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We introduce a new class of nonself-mappings, generalized proximal weak contraction mappings, and prove the existence and
uniqueness of best proximity point for such mappings in the context of complete metric spaces. Moreover, we state an algorithm to
determine such an optimal approximate solution designed as a best proximity point. We establish also an example to illustrate our
main results. Our result provides an extension of the related results in the literature.

1. Introduction and Preliminaries

A self-mapping 𝑇, defined on a metric space (𝑋, 𝑑), is said to
be a contraction if there exists a constant 𝑘 ∈ [0, 1) such that
the inequality 𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝑘𝑑(𝑥, 𝑦) holds for all 𝑥, 𝑦 ∈ 𝑋.
Moreover, a self-mapping 𝑇 is called a contractive mapping if
𝑑(𝑇𝑥, 𝑇𝑦) < 𝑑(𝑥, 𝑦) holds for all 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ̸= 𝑦.

The celebrated Banach contraction principle says that if𝑋
is complete, then every contraction has a unique fixed point.
In fact, the fixed point of a contractionmapping𝑇 is obtained
as a limit of repeated iteration of the mapping for any (initial)
point of 𝑋. Let Φ be the class of continuous, nondecreasing
mapping 𝜙 : [0,∞) → [0,∞) such that 𝜙 is positive on
(0,∞) and 𝜙(0) = 0. A function 𝜙 ∈ Φ is called an altering
distance function.

A mapping 𝑇 : 𝑋 → 𝑋 is called a weak-𝜙 contraction if
there exists a 𝜙 ∈ Φ such that 𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝑑(𝑥, 𝑦)−𝜙(𝑑(𝑥, 𝑦))

for each 𝑥, 𝑦 ∈ 𝑋. The notion of weak-𝜙 contraction was
defined by Alber and Guerre-Delabriere [1] to generalize
the well-known Banach contraction principle in the setting
of Hilbert spaces. Later, Rhoades [2] noticed that most of
the results of Alber and Guerre-Delabriere [1] are valid
for any Banach space. Rhoades also proved the following
generalization of the Banach contraction principle (see also
[3–7]).

Theorem 1. Let (𝑋, 𝑑) be a nonempty complete metric space
and let 𝑇 : 𝑋 → 𝑋 be a weak-𝜙 contraction on𝑋; then 𝑇 has
a unique fixed point.

Recently, Dutta and Choudhury [8] proved the following
generalization ofTheorem 1 by using (𝜓, 𝜙)-weak contraction
map.

Theorem 2. Let (𝑋, 𝑑) be a nonempty complete metric space
and let 𝑇 : 𝑋 → 𝑋 be a self-mapping satisfying the inequality

𝜓 (𝑑 (𝑇𝑥, 𝑇𝑦)) ≤ 𝜓 (𝑑 (𝑥, 𝑦)) − 𝜙 (𝑑 (𝑥, 𝑦)) , (1)

for all 𝑥, 𝑦 ∈ 𝑋, where of all function. Then 𝑇 has a unique
fixed point.

Let Γ be the class of all function; 𝜑 : [0,∞) → [0,∞) is
a lower semicontinuous with 𝜑(𝑡) = 0 if and only if 𝑡 = 0. In
[9] Dorić proved the following generalization of Theorem 2
byusing generalized (𝜓, 𝜙)-weak contractionswhich contains
the (𝜓, 𝜙)-weak contractions as a subclass.

Theorem 3. Let (𝑋, 𝑑) be a nonempty complete metric space
and let 𝑇 : 𝑋 → 𝑋 be a generalized (𝜓, 𝜙)-weak contraction
map; that is, 𝑇 satisfies the following inequality:

𝜓 (𝑑 (𝑇𝑥, 𝑇𝑦)) ≤ 𝜓 (𝑚 (𝑥, 𝑦)) − 𝜑 (𝑚 (𝑥, 𝑦)) , (2)
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where 𝜓 ∈ Φ, 𝜑 ∈ Γ, and 𝑚(𝑥, 𝑦) = max{𝑑(𝑥, 𝑦), 𝑑(𝑇𝑥, 𝑥),
𝑑(𝑇𝑦, 𝑦), (1/2)[𝑑(𝑦, 𝑇𝑥) + 𝑑(𝑥, 𝑇𝑦)]} for all 𝑥, 𝑦 ∈ 𝑋. Then 𝑇
has a unique fixed point.

One of the aims of this paper is to extend Theorem 3 via
best proximity point. For this purpose, we recollect the basic
definitions and fundamentals results as follows.

1.1. Best Proximity Point Theorems. We first recall the notion
of best proximity point for nonself-mappings.

Definition 4. Let (𝐴, 𝐵) be a pair of two nonempty subsets
of a metric space 𝑋. An element 𝑥 ∈ 𝐴 is said to be a best
proximity point of the nonself-mappings 𝑇 : 𝐴 → 𝐵 if it
satisfies the condition that 𝑑(𝑥, 𝑇𝑥) = 𝑑(𝐴, 𝐵) where𝐴 and 𝐵
are nonempty subsets of a metric space.

Best proximity point theorems have been studied to find
necessary condition such that the minimization problem
min
𝑥∈𝐴

𝑑(𝑥, 𝑇𝑥) has at least one solution.
Existence and convergence of best proximity point is

an interesting topic of optimization theory which recently
attracted the attention of many authors [10–15]. A best
proximity point theorem for nonself-proximal contractions
has been investigated in [16–18].

In this paper, let us consider the mappings 𝑇 : 𝐴 → 𝐵,
where𝐴 and𝐵 are nonempty subsets of ametric space𝑋with
generalized proximalweak contraction on𝑇which ensure the
existence of a unique point 𝑥 ∈ 𝐴 which satisfies 𝑑(𝑥, 𝑇𝑥) =
𝑑(𝐴, 𝐵). When the map 𝑇 is considered to be self-map, then
our result reduces to Theorem 3.

Given nonempty subsets𝐴 and 𝐵 of a metric space𝑋, the
following notions are used subsequently:

𝑑 (𝐴, 𝐵) := inf {𝑑 (𝑥, 𝑦) : 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵} ,

𝐴
0
= {𝑥 ∈ 𝐴 : 𝑑 (𝑥, 𝑦) = 𝑑 (𝐴, 𝐵) for some 𝑦 ∈ 𝐵} ,

𝐵
0
= {𝑦 ∈ 𝐵 : 𝑑 (𝑥, 𝑦) = 𝑑 (𝐴, 𝐵) for some 𝑥 ∈ 𝐴} .

(3)

In [13], the authors discussed sufficient conditions which
guarantee the nonemptiness of 𝐴

0
and 𝐵

0
. Also, in [14], the

authors proved that 𝐴
0
is contained in the boundary of 𝐴.

Definition 5. The set 𝐵 is said to be approximatively compact
with respect to 𝐴 if every sequence {𝑦

𝑛
} in 𝐵 satisfying the

condition that 𝑑(𝑥, 𝑦
𝑛
) → 𝑑(𝑥, 𝐵) for some 𝑥 in 𝐴 has a

convergent subsequence.

Note that every set is approximatively compact with
respect to itself and that every compact set is approximatively
compact. Further, 𝐴

0
and 𝐵

0
are nonempty if 𝐴 is compact

and 𝐵 is approximatively compact with respect to 𝐴.
Let us define the notion of generalized proximal weak

contraction maps as follows. For this goal, we first introduce
the following class of the mapping. Let Ω be the set of all
function; 𝜙 : [0,∞) → [0,∞) is nondecreasing with the
following property: 𝜙(𝑡) = 0 if and only if 𝑡 = 0.

Definition 6. A mapping 𝑇 : 𝐴 → 𝐵 is said to be a gen-
eralized proximal weak contraction on 𝐴 if there exists

functions 𝜓, 𝜙 : [0,∞) → [0,∞) satisfying the following
condition:

𝑑 (𝑢, 𝑇𝑥) = 𝑑 (𝐴, 𝐵)

𝑑 (V, 𝑇𝑦) = 𝑑 (𝐴, 𝐵)
} 󳨐⇒ 𝜓 (𝑑 (𝑢, V))

≤ 𝜓 (𝑚 (𝑥, 𝑦)) − 𝜙 (𝑚 (𝑥, 𝑦)) ,

(4)

where 𝑚(𝑥, 𝑦) = max{𝑑(𝑥, 𝑦), 𝑑(𝑥, 𝑢), 𝑑(𝑦, V), (𝑑(𝑥, V) +
𝑑(𝑦, 𝑢))/2} for all 𝑢, V, 𝑥, 𝑦 in 𝐴, where 𝜓 ∈ Φ and 𝜙 ∈ Ω.

Remark 7. Definition 6 guarantees that if a mapping 𝑇 has a
best proximity point then it should be unique. Indeed, we can
prove our claim easily. Let 𝑥 ∈ 𝐴 be a best proximity point
of 𝑇. Suppose, on the contrary, that there is another element
𝑦 such that 𝑑(𝑦, 𝑇𝑦) = 𝑑(𝐴, 𝐵). Since 𝑇 is a generalized
proximal weak contraction on 𝐴, we have

𝜓 (𝑑 (𝑥, 𝑦)) ≤ 𝜓 (𝑚 (𝑥, 𝑦)) − 𝜙 (𝑚 (𝑥, 𝑦)) , (5)

where 𝑚(𝑥, 𝑦) = max{𝑑(𝑥, 𝑦), 𝑑(𝑥, 𝑥), 𝑑(𝑦, 𝑦), (𝑑(𝑥, 𝑦) +
𝑑(𝑦, 𝑥))/2} = 𝑑(𝑥, 𝑦).

From (5), we obtain 𝜓(𝑑(𝑥, 𝑦)) ≤ 𝜓(𝑑(𝑥, 𝑦)) −𝜙(𝑑(𝑥, 𝑦)),
which implies 𝜙(𝑑(𝑥, 𝑦)) = 0, and by our assumption about
𝜙, we get 𝑑(𝑥, 𝑦) = 0, or equivalently, 𝑥 = 𝑦.

Definition 8. A mapping 𝑇 : 𝐴 → 𝐵 is said to be a
generalized proximal weak contraction on 𝐵 if there exist
functions 𝜓, 𝜙 : [0,∞) → [0,∞) satisfying the following
condition:

𝑑 (𝑢, 𝑇𝑥) = 𝑑 (𝐴, 𝐵)

𝑑 (V, 𝑇𝑦) = 𝑑 (𝐴, 𝐵)
} 󳨐⇒ 𝜓 (𝑑 (𝑇𝑢, 𝑇V))

≤ 𝜓 (𝑚 (𝑇𝑥, 𝑇𝑦)) − 𝜙 (𝑚 (𝑇𝑥, 𝑇𝑦)) ,

(6)

where 𝑚(𝑇𝑥, 𝑇𝑦) = max{𝑑(𝑇𝑥, 𝑇𝑦), 𝑑(𝑇𝑥, 𝑇𝑢), 𝑑(𝑇𝑦, 𝑇V),
(𝑑(𝑇𝑥, 𝑇V) +𝑑(𝑇𝑦, 𝑇𝑢))/2} for all 𝑢, V, 𝑥, 𝑦 in𝐴, where 𝜓 ∈ Φ

and 𝜙 ∈ Ω.

For self-mappings, it is clear that every generalized
proximal weak contraction on 𝐴 is a generalized proximal
weak contraction on 𝐵. An operator 𝑇 is said to be a
generalized proximal weak contraction if it is both generalized
proximal weak contraction on 𝐴 and generalized proximal
weak contraction on 𝐵.

2. Main Results

We start this section with our main result.

Theorem 9. Let (𝐴, 𝐵) be a pair of two nonempty closed sub-
sets of a complete metric space𝑋 such that𝐴

0
is nonempty. Let

𝑇 : 𝐴 → 𝐵 be a map satisfying the following conditions:

(i) 𝑇 is a generalized proximal weak contraction,
(ii) 𝑇(𝐴

0
) ⊆ 𝐵
0
.

Then, there exists a unique𝑥 ∈ 𝐴 such that 𝑑(𝑥, 𝑇𝑥) = 𝑑(𝐴, 𝐵).
Further, for any fixed element 𝑥

0
∈ 𝐴
0
, the sequence {𝑥

𝑛
},

defined by 𝑑(𝑥
𝑛+1

, 𝑇𝑥
𝑛
) = 𝑑(𝐴, 𝐵), converges to the element

𝑥.
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Proof. We prove the theorem in several steps.

Step 1. Let 𝑥
0
∈ 𝐴
0
. Since 𝑇𝑥

0
∈ 𝑇(𝐴

0
) ⊆ 𝐵
0
, there exists 𝑥

1
∈

𝐴
0
such that 𝑑(𝑥

1
, 𝑇𝑥
0
) = 𝑑(𝐴, 𝐵). Due to the fact that 𝑇𝑥

1
∈

𝑇(𝐴
0
) ⊆ 𝐵

0
, there exists 𝑥

2
∈ 𝐴
0
such that 𝑑(𝑥

2
, 𝑇𝑥
1
) =

𝑑(𝐴, 𝐵). Recursively, we find a sequence {𝑥
𝑛
} in 𝐴

0
such that

𝑑 (𝑥
𝑛+1

, 𝑇𝑥
𝑛
) = 𝑑 (𝐴, 𝐵) , ∀𝑛 ∈ 𝑁. (7)

If there exists 𝑛
0
such that 𝑥

𝑛0
= 𝑥
𝑛0+1

, then 𝑑(𝑥
𝑛0+1

, 𝑇𝑥
𝑛0
) =

𝑑(𝑥
𝑛0
, 𝑇𝑥
𝑛0
) = 𝑑(𝐴, 𝐵); that is, 𝑥

𝑛0
is a best proximity point

of 𝑇. Thus, the proof is finished. Hence, we suppose that
𝑥
𝑛

̸= 𝑥
𝑛+1

for all 𝑛. Since 𝑇 is a generalized proximal weak
contraction on 𝐴, it follows that

𝜓 (𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

)) ≤ 𝜓 (𝑚 (𝑥
𝑛−1

, 𝑥
𝑛
)) − 𝜙 (𝑚 (𝑥

𝑛−1
, 𝑥
𝑛
))

≤ 𝜓 (𝑚 (𝑥
𝑛−1

, 𝑥
𝑛
)) .

(8)

Using the monotone property of the 𝜓-function, we get
𝑑(𝑥
𝑛
, 𝑥
𝑛+1

) ≤ 𝑚(𝑥
𝑛−1

, 𝑥
𝑛
).

Now from the triangle inequality for 𝑑, we have

𝑚(𝑥
𝑛−1

, 𝑥
𝑛
)= max{𝑑 (𝑥

𝑛−1
, 𝑥
𝑛
) , 𝑑 (𝑥

𝑛−1
, 𝑥
𝑛
) , 𝑑 (𝑥

𝑛
, 𝑥
𝑛+1

) ,

𝑑 (𝑥
𝑛−1

, 𝑥
𝑛+1

) + 𝑑 (𝑥
𝑛
, 𝑥
𝑛
)

2
}

= max{𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
) , 𝑑 (𝑥

𝑛
, 𝑥
𝑛+1

) ,

𝑑 (𝑥
𝑛−1

, 𝑥
𝑛+1

)

2
}

≤ max{𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
) , 𝑑 (𝑥

𝑛
, 𝑥
𝑛+1

) ,

𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
) + 𝑑 (𝑥

𝑛
, 𝑥
𝑛+1

)

2
}

= max {𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
) , 𝑑 (𝑥

𝑛
, 𝑥
𝑛+1

)} .

(9)

If 𝑑(𝑥
𝑛
, 𝑥
𝑛+1

) ≥ 𝑑(𝑥
𝑛−1

, 𝑥
𝑛
), then𝑚(𝑥

𝑛−1
, 𝑥
𝑛
) = 𝑑(𝑥

𝑛
, 𝑥
𝑛+1

) >

0. From (8), we obtain 𝜓(𝑑(𝑥
𝑛
, 𝑥
𝑛+1

)) ≤ 𝜓(𝑑(𝑥
𝑛
, 𝑥
𝑛+1

)) −

𝜙(𝑑(𝑥
𝑛
, 𝑥
𝑛+1

)), which is a contradiction. So, we have

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) ≤ 𝑚 (𝑥
𝑛−1

, 𝑥
𝑛
) ≤ 𝑑 (𝑥

𝑛−1
, 𝑥
𝑛
) . (10)

Hence, the sequence {𝑑(𝑥
𝑛
, 𝑥
𝑛+1

)} ismonotone nonincreasing
and bounded. Thus, there exists 𝑟 ≥ 0 such that

lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) = lim
𝑛→∞

𝑚(𝑥
𝑛−1

, 𝑥
𝑛
) = 𝑟 ≥ 0. (11)

Suppose that lim
𝑛→∞

𝑑(𝑥
𝑛
, 𝑥
𝑛+1

) = lim
𝑛→∞

𝑚(𝑥
𝑛−1

, 𝑥
𝑛
) =

𝑟 > 0. Then the inequality

𝜓 (𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

)) ≤ 𝜓 (𝑚 (𝑥
𝑛−1

, 𝑥
𝑛
)) − 𝜙 (𝑚 (𝑥

𝑛−1
, 𝑥
𝑛
))

≤ 𝜓 (𝑚 (𝑥
𝑛−1

, 𝑥
𝑛
))

(12)

implies that

lim
𝑛→∞

𝜙 (𝑚 (𝑥
𝑛−1

, 𝑥
𝑛
)) = 0. (13)

But as 0 < 𝑟 ≤ 𝑑(𝑥
𝑛
, 𝑥
𝑛+1

) ≤ 𝑚(𝑥
𝑛−1

, 𝑥
𝑛
) and 𝜙 is

nondecreasing function,

0 < 𝜙 (𝑟) ≤ 𝜙 (𝑚 (𝑥
𝑛−1

, 𝑥
𝑛
)) , (14)

and this gives us lim
𝑛→∞

𝜙(𝑚(𝑥
𝑛−1

, 𝑥
𝑛
)) ≥ 𝜙(𝑟) > 0 which

contradicts to (13). Hence,

lim
𝑛→∞

𝑚(𝑥
𝑛−1

, 𝑥
𝑛
) = 0 = lim

𝑛→∞

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) . (15)

Step 2.Wewill show that {𝑥
𝑛
} is a Cauchy sequence. Suppose,

on the contrary, that {𝑥
𝑛
} is not a Cauchy sequence. Thus,

there exists 𝜖 > 0 for which we can find subsequences {𝑥
𝑚(𝑘)

}

and {𝑥
𝑛(𝑘)

} of {𝑥
𝑛
} such that 𝑛(𝑘) is the smallest index for

which 𝑛(𝑘) > 𝑚(𝑘) > 𝑘, 𝑑(𝑥
𝑚(𝑘)

, 𝑥
𝑛(𝑘)

) ≥ 𝜖.
This means that

𝑑 (𝑥
𝑚(𝑘)

, 𝑥
𝑛(𝑘)−1

) < 𝜖,

𝜖 ≤ 𝑑 (𝑥
𝑚(𝑘)

, 𝑥
𝑛(𝑘)

)

≤ 𝑑 (𝑥
𝑚(𝑘)

, 𝑥
𝑛(𝑘)−1

) + 𝑑 (𝑥
𝑛(𝑘)−1

, 𝑥
𝑛(𝑘)

)

< 𝜖 + 𝑑 (𝑥
𝑛(𝑘)−1

, 𝑥
𝑛(𝑘)

) .

(16)

Letting 𝑘 → ∞ and by using (15), we conclude that

lim
𝑘→∞

𝑑 (𝑥
𝑚(𝑘)

, 𝑥
𝑛(𝑘)

) = 𝜖. (17)

Again,

𝑑 (𝑥
𝑚(𝑘)

, 𝑥
𝑛(𝑘)−1

) ≤ 𝑑 (𝑥
𝑚(𝑘)

, 𝑥
𝑛(𝑘)

) + 𝑑 (𝑥
𝑛(𝑘)

, 𝑥
𝑛(𝑘)−1

) ,

𝑑 (𝑥
𝑚(𝑘)

, 𝑥
𝑛(𝑘)

) ≤ 𝑑 (𝑥
𝑚(𝑘)

, 𝑥
𝑛(𝑘)−1

) + 𝑑 (𝑥
𝑛(𝑘)

, 𝑥
𝑛(𝑘)−1

) .

(18)

Therefore,
󵄨󵄨󵄨󵄨𝑑 (𝑥𝑚(𝑘), 𝑥𝑛(𝑘)−1) − 𝑑 (𝑥𝑚(𝑘), 𝑥𝑛(𝑘))

󵄨󵄨󵄨󵄨 ≤ 𝑑 (𝑥
𝑛(𝑘)

, 𝑥
𝑛(𝑘)−1

) .

(19)

Letting 𝑘 → ∞ andby using (17) togetherwith (15), it follows
that

lim
𝑘→∞

𝑑 (𝑥
𝑚(𝑘)

, 𝑥
𝑛(𝑘)−1

) = 𝜖. (20)

Similarly, we derive that

lim
𝑘→∞

𝑑 (𝑥
𝑚(𝑘)−1

, 𝑥
𝑛(𝑘)

) = lim
𝑘→∞

𝑑 (𝑥
𝑚(𝑘)−1

, 𝑥
𝑛(𝑘)−1

)

= lim
𝑘→∞

𝑑 (𝑥
𝑚(𝑘)+1

, 𝑥
𝑛(𝑘)

)

= lim
𝑘→∞

𝑑 (𝑥
𝑚(𝑘)

, 𝑥
𝑛(𝑘)+1

) = 𝜖.

(21)

Then, we have

lim
𝑘→∞

𝑚(𝑥
𝑚(𝑘)−1

, 𝑥
𝑛(𝑘)−1

) = 𝜖. (22)
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Using the fact that 𝑇 is generalized proximal weak con-
traction on 𝐴 for 𝑑(𝑥

𝑚(𝑘)
, 𝑇𝑥
𝑚(𝑘)−1

) = 𝑑(𝐴, 𝐵) and
𝑑(𝑥
𝑛(𝑘)

, 𝑇𝑥
𝑛(𝑘)−1

) = 𝑑(𝐴, 𝐵), we obtain

0 < 𝜓 (𝜖) ≤ 𝜓 (𝑑 (𝑥
𝑚(𝑘)

, 𝑥
𝑛(𝑘)

))

≤ 𝜓 (𝑚 (𝑥
𝑚(𝑘)−1

, 𝑥
𝑛(𝑘)−1

))

− 𝜙 (𝑚 (𝑥
𝑚(𝑘)−1

, 𝑥
𝑛(𝑘)−1

))

≤ 𝜓 (𝑚 (𝑥
𝑚(𝑘)−1

, 𝑥
𝑛(𝑘)−1

)) .

(23)

By using (22) and the continuity of 𝜓 in the above inequality,
we find that

lim
𝑘→∞

𝜙 (𝑚 (𝑥
𝑚(𝑘)−1

, 𝑥
𝑛(𝑘)−1

)) = 0. (24)

But from lim
𝑘→∞

𝑚(𝑥
𝑚(𝑘)−1

, 𝑥
𝑛(𝑘)−1

) = 𝜖, we can find 𝑘
0
∈ N

such that for any 𝑘 ≥ 𝑘
0

𝜖

2
≤ 𝑚 (𝑥

𝑚(𝑘)−1
, 𝑥
𝑛(𝑘)−1

) , (25)

and consequently,

0 < 𝜙 (
𝜖

2
) ≤ 𝜙 (𝑚 (𝑥

𝑚(𝑘)−1
, 𝑥
𝑛(𝑘)−1

)) for 𝑘 ≥ 𝑘
0
. (26)

Therefore, 0 < 𝜙(𝜖/2) ≤ 𝜙(𝑚(𝑥
𝑚(𝑘)−1

, 𝑥
𝑛(𝑘)−1

)) and this
contradicts to (24). Thus, {𝑥

𝑛
} is a Cauchy sequence in 𝐴 and

hence converges to some element 𝑥 in 𝐴. Analogously, by
using the fact that𝑇 is generalized proximal weak contraction
on 𝐵, we conclude that {𝑇𝑥

𝑛
} is a Cauchy sequence in 𝐵.

Hence, {𝑇𝑥
𝑛
} converges to some element 𝑦 in 𝐵.

Step 3. Let us now prove that 𝑥 is best proximity point for 𝑇.
Recall that 𝑥

𝑛
→ 𝑥 in 𝐴 and 𝑇𝑥

𝑛
→ 𝑦 in 𝐵. Therefore,

from (7), we get 𝑑(𝑥, 𝑦) = 𝑑(𝐴, 𝐵) and hence 𝑥 is a member
of 𝐴
0
. Since 𝑇(𝐴

0
) ⊆ 𝐵
0
, we get 𝑇𝑥 ∈ 𝐵

0
; hence there exists

𝑧 ∈ 𝐴 such that

𝑑 (𝑧, 𝑇𝑥) = 𝑑 (𝐴, 𝐵) . (27)

Since 𝑇 is a generalized proximal weak contraction on 𝐴, we
obtain

𝜓 (𝑑 (𝑥
𝑛+1

, 𝑧)) ≤ 𝜓 (𝑚 (𝑥
𝑛
, 𝑥)) − 𝜙 (𝑚 (𝑥

𝑛
, 𝑥))

≤ 𝜓 (𝑚 (𝑥
𝑛
, 𝑥)) ,

(28)

where 𝑚(𝑥
𝑛
, 𝑥) = max{𝑑(𝑥

𝑛
, 𝑥), 𝑑(𝑥

𝑛
, 𝑥
𝑛+1

), 𝑑(𝑥, 𝑧), (𝑑(𝑥
𝑛
,

𝑧) + 𝑑(𝑥, 𝑥
𝑛+1

))/2}.
By using the fact that 𝑥

𝑛
→ 𝑥, we get

lim
𝑛→∞

𝑚(𝑥
𝑛
, 𝑥) = 𝑑 (𝑥, 𝑧) . (29)

Regarding (29) and continuity of 𝜓 in (28), we can obtain

lim
𝑛→∞

𝜙 (𝑚 (𝑥
𝑛
, 𝑥)) = 0. (30)

But from lim
𝑛→∞

𝑚(𝑥
𝑛
, 𝑥) = 𝑑(𝑥, 𝑧)we find 𝑛

0
∈ N such that

for any 𝑛 ≥ 𝑛
0

𝑑 (𝑥, 𝑧)

2
≤ 𝑚 (𝑥

𝑛
, 𝑥) (31)

and consequently, since 𝜙 is nondecreasing, we get

𝜙(
𝑑 (𝑥, 𝑧)

2
) ≤ 𝜙 (𝑚 (𝑥

𝑛
, 𝑥)) ∀𝑛 ≥ 𝑛

0
. (32)

By using (30) in the inequality above, we get 𝜙(𝑑(𝑥, 𝑧)/2) = 0

and from the property of 𝜙, we obtain 𝑑(𝑥, 𝑧)/2 = 0 or
equivalently, 𝑥 = 𝑧. Hence, from (27), we have 𝑑(𝑥, 𝑇𝑥) =
𝑑(𝐴, 𝐵).

Example 10. Consider the complete space𝑋 = R2 with usual
metric.

Suppose that𝐴 := {(𝑥, 0) : 𝑥 ∈ [−2, −1]} and𝐵 := {(1, 𝑥) :

𝑥 ∈ [3/2, 2]}. Then 𝐴 and 𝐵 are nonempty closed subsets of
𝑋 and𝐴

0
= {(−1, 0)} and 𝐵

0
= {(1, 3/2)}. Note that 𝑑(𝐴, 𝐵) =

5/2. Let 𝑇 : 𝐴 → 𝐵 be defined as

𝑇 (𝑥, 0) = (1, 1 −
𝑥

2
) , ∀ (𝑥, 0) ∈ 𝐴. (33)

Suppose that (𝑢
1
, 0), (𝑢

2
, 0), (𝑥

1
, 0), (𝑥

2
, 0) are elements in𝐴

such that

𝑑 ((𝑢
1
, 0) , 𝑇 (𝑥

1
, 0)) = 𝑑 ((𝑢

2
, 0) , 𝑇 (𝑥

2
, 0)) = 𝑑 (𝐴, 𝐵) .

(34)

Then, (𝑢
1
, 0) and (𝑢

2
, 0) become the members of 𝐴

0
. Conse-

quently, we have

𝑑 ((𝑢
1
, 0) , (𝑢

2
, 0)) = 𝑑 (𝑇 (𝑢

1
, 0) , 𝑇 (𝑢

2
, 0)) = 0. (35)

By assuming that 𝜓, 𝜙 : [0,∞) → [0,∞) such that 𝜓(𝑡) = 2𝑡

and 𝜙(𝑡) = 𝑡/2, we get

𝜓 (𝑑 ((𝑢
1
, 0) , (𝑢

2
, 0))) = 𝜓 (𝑑 (𝑇 (𝑢

1
, 0) , 𝑇 (𝑢

2
, 0))) = 0,

𝜓 (𝑚 ((𝑥
1
, 0) , (𝑥

2
, 0))) − 𝜙 (𝑚 ((𝑥

1
, 0) , (𝑥

2
, 0)))

=
3

2
𝑚 ((𝑥

1
, 0) , (𝑥

2
, 0)) ,

𝜓 (𝑚 (𝑇 (𝑥
1
, 0) , 𝑇 (𝑥

2
, 0))) − 𝜙 (𝑚 (𝑇 (𝑥

1
, 0) , 𝑇 (𝑥

2
, 0)))

=
3

2
𝑚 (𝑇 (𝑥

1
, 0) , 𝑇 (𝑥

2
, 0)) .

(36)

Therefore, 𝑇 is both generalized proximal weak contrac-
tion on 𝐴 and generalized proximal weak contraction on 𝐵.
Hence 𝑇 is generalized proximal weak contraction such that
𝑇(𝐴
0
) ⊆ 𝐵
0
. So, all the hypotheses ofTheorem 9 are satisfied.

Further, it is easy to see that (−1, 0) is the unique element
satisfying the conclusion of Theorem 9.

It is easy to see that a self-mapping that is a generalized
proximal weak contraction reduces to a generalized (𝜓, 𝜙)-
weak contraction. Hence the above Theorem 9 gives rise to
the following fixed point theorem, due to Dorić [9], which in
turn extends the famous contraction principle.

Corollary 11. Let (𝑋, 𝑑) be a nonempty complete metric space
and let 𝑇 : 𝑋 → 𝑋 be a generalized proximal weak
contraction map. Then 𝑇 has a unique fixed point.
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Theorem 12. Let (𝐴, 𝐵) be a pair of two nonempty closed sub-
sets of a complete metric space𝑋 such that𝐵 is approximatively
compact with respect to𝐴 and𝐴

0
is nonempty. Let𝑇 : 𝐴 → 𝐵

be a map satisfying the following conditions:

(i) 𝑇 is a generalized proximal weak contraction on 𝐴,
(ii) 𝑇(𝐴

0
) ⊆ 𝐵
0
.

Then, there exists a unique𝑥 ∈ 𝐴 such that 𝑑(𝑥, 𝑇𝑥) = 𝑑(𝐴, 𝐵).
Further, for any fixed element 𝑥

0
∈ 𝐴
0
, the sequence {𝑥

𝑛
},

defined by 𝑑(𝑥
𝑛+1

, 𝑇𝑥
𝑛
) = 𝑑(𝐴, 𝐵), converges to the element

𝑥.

Proof. Following the proof of Theorem 9, there exists a
sequence {𝑥

𝑛
} in 𝐴 satisfying the following conditions:

𝑑 (𝑥
𝑛+1

, 𝑇𝑥
𝑛
) = 𝑑 (𝐴, 𝐵) , ∀𝑛 ∈ N (37)

and 𝑥
𝑛
converges to 𝑥 in 𝐴. Let us now prove that 𝑥 is best

proximity point for 𝑇.
Note that from (37), we have

𝑑 (𝑥, 𝐵) ≤ 𝑑 (𝑥, 𝑇𝑥
𝑛
) ≤ 𝑑 (𝑥, 𝑥

𝑛+1
) + 𝑑 (𝑥

𝑛+1
, 𝑇𝑥
𝑛
)

≤ 𝑑 (𝑥, 𝑥
𝑛+1

) + 𝑑 (𝐴, 𝐵)

≤ 𝑑 (𝑥, 𝑥
𝑛+1

) + 𝑑 (𝑥, 𝐵) .

(38)

Since 𝑥
𝑛

→ 𝑥, we get 𝑑(𝑥, 𝑇𝑥
𝑛
) → 𝑑(𝑥, 𝐵). Since 𝐵 is

approximatively compact with respect to the set 𝐴, it follows
that the sequence {𝑇𝑥

𝑛
} has a subsequence converging to

some𝑦 in𝐵. Now arguing like Step 3 and Step 4 ofTheorem 9,
we get the required result.

In what follows we prove that Theorem 12 is still valid for
𝐵 not necessarily approximatively compact with respect to𝐴,
assuming that 𝐴

0
is closed.

Theorem 13. Assume that “𝐴
0
is closed” instead of “the state-

ment 𝐵 is approximatively compact with respect to A” in
Theorem 12.

Proof. Following the proof of Theorem 9, there exists a
sequence {𝑥

𝑛
} in 𝐴 satisfying the following condition:

𝑑 (𝑥
𝑛+1

, 𝑇𝑥
𝑛
) = 𝑑 (𝐴, 𝐵) , (39)

and 𝑥
𝑛
converges to 𝑥 in 𝐴. Note that the sequence {𝑥

𝑛
} in

𝐴
0
and 𝐴

0
is closed. Therefore, 𝑥 ∈ 𝐴

0
. Since 𝑇(𝐴

0
) ⊆ 𝐵

0
,

we get 𝑇𝑥 ∈ 𝐵
0
. Since 𝑇𝑥 ∈ 𝐵

0
, there exists 𝑧 ∈ 𝐴 such that

𝑑(𝑧, 𝑇𝑥) = 𝑑(𝐴, 𝐵). Since 𝑇 is a generalized proximal weak
contraction on 𝐴, we have

𝜓 (𝑑 (𝑥
𝑛+1

, 𝑧)) ≤ 𝜓 (𝑚 (𝑥, 𝑥
𝑛
)) − 𝜙 (𝑚 (𝑥, 𝑥

𝑛
)) , (40)

where 𝑚(𝑥, 𝑥
𝑛
) = max{𝑑(𝑥

𝑛
, 𝑥), 𝑑(𝑥

𝑛
, 𝑥
𝑛+1

), 𝑑(𝑥, 𝑧), (𝑑(𝑥
𝑛
,

𝑧) + 𝑑(𝑥, 𝑥
𝑛+1

))/2}.
Now arguing like Step 3 and Step 4 of Theorem 9, we get

the required result.

Theorem 14. Assume that “𝑇 is continuous” instead of the
statement “𝐵 is approximatively compact with respect to 𝐴” in
the Theorem 12.

Proof. Following the proof of Theorem 9, there exists a
sequence {𝑥

𝑛
} in 𝐴 satisfying the following condition:

𝑑 (𝑥
𝑛+1

, 𝑇𝑥
𝑛
) = 𝑑 (𝐴, 𝐵) , (41)

and 𝑥
𝑛
converges to 𝑥 in 𝐴. Since 𝑇 are continuous, we have

𝑑 (𝑥, 𝑇𝑥) = lim
𝑛→∞

𝑑 (𝑥
𝑛+1

, 𝑇𝑥
𝑛
) = 𝑑 (𝐴, 𝐵) . (42)

Uniqueness follows the same as in Theorem 9.
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