵄨

𝜉 (𝑠)

󵄨

󵄨

󵄨

󵄨

𝛼

+ 4𝑒

𝑘−𝑡 ln 𝑘

+𝑀

1

∫

𝑡

0

𝑒

𝑠−𝑡

𝑑𝑠,

log |𝑥 (𝑡)|
ln 𝑡

≤

1

ln (𝑘 − 1)
[𝑒

−𝑡 log𝑥 (0) + 𝜅∫
0

−𝜏

𝑒

𝑠+𝜏
󵄨

󵄨

󵄨

󵄨

𝜉 (𝑠)

󵄨

󵄨

󵄨

󵄨

𝛼

𝑑𝑠 +𝑀

1

]

+

4𝑒 ln 𝑘
ln (𝑘 − 1)

a.s.

(52)

It follows that

lim sup
𝑡→∞

log |𝑥 (𝑡)|
ln 𝑡

≤ 4𝑒. (53)

Using the limit lim
𝑡→∞

(ln 𝑡/𝑡) = 0 and log |𝑥(𝑡)|/𝑡 =

(log |𝑥(𝑡)|/ ln 𝑡)(ln 𝑡/𝑡), we can deduce that

lim sup
𝑡→∞

log |𝑥 (𝑡)|
𝑡

≤ 0, a.s. (54)

Otherwise, we consider that

(2) if 2𝛽 ≤ 𝛼 < 𝛼

󸀠 and 𝛼󸀠󸀠

< 𝛼

󸀠, we obtain

log |𝑥 (𝑡)|

≤ 𝑒

−𝑡 log𝑥 (0) + 4𝑒𝑘−𝑡 ln 𝑘 + 𝜅∫
0

−𝜏

𝑒

𝑠+𝜏
󵄨

󵄨

󵄨

󵄨

𝜉 (𝑠)

󵄨

󵄨

󵄨

󵄨

𝛼

𝑑𝑠

+ ∫

𝑡

0

𝑒

𝑠−𝑡

[−

𝜎

2

(1 − 𝑒

𝑠−𝑘

)

2

|𝑥 (𝑠)|

2𝛽

+ (𝜅 + 𝜅𝑒

𝜏

) |𝑥 (𝑠)|

𝛼

+𝛾 + log |𝑥 (𝑠)| ] 𝑑𝑠

+ ∫

𝑡

0

𝑒

𝑠−𝑡

[

1

𝑒

𝑠−𝑘

(𝛿 − 𝛿

1

|𝑥 (𝑠)|

𝛼

󸀠

+ 𝛿

2

󵄨

󵄨

󵄨

󵄨

𝑦 (𝑠)

󵄨

󵄨

󵄨

󵄨

𝛼

󸀠󸀠

)] 𝑑𝑠

≤ 𝑒

−𝑡 log𝑥 (0) + 4𝑒𝑘−𝑡 ln 𝑘 + 𝜅∫
0

−𝜏

𝑒

𝑠+𝜏
󵄨

󵄨

󵄨

󵄨

𝜉 (𝑠)

󵄨

󵄨

󵄨

󵄨

𝛼

𝑑𝑠

+ 𝛿

2

∫

0

−𝜏

󵄨

󵄨

󵄨

󵄨

𝜉 (𝑠)

󵄨

󵄨

󵄨

󵄨

𝛼

󸀠󸀠

𝑑𝑠

+ ∫

𝑡

0

𝑒

𝑠−𝑡

[−

𝜎

2

(1 − 𝑒

𝑠−𝑘

)

2

|𝑥 (𝑠)|

2𝛽

+ (𝜅 + 𝜅𝑒

𝜏

) |𝑥 (𝑠)|

𝛼

+𝛾 + log |𝑥 (𝑠)| ] 𝑑𝑠

+ ∫

𝑡

0

𝑒

𝑠−𝑡

[

1

𝑒

𝑠−𝑘

(𝛿 − 𝛿

1

|𝑥 (𝑠)|

𝛼

󸀠

+ 𝛿

2

|𝑥 (𝑠)|

𝛼

󸀠󸀠

)] 𝑑𝑠

≤ 𝑒

−𝑡 log𝑥 (0) + 4𝑒𝑘−𝑡 ln 𝑘 + 𝜅∫
0

−𝜏

𝑒

𝑠+𝜏
󵄨

󵄨

󵄨

󵄨

𝜉 (𝑠)

󵄨

󵄨

󵄨

󵄨

𝛼

𝑑𝑠

+ 𝛿

2

∫

0

−𝜏

󵄨

󵄨

󵄨

󵄨

𝜉 (𝑠)

󵄨

󵄨

󵄨

󵄨

𝛼

󸀠󸀠

𝑑𝑠 + ∫

𝑡

0

𝑒

𝑠−𝑡

[𝜙 (𝑥) + 𝐽 (𝑥)] 𝑑𝑠,

(55)
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where

𝜙 (𝑥) =: −

𝜎

2

(1 − 𝑒

𝑠−𝑘

)

2

|𝑥|

2𝛽

+ (𝜅 + 𝜅𝑒

𝜏

) |𝑥|

𝛼

+ 𝛾 + log |𝑥| ,

𝐽 (𝑥) =:

1

𝑒

𝑠−𝑘

(𝛿 − 𝛿

1

|𝑥|

𝛼

󸀠

+ 𝛿

2

|𝑥|

𝛼

󸀠󸀠

) .

(56)

Noting that for 𝜔 ∈ Ω

0

and 𝑘 − 1 ≤ 𝑠 ≤ 𝑡 ≤ 𝑘, 𝑘 ≥ 𝑘

0

(𝜔), we
know that 𝜙(𝑥) + 𝐽(𝑥) is bounded𝑀

2

by a polynomial with
negative leading term. Note that

log |𝑥 (𝑡)| ≤ 𝑒

−𝑡 log𝑥 (0) + 𝜅∫
0

−𝜏

𝑒

𝑠+𝜏
󵄨

󵄨

󵄨

󵄨

𝜉 (𝑠)

󵄨

󵄨

󵄨

󵄨

𝛼

𝑑𝑠

+ 𝛿

2

∫

0

−𝜏

󵄨

󵄨

󵄨

󵄨

𝜉 (𝑠)

󵄨

󵄨

󵄨

󵄨

𝛼

󸀠󸀠

𝑑𝑠 + 4𝑒

𝑘−𝑡 ln 𝑘 +𝑀
2

∫

𝑡

0

𝑒

𝑠−𝑡

𝑑𝑠,

log |𝑥 (𝑡)|
ln 𝑡

≤

1

ln (𝑘 − 1)

× (𝑒

−𝑡 log𝑥 (0) + 𝜅∫
0

−𝜏

𝑒

𝑠+𝜏
󵄨

󵄨

󵄨

󵄨

𝜉 (𝑠)

󵄨

󵄨

󵄨

󵄨

𝛼

𝑑𝑠

+𝛿

2

∫

0

−𝜏

󵄨

󵄨

󵄨

󵄨

𝜉 (𝑠)

󵄨

󵄨

󵄨

󵄨

𝛼

󸀠󸀠

𝑑𝑠 +𝑀

2

) +

4𝑒 ln 𝑘
ln (𝑘 − 1)

a.s.

(57)

We conclude that

lim sup
𝑡→∞

log |𝑥 (𝑡)|
𝑡

≤ 0, a.s. (58)

Thus, assertion (44) follows.
In order to highlight the stable effect of Lévy noise, let

𝐻(𝑥 (𝑡

−

) , 𝑥(𝑡 − 𝜏)

−

, 𝑢) = 𝐻

󸀠

(𝑡, 𝑢) ; (59)

we will discuss almost sure exponentially stability of the
following SDE with jumps:

𝑑𝑥 (𝑡) = 𝑓 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑡) 𝑑𝑡 + 𝜎|𝑥 (𝑡)|

𝛽

𝑥 (𝑡) 𝑑𝑊

1

(𝑡)

+ 𝑞𝑥 (𝑡) |𝑥 (𝑡 − 𝜏)|

𝛽

󸀠

𝑑𝑊

2

(𝑡)

+ 𝑥 (𝑡) ∫

Y

𝐻

󸀠

(𝑡, 𝑢)

̃

𝑁 (𝑑𝑡, 𝑑𝑢) .

(60)

Assumption 12. For any 𝑡 ≥ 0, 𝑢 ∈ Y , there exists a constant
𝐶 > 0 such that

∫

Y

[ln (1 + 𝐻󸀠

(𝑡, 𝑢))]

2

𝜆 (𝑑𝑢) ≤ 𝐶. (61)

Theorem13. Suppose the initial data 𝜉 ∈ 𝐶([−𝜏, 0]; 𝑅𝑛

) satisfy
𝜉(0) ̸= 0; then the solution 𝑥(𝑡) of SDE (60) is such that 𝑥(𝑡) ̸= 0

a.s. for all 𝑡 ≥ 0. Under Assumptions 1, 2, and 12, if for 𝜖 ∈

(0, 1) and 2𝛽 > 𝛼, 𝜎 ̸= 0, the solution 𝑥(𝑡) of SDE (60) has the
property

lim sup
𝑡→∞

1

𝑡

log |𝑥 (𝑡)| ≤ (𝜙 − 𝐻) a.s., (62)

where

𝜙 = max
𝑥∈𝑅

𝑛

{−

𝜎

2

2

|𝑥|

2𝛽

+ (𝜅 + 𝜅) |𝑥|

𝛼

+ 𝛾} ,

𝐻 = min
𝑡≥0

∫

Y

[𝐻

󸀠

(𝑡, 𝑢) − ln 󵄨󵄨󵄨
󵄨

󵄨

1 + 𝐻

󸀠

(𝑡, 𝑢)

󵄨

󵄨

󵄨

󵄨

󵄨

] 𝜆 (𝑑𝑢) .

(63)

In particular, nonlinear delay system (60) is a.s. exponen-
tially stable if 𝜙 − 𝐻 < 0.

Proof. ByTheorem 3 and supposing 𝑥(𝑡) ̸= 0 a.s., if the initial
data 𝜉 ∈ 𝐶([−𝜏, 0]; 𝑅

𝑛

) satisfying 𝑥(0) ̸= 0, the solution 𝑥(𝑡)

with a given initial value will exist a.s. for all 𝑡 ≥ 0. Applying
the Itô formula to the function log |𝑥(𝑡)| leads to

log |𝑥 (𝑡)| = log |𝑥 (0)|

+ ∫

𝑡

0

|𝑥 (𝑠)|

−2

⟨𝑥 (𝑠) , 𝑓 (𝑥 (𝑠) , 𝑥 (𝑥 − 𝜏) , 𝑠)⟩

−

1

2

[𝜎

2

|𝑥 (𝑠)|

2𝛽

+ 𝑞

2

|𝑥 (𝑠 − 𝜏)|

2𝛽

󸀠

] 𝑑𝑠

− ∫

𝑡

0

∫

Y

[𝐻

󸀠

(𝑠, 𝑢) − ln 󵄨󵄨󵄨
󵄨

󵄨

1 + 𝐻

󸀠

(𝑠, 𝑢)

󵄨

󵄨

󵄨

󵄨

󵄨

] 𝜆 (𝑑𝑢) 𝑑𝑠

+ ∫

𝑡

0

𝜎|𝑥 (𝑠)|

𝛽

𝑑𝑊

1

(𝑠) + ∫

𝑡

0

𝑞|𝑥 (𝑠 − 𝜏)|

𝛽

󸀠

𝑑𝑊

2

(𝑠)

+ ∫

𝑡

0

∫

Y

ln 󵄨󵄨󵄨
󵄨

󵄨

1 + 𝐻

󸀠

(𝑠, 𝑢)

󵄨

󵄨

󵄨

󵄨

󵄨

̃

𝑁 (𝑑𝑠, 𝑑𝑢) ,

(64)

where

𝑀

1

(𝑡) = ∫

𝑡

0

𝜎|𝑥 (𝑠)|

𝛽

𝑑𝑊

1

(𝑠) ,

𝑀

2

(𝑡) = ∫

𝑡

0

𝑞|𝑥 (𝑠 − 𝜏)|

𝛽

𝑑𝑊

2

(𝑠) ,

𝑀

3

(𝑡) = ∫

𝑡

0

∫

Y

ln 󵄨󵄨󵄨
󵄨

󵄨

1 + 𝐻

󸀠

(𝑠, 𝑢)

󵄨

󵄨

󵄨

󵄨

󵄨

̃

𝑁 (𝑑𝑠, 𝑑𝑢) .

(65)

By virtue of exponential martingale inequality [4, Theorem
7.4, page 44].

P{ sup
0≤𝑡≤𝑇

[∫

𝑡

0

𝜎|𝑥 (𝑠)|

𝛽

𝑑𝑊

1

(𝑠) −

𝜖

2

∫

𝑡

0

𝜎

2

|𝑥 (𝑠)|

2𝛽

𝑑𝑠]

≥ 𝜉 ln 𝜅} ≤ 𝜅

−𝜖𝜉

.

(66)

Choose 𝑇 = 𝜅, and 𝜅 ∈ N, 0 < 𝜖 < 1, 𝛾 > 0, and 𝜖𝜉 > 1

in the above equation. Since ∑𝜅=1

∞

𝜅

−𝜖𝜉

≤ ∞, by the Borel-
Cantelli lemma, there exists an Ω

0

⊂ Ω with P(Ω
0

) = 1 such
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that, for any 𝜔 ∈ Ω

0

, there exists an integer 𝜅 = 𝜅(𝜔, 𝜖) that
can be found such that

∫

𝑡

0

𝜎|𝑥 (𝑠)|

𝛽

𝑑𝑊

1

(𝑠) ≤ 𝜉 ln 𝜅 + 𝜖

2

∫

𝑡

0

𝜎

2

|𝑥 (𝑠)|

2𝛽

𝑑𝑠.
(67)

Whenever 𝜅 ≥ 𝜅(𝜔, 𝜖), 𝜅 − 1 ≤ 𝑡 ≤ 𝜅 a.s. Similarly, we can
obtain

∫

𝑡

0

𝑞|𝑥 (𝑠 − 𝜏)|

𝛽

󸀠

𝑑𝑊

2

(𝑠) ≤ 2 ln 𝜅 + 1

2

∫

𝑡

0

𝑞

2

|𝑥 (𝑠 − 𝜏)|

2𝛽

󸀠

𝑑𝑠.

(68)

Whenever 𝜅 ≥ 𝜅(𝜔, 𝜖), 𝜅 − 1 ≤ 𝑡 ≤ 𝜅 a.s.
In other words, we have shown that

log |𝑥 (𝑡)|

≤ log |𝑥 (0)| + 𝜉 ln 𝜅 + 2 ln 𝜅

+ ∫

𝑡

0

[−

𝜎

2

(1 − 𝜖)

2

|𝑥 (𝑠)|

2𝛽

+ 𝜅|𝑥 (𝑠)|

𝛼

+ 𝜅

󵄨

󵄨

󵄨

󵄨

𝑦 (𝑠)

󵄨

󵄨

󵄨

󵄨

𝛼

+ 𝛾]𝑑𝑠

− ∫

𝑡

0

∫

Y

[𝐻

󸀠

(𝑠, 𝑢) − ln 󵄨󵄨󵄨
󵄨

󵄨

1 + 𝐻

󸀠

(𝑠, 𝑢)

󵄨

󵄨

󵄨

󵄨

󵄨

] 𝜆 (𝑑𝑢) 𝑑𝑠

+ ∫

𝑡

0

∫

Y

ln 󵄨󵄨󵄨
󵄨

󵄨

1 + 𝐻

󸀠

(𝑠, 𝑢)

󵄨

󵄨

󵄨

󵄨

󵄨

̃

𝑁 (𝑑𝑠, 𝑑𝑢)

≤ log |𝑥 (0)| + 𝜉 ln 𝜅 + 2 ln 𝜅 + 𝜅∫
0

−𝜏

󵄨

󵄨

󵄨

󵄨

𝜉 (𝑠)

󵄨

󵄨

󵄨

󵄨

𝛼

𝑑𝑠

+ ∫

𝑡

0

[−

𝜎

2

(1 − 𝜖)

2

|𝑥 (𝑠)|

2𝛽

+ (𝜅 + 𝜅) |𝑥 (𝑠)|

𝛼

+ 𝛾] 𝑑𝑠

− ∫

𝑡

0

∫

Y

[𝐻

󸀠

(𝑠, 𝑢) − ln 󵄨󵄨󵄨
󵄨

󵄨

1 + 𝐻

󸀠

(𝑠, 𝑢)

󵄨

󵄨

󵄨

󵄨

󵄨

] 𝜆 (𝑑𝑢) 𝑑𝑠

+ ∫

𝑡

0

∫

Y

ln 󵄨󵄨󵄨
󵄨

󵄨

1 + 𝐻

󸀠

(𝑠, 𝑢)

󵄨

󵄨

󵄨

󵄨

󵄨

̃

𝑁 (𝑑𝑠, 𝑑𝑢)

≤ log |𝑥 (0)| + 𝜉 ln 𝜅 + 2 ln 𝜅 + 𝜅∫
0

−𝜏

󵄨

󵄨

󵄨

󵄨

𝜉 (𝑠)

󵄨

󵄨

󵄨

󵄨

𝛼

𝑑𝑠

+ ∫

𝑡

0

[𝜙

𝜖

− 𝐻]𝑑𝑠 + ∫

𝑡

0

∫

Y

ln 󵄨󵄨󵄨
󵄨

󵄨

1 + 𝐻

󸀠

(𝑠, 𝑢)

󵄨

󵄨

󵄨

󵄨

󵄨

̃

𝑁 (𝑑𝑠, 𝑑𝑢) ,

(69)

where

𝜙

𝜖

=: max
𝑥∈𝑅

𝑛

(−

𝜎

2

(1 − 𝜖)

2

|𝑥|

2𝛽

+ (𝜅 + 𝜅) |𝑥|

𝛼

+ 𝛾) ,

𝐻 =: min
𝑡≥0

∫

Y

[𝐻

󸀠

(𝑡, 𝑢) − ln 󵄨󵄨󵄨
󵄨

󵄨

1 + 𝐻

󸀠

(𝑡, 𝑢)

󵄨

󵄨

󵄨

󵄨

󵄨

] 𝜆 (𝑑𝑢) .

(70)

Next, noting Assumption 12, for any 𝜔 ∈ Ω

0

, and 0 < 𝜖 <

1, 𝜅 − 1 ≤ 𝑡 ≤ 𝜅 with 𝜅 ≥ 𝜅(𝜔, 𝜖),

⟨𝑀

3

(𝑡) ,𝑀

3

(𝑡)⟩

𝑡

= ∫

𝑡

0

∫

Y

󵄨

󵄨

󵄨

󵄨

󵄨

1 + 𝐻

󸀠

(𝑠, 𝑢)

󵄨

󵄨

󵄨

󵄨

󵄨

2

𝜆 (𝑑𝑢) 𝑑𝑠 ≤ 𝐶𝑡.

(71)
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Figure 2:We simulate the discrete equations for delay equation (77).

Then the strong law of large numbers yields

lim
𝑡→∞

1

𝑡

∫

𝑡

0

∫

Y

ln 󵄨󵄨󵄨
󵄨

󵄨

1 + 𝐻

󸀠

(𝑠, 𝑢)

󵄨

󵄨

󵄨

󵄨

󵄨

̃

𝑁 (𝑑𝑠, 𝑑𝑢) = 0.
(72)

Thus, for 𝜔 ∈ Ω

0

and (𝜅 − 1) ≤ 𝑡 ≤ 𝜅, 𝜖 → 0, it follows from
(69) and (72) that

lim sup
𝑡→∞

1

𝑡

log |𝑥 (𝑡)| ≤ 𝜙 − 𝐻 a.s. (73)

Clearly, if 𝜙 − 𝐻 < 0, system (60) is a.s. exponentially stable;
the proof is completed.

Remark 14. Compared with results in [1], authors discussed
the SDE:

𝑑𝑥 (𝑡) = 𝑓 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝛿 (𝑡)) , 𝑡) 𝑑𝑡

+ 𝑞𝑥 (𝑡) 𝑑𝑊

1

(𝑡) + 𝜎|𝑥 (𝑡)|

𝛽

𝑥 (𝑡) 𝑑𝑊

2

(𝑡) ;

(74)

the results show that polynomial Brownian noise
𝜎|𝑥(𝑡)|

𝛽

𝑥(𝑡)𝑑𝑊

2

(𝑡) can suppress this potential explosion and
another linear Brownian noise 𝑞𝑥(𝑡)𝑑𝑊

1

(𝑡) has an effect to
stabilize the suppressed equation.

Theorem 13 shows that under Assumptions 1, 2, and 12,
choosing appropriate function 𝐻, together with 2𝛽 > 𝛼,
𝜎 ̸= 0, Brownian noises may suppress the given deterministic
equation 𝑥̇(𝑡) = 𝑓(𝑥(𝑡), 𝑥(𝑡 − 𝜏), 𝑡). Linear jump process has
stable effect on system (60); it has the same role as linear
Brownian noise.

Example 1. Consider stochastic differential equation

𝑑𝑥 (𝑡) = 𝑥 (𝑡) [1 + 2𝑥

2

(𝑡) + 6𝑥

2

(𝑡 − 𝜏)] 𝑑𝑡 + 2𝑥

3

(𝑡) 𝑑𝑊

1

(𝑡)

+ 2𝑥

2

(𝑡 − 𝜏) 𝑥 (𝑡) 𝑑𝑊

2

(𝑡)

+ 𝑥 (𝑡) ∫

Y

𝐻

󸀠

(𝑢)

̃

𝑁 (𝑑𝑡, 𝑑𝑢) ,

(75)
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Figure 3: We simulate the discretization equations for stochastic
delay equation (75), where 𝜎 = 2, 𝜅 = 6, 𝜅 = 2, 𝛾 = 1, 𝛼 = 𝛽 = 2,
𝛽

󸀠

= 2, and𝐻󸀠

= 0.1𝑒

−𝑢

2
/2 such that [𝜙 − 𝐻] < 0.

where 𝑞 = 2, 𝜎 = 2, 𝜅 = 6, 𝜅 = 2, 𝛾 = 1, 𝛼 = 𝛽 = 2, 𝛽󸀠

= 2,

𝜙 = max
𝑥∈𝑅,𝑥 ̸= 0

{−2𝑥

4

+ 8𝑥

2

+ 1} = 9,

𝐻 = ∫

Y

[𝐻

󸀠

(𝑢) − ln 󵄨󵄨󵄨
󵄨

󵄨

1 + 𝐻

󸀠

(𝑢)

󵄨

󵄨

󵄨

󵄨

󵄨

] 𝜆 (𝑑𝑢) .

(76)

Figure 2 shows the differential equation

𝑑𝑥 (𝑡)

𝑑𝑡

= 𝑥 (𝑡) [1 + 2𝑥

2

(𝑡) + 6𝑥

2

(𝑡 − 𝜏)] .
(77)

Simulation indicates that the solution of (78) is explosive in
finite time. See Figure 2.

If we choose function𝐻󸀠

= 0.1𝑒

−𝑢

2
/2 such that [𝜙 − 𝐻] <

0, we can conclude that system (75) is a.s. exponentially stable
byTheorems 13. See Figure 3.

But we cannot indicate that system (75) is a.s. exponen-
tially stable if we choose function𝐻󸀠 such that [𝜙 − 𝐻] > 0,
although it has global solution. See Figure 4.

Example 2. Consider another stochastic differential equation

𝑑𝑥 (𝑡) = 𝑥 (𝑡) [1 + 2𝑥

3

(𝑡) + 2𝑥

3

(𝑡 − 𝜏)] 𝑑𝑡

+ 0.1𝑥

3

(𝑡) 𝑑𝑊

1

(𝑡) + 3𝑥 (𝑡 − 𝜏) 𝑥 (𝑡) 𝑑𝑊

2

(𝑡)

+ 𝑥 (𝑡) ∫

Y

𝐻

󸀠

(𝑢)

̃

𝑁 (𝑑𝑡, 𝑑𝑢) ,

(78)

where 𝑞 = 3, 𝜎 = 0.1, 𝜅 = 2, 𝜅 = 2, 𝛾 = 1, 𝛼 = 𝛽 = 3, 𝛽󸀠

= 1,

𝜙 = max
𝑥∈𝑅,𝑥 ̸= 0

{−

1

200

𝑥

6

+ 4𝑥

3

+ 1} ,

𝐻 = ∫

Y

[𝐻

󸀠

(𝑢) − ln 󵄨󵄨󵄨
󵄨

󵄨

1 + 𝐻

󸀠

(𝑢)

󵄨

󵄨

󵄨

󵄨

󵄨

] 𝜆 (𝑑𝑢) .

(79)

Figure 5 shows that the corresponding determined delay
equation of (78) is explosive in finite time.
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Figure 4: We simulate the discretization equations for stochastic
delay equation (75);𝐻󸀠

= 10𝑒

−𝑢

2
/2 such that [𝜙 − 𝐻] > 0.
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Figure 5: We simulate the discretization equations for determined
delay equation: 𝑑𝑥(𝑡)/𝑑𝑡 = 𝑥(𝑡)[1 + 2𝑥

3

(𝑡) + 2𝑥

3

(𝑡 − 𝜏)].

If we choose function 𝐻󸀠 such that [𝜙 − 𝐻] < 0, we can
show that system (78) is a.s. exponentially stable. See Figures
6 and 7.

5. Conclusions and Extensions

In this paper, we consider stochastic nonlinear delay dif-
ferential system with jumps, where 𝑓 satisfies the one-
side polynomial growth condition. Our main results include
the following theoretic analysis. Theorems 3 and 5 show
that Brownian noises or Lévy noise may suppress potential
explosion of the solution for some appropriate parameters.
Using the exponential martingale inequality with jumps, we
discuss that the sample Lyapunov exponent is nonpositive in
Theorem 11. Lévy noise is sudden and severe environmental
perturbations; if we propose linear Lévy processes in (60),
by the strong law of large number for local martingale, suffi-
cient conditions for a.s. exponentially stable are investigated.
Theorem 13 reveals the stabilization property of Lévy noise.

Two interesting questions deserve further consideration
and investigation.
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Figure 6: We simulate the discretization equations for stochastic
delay equation (78), where 𝑞 = 3, 𝜎 = 0.1, 𝜅 = 2, 𝜅 = 2, 𝛾 = 1,
𝛼 = 𝛽 = 3 and 𝛽󸀠

= 1, if we choose function 𝐻󸀠

= 0.1𝑒

−𝑢

2
/2 such

that [𝜙 − 𝐻] < 0.
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Figure 7: We simulate the discretization equations for stochastic
delay equation (78), where 𝑞 = 3, 𝜎 = 0.1, 𝜅 = 2, 𝜅 = 2, 𝛾 = 1,
𝛼 = 𝛽 = 3, and 𝛽󸀠

= 1. Choose function, which is different from
Figure 6,𝐻󸀠

= 𝑒

−𝑢

2
/2 such that [𝜙 − 𝐻] < 0.

If we use the continuous time Markov chain 𝛼(𝑡) with
finite state space S = {1, 2, . . . , 𝑁} to model abrupt changes
in their structure and parameters, another complex hybrid
system with jumps can be studied:

𝑑𝑥 (𝑡) = 𝑓 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝛼 (𝑡)) 𝑑𝑡

+ 𝜎 (𝛼 (𝑡)) |𝑥 (𝑡)|

𝛽

𝑥 (𝑡) 𝑑𝑊

1

(𝑡)

+ 𝑞 (𝛼 (𝑡)) |𝑥 (𝑡 − 𝜏)|

𝛽

󸀠

𝑥 (𝑡) 𝑑𝑊

2

(𝑡)

+ 𝑥 (𝑡) ∫

Y

𝐻(𝑥 (𝑡

−

) , 𝑥(𝑡 − 𝜏)

−

, 𝛼 (𝑡) , 𝑢)

̃

𝑁 (𝑑𝑡, 𝑑𝑢) ,

(80)

with initial data {𝑥(𝑡) : −𝜏 ≤ 𝑡 ≤ 0} = {𝜉(𝑡) : −𝜏 ≤ 𝑡 ≤ 0 ∈

𝐶

𝑏

F
0

([−𝜏, 0])}.

We can also consider stochastic functional equation:

𝑑𝑥 (𝑡) = 𝑓 (𝑥

𝑡

, 𝛼 (𝑡)) 𝑑𝑡 + 𝑞 (𝛼 (𝑡)) 𝑥 (𝑡) d𝑊
1

(𝑡)

+ 𝜎 (𝛼 (𝑡)) |𝑥 (𝑡)|

𝛽

𝑥 (𝑡) 𝑑𝑊

2

(𝑡)

+ 𝑥 (𝑡) ∫

Y

𝐻(𝛼 (𝑡) , 𝑢)

̃

𝑁 (𝑑𝑡, 𝑑𝑢) .

(81)

The effect of suppression solution of different types of
noises and stabilization of jump process to system (80) or
(81) still attract our main attention. These investigations are
in progress and we will report it in several articles.
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