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We propose a BDDC preconditioner for the rotated 𝑄
1
finite element method for second order elliptic equations with piecewise

but discontinuous coefficients. In the framework of the standard additive Schwarz methods, we describe this method by a complete
variational form. We show that our method has a quasioptimal convergence behavior; that is, the condition number of the
preconditioned problem is independent of the jumps of the coefficients and depends only logarithmically on the ratio between
the subdomain size and the mesh size. Numerical experiments are presented to confirm our theoretical analysis.

1. Introduction

The balancing domain decomposition by constraints
(BDDC) method was first introduced by Dohrmann in [1].
ThenMandel and the author Dohrmann restated the method
in an abstract manner and provided its convergence theory in
[2]. The BDDC method is closely related to the dual-primal
FETI (FETI-DP) method [3], which is one of dual iterative
substructuring methods. Each BDDC and FETI-DP method
is defined in terms of a set of primal continuity; the primal
continuity is enforced across the interface between the
subdomains and provides a coarse space component of the
preconditioner. In [4], Mandel et al. analyzed the relation
between the two methods and established the corresponding
theory.

In the last decades, the two methods have been widely
analyzed and successfully been extended to many differ-
ent types of partial differential equations. In [3], the two
algorithms for elliptic problems were rederived and a brief
proof of the main result was given. A BDDC algorithm for
mortar finite element was developed in [5]; meanwhile, the
authors also extended the FETI-DP algorithm to elasticity
problems and stokes problems in [6, 7], respectively. These
algorithms were based on locally conforming finite element
methods, and the coarse space components of the algorithms
were related to the cross-points (i.e., corners), which are

often noteworthy points in domain decomposition methods
(DDMs). Since the cross-points are related to more than
two subregions, thus it is not convenient when designing
algorithm.

The BDDC method derives from the Neumann-Neu-
mann domain decomposition method (see [8]). The differ-
ence is that the BDDC method applies an additive rather
than amultiplicative coarse grid correction, and substructure
spaces have some constraints which result in nonsingular
subproblems, so that we can solve each subproblem and
coarse problem in parallel.

The rotated 𝑄
1
element is an important nonconforming

element. It was introduced by Rannacher and Turek in [9] for
stokes equations originally, and it is the simplest example of a
divergence-stable nonconforming element on quadrilaterals.
Since its degree of freedom is integral average on element
edge which is not related to the corners, and each degree
of freedom on subdomain interfaces is only included in two
neighboring subdomains, so it is easy to design algorithm.

In this paper, we consider the second order problem
with discontinuous coefficients, where the discontinuities
lie only along the subdomain interfaces. Such problems
play an important role in scientific computing. It is well
known that large jumps in the coefficients may result in bad
convergence for the traditional iterative methods (such as
C-G algorithm). To overcome this difficulty, we construct
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a family of weighted counting functions associated with the
substructures. Our counting functions are related to only
two neighboring subdomains; this brings convenience for
computing. Furthermore, since the rotated 𝑄

1
element is

not related to the subdomain’s vertices, we can complete
our theoretical analysis conveniently. It is proved that the
condition number of the preconditioned operator is inde-
pendent of the jumps of the coefficients and only depends
logarithmically on the ratio between the subdomain size and
mesh size. Numerical experiments are presented to confirm
our theoretical analysis.

The rest of this paper is organized as follows. In Section 2,
we introduce the model problem and the correspond-
ing Schur complement system. Section 3 gives the BDDC
algorithm and proposes the BDDC preconditioner. Several
technical tools are presented and analyzed in Section 4. In
Section 5, we complete the proof of the main result. Last
section provides numerical experiments. For convenience,
the symbols ⪯, ⪰, and ≍ are used, and 𝑥

1
⪯ 𝑦
1
, 𝑥
2
⪰ 𝑦
2
,

and 𝑥
3
≍ 𝑦
3
mean that 𝑥

1
≤ 𝐶
1
𝑦
1
, 𝑥
2
≥ 𝐶
2
𝑦
2
, and 𝑐

3
𝑥
3
≤

𝑦
3
≤ 𝐶
3
𝑦
3
for some constants 𝐶

1
, 𝐶
2
, 𝐶
3
, and 𝑐

3
that are

independent of discontinuous coefficients and mesh size.

2. Preliminaries

Let Ω ⊂ R2 be a bounded, simply connect rectangular or
𝐿-shaped domain. We divide Ω into several nonoverlapping
regular rectangular subdomains Ω

𝑖
(𝑖 = 1, . . . , 𝑁); that is,

Ω = ⋃
𝑁

𝑖=1
Ω
𝑖
. Consider the following model problem: find

𝑢 ∈ 𝐻
1

0
(Ω) such that

𝑎 (𝑢, V) = 𝑓 (V) , ∀V ∈ 𝐻
1

0
(Ω) , (1)

where

𝑎 (𝑢, V) =
𝑁

∑

𝑖=1

∫

Ω𝑖

𝜌
𝑖
(𝑥) ∇𝑢 ⋅ ∇V𝑑𝑥,

𝑓 (V) =
𝑁

∑

𝑖=1

∫

Ω𝑖

𝑓V𝑑𝑥,

(2)

where 𝑓 ∈ 𝐿
2
(Ω), and the coefficients 𝜌

𝑖
(𝑥) (𝑖 = 1, . . . , 𝑁) are

positive constants over Ω
𝑖
(𝑖 = 1, . . . , 𝑁).

We only consider the geometrically conforming case;
that is, the intersection between the closure of two different
subdomains is empty, or a vertex, or an edge.The subdomains
{Ω
𝑖
}
𝑁

𝑖=1
together form a coarse partition T

𝐻
(Ω); we denote

the diameter of eachΩ
𝑖
by𝐻
𝑖
. LetT

ℎ
(Ω
𝑖
) be a quasiuniform

partition with mesh size 𝑂(ℎ
𝑖
), made up of rectangles in

Ω
𝑖
; then T

ℎ
(Ω) = ⋃

𝑁

𝑖=1
T
ℎ
(Ω
𝑖
) is the global quasiuniform

partition on Ω. The nodes on the boundaries of neighboring
subdomains match across the interface Γ = (⋃

𝑁

𝑖=1
𝜕Ω
𝑖
) \ 𝜕Ω.

We define by Γ
𝑖𝑗
the interface betweenΩ

𝑖
andΩ

𝑗
, and let Γ

𝑖
=

𝜕Ω
𝑖
\ 𝜕Ω. We denote the sets of edges of the partitionT

ℎ
(Ω
𝑖
)

in Ω
𝑖
, 𝜕Ω
𝑖
, Γ, and Γ

𝑖𝑗
by Ω
𝑒

𝑖,ℎ
, 𝜕Ω𝑒
𝑖,ℎ
, Γ𝑒
ℎ
, and Γ

𝑒

𝑖𝑗
, respectively,

and let Ω
𝑖,ℎ
, 𝜕Ω
𝑖,ℎ

be the sets of vertices of the triangulation
T
ℎ
(Ω
𝑖
) that are inΩ

𝑖
, 𝜕Ω
𝑖
, respectively.

The global rotated𝑄
1
element space is defined as follows:

𝑋
ℎ
(Ω)

= {V ∈ 𝐿
2
(Ω) |V|𝐸

= 𝑎
1

𝐸
+ 𝑎
2

𝐸
𝑥 + 𝑎
3

𝐸
𝑦 + 𝑎
4

𝐸
(𝑥
2
− 𝑦
2
) ,

𝑎
𝑖

𝐸
∈ R,

∫

𝑒

V𝑑𝑠 = 0, ∀𝑒 ∈ 𝜕𝐸 ∩ 𝜕Ω,

𝐸 ∈ T
ℎ
(Ω) ; for𝐸

1
, 𝐸
2
∈ T
ℎ
(Ω) ,

if 𝜕𝐸
1
∩ 𝜕𝐸
2
= 𝑒,

then ∫

𝑒

V|
𝜕𝐸1

𝑑𝑠 = ∫

𝑒

V|
𝜕𝐸2

𝑑𝑠} .

(3)

The discrete approximation of the original problem (1) is
to find 𝑢

ℎ
∈ 𝑋
ℎ
(Ω) such that

𝑎
ℎ
(𝑢
ℎ
, V
ℎ
) = (𝑓, V

ℎ
) , ∀V

ℎ
∈ 𝑋
ℎ
(Ω) , (4)

where

𝑎
ℎ
(𝑢
ℎ
, V
ℎ
) =

𝑁

∑

𝑖=1

𝑎
ℎ,𝑖
(𝑢
ℎ
, V
ℎ
) ,

𝑎
ℎ,𝑖
(𝑢
ℎ
, V
ℎ
) = ∑

𝐸∈Tℎ(Ω𝑖)

∫

𝐸

𝜌
𝑖
∇𝑢
ℎ
∇V
ℎ
𝑑𝑥,

(𝑓, V
ℎ
) = ∫

Ω

𝑓V
ℎ
𝑑𝑥.

(5)

For each space 𝑋
ℎ
(Ω
𝑖
) (𝑋
ℎ
(Ω
𝑖
) = 𝑋

ℎ
(Ω)|
Ω𝑖
), we equip the

following seminorm and norm:

|V|2
𝐻
1

ℎ
(Ω𝑖)

= ∑

𝐸∈Tℎ(Ω𝑖)

|V|2
𝐻
1
(𝐸)
, |V|2

𝐻
1

𝜌(Ω𝑖)
= 𝑎
ℎ,𝑖
(V, V) ,

‖V‖2
𝐿
2

𝜌
(Ω𝑖)

= ∫

Ω𝑖

𝜌
𝑖
V2𝑑𝑥.

(6)

It can be easily shown that 𝑎
ℎ
(⋅, ⋅) is positive definite on

𝑋
ℎ
(Ω), which yields the existence and uniqueness of the

discrete solution.
We define a discrete harmonic operator H

𝑖
associated

with the rotated 𝑄
1
element: for any V ∈ 𝑋

ℎ
(Ω
𝑖
), let H

𝑖
V ∈

𝑋
ℎ
(Ω
𝑖
) such that

𝑎
ℎ,𝑖
(H
𝑖
V, 𝑤) = 0, ∀𝑤 ∈ 𝑋

0

ℎ
(Ω
𝑖
) ,

1

|𝑒|
∫

𝑒

H
𝑖
V𝑑𝑠 =

1

|𝑒|
∫

𝑒

V𝑑𝑠, ∀𝑒 ∈ 𝜕Ω
𝑒

𝑖,ℎ
,

(7)

here 𝑋0
ℎ
(Ω
𝑖
) = {V ∈ 𝑋

ℎ
(Ω
𝑖
)| ∫
𝑒
V𝑑𝑠 = 0, ∀𝑒 ∈ 𝜕Ω

𝑒

𝑖,ℎ
}. We

define a corresponding piecewise harmonic operator H by
H|
Ω𝑖

= H
𝑖
on the global rotated 𝑄

1
element space𝑋

ℎ
(Ω).
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In order to introduce our domain decomposition
method, we decompose the discrete space𝑋

ℎ
(Ω) as follows:

𝑋
ℎ
(Ω) = 𝑋

𝑃

ℎ
(Ω) ⊕ 𝑋

ℎ
(Γ) , 𝑋

𝑃

ℎ
(Ω) =

𝑁

⋃

𝑖=1

𝑋
0

ℎ
(Ω
𝑖
) ,

(8)

where the space𝑋
ℎ
(Γ) is a piecewise harmonic function space

defined as

𝑋
ℎ
(Γ) = H (𝑋

ℎ
(Ω))

= {V ∈ 𝑋
ℎ
(Ω) | V

Ω𝑖
= H
𝑖
(V|
Ω𝑖
) , 𝑖 = 1, 2 . . . , 𝑁} .

(9)

We assume 𝑢 to be the solution of (4) and 𝑢
𝑖
∈ 𝑋
0

ℎ
(Ω
𝑖
) to

be the solution of the local homogeneous Dirichlet problem:

𝑎
ℎ,𝑖
(𝑢
𝑖
, V) = (𝑓, V)

Ω𝑖
, ∀V ∈ 𝑋

0

ℎ
(Ω
𝑖
) , (10)

where (𝑓, V)
Ω𝑖

= ∫
Ω𝑖

𝑓V𝑑𝑥. Let 𝑢
𝑃
∈ 𝑋
𝑃

ℎ
(Ω) be the function

that is equal to 𝑢
𝑖
on the subdomain Ω

𝑖
; then 𝑢

Γ
= 𝑢 − 𝑢

𝑃

obviously satisfies

𝑎
ℎ
(𝑢
Γ
, V) = (𝑓, V) − 𝑎

ℎ
(𝑢
𝑃
, V) , ∀V ∈ 𝑋

ℎ
(Ω) , (11)

and we get 𝑢
Γ
∈ 𝑋
ℎ
(Γ). So we can equivalently derive the

Schur complement system of (4) easily: find 𝑢
Γ
∈ 𝑋
ℎ
(Γ) such

that

𝑎
ℎ
(𝑢
Γ
, V
Γ
) = (𝑓, V) − 𝑎

ℎ
(𝑢
𝑃
, V) = (𝑓, V

Γ
) , ∀V ∈ 𝑋

ℎ
(Ω) ,

(12)

where V
Γ
is the piecewise harmonic function of V inΩ; that is,

V
Γ
= HV.
For the sake of completeness, we define a Schur comple-

ment operator 𝑆
ℎ
: 𝑋
ℎ
(Γ) → 𝑋

ℎ
(Γ) by

(𝑆
ℎ
𝑢
Γ
, V
Γ
) = 𝑎
ℎ
(𝑢
Γ
, V
Γ
) , ∀𝑢

Γ
, V
Γ
∈ 𝑋
ℎ
(Γ) . (13)

Our goal is therefore to construct a preconditioner for the
operator 𝑆

ℎ
.

3. BDDC Algorithm

In this section, we introduce our BDDC preconditioner and
describe the BDDC algorithm. Let 𝑋

ℎ
(Γ
𝑖
) = 𝑋

ℎ
(Γ)|
Ω𝑖
; we

define the space 𝑋
ℎ
(Γ) = {V ∈ ∏

𝑁

𝑖=1
𝑋
ℎ
(Γ
𝑖
) | ∫
Γ𝑖𝑗

V|
Ω𝑖
𝑑𝑠 =

∫
Γ𝑖𝑗

V|
Ω𝑗
𝑑𝑠, ∀Γ

𝑖𝑗
⊂ Γ}. The space 𝑋

ℎ
(Γ) is intermediary

between𝑋
ℎ
(Γ) and∏𝑁

𝑖=1
𝑋
ℎ
(Γ
𝑖
); our BDDC preconditioner is

constructed based on this space.
As we know, the technical aspect in DDMs is that the

preconditioner includes a coarse problemwhich can enhance
the convergence. In view of the characteristic of the space
𝑋
ℎ
(Γ), we select the standard coarse space 𝑋

𝐻
(Ω) which

is the rotated 𝑄
1
finite element space associated with the

coarse partitionT
𝐻
(Ω), and it satisfies primal constraints on

subdomain interfaces.

The substructure space𝑋
Δ
(Γ
𝑖
) with constraints is defined

by

𝑋
Δ
(Γ
𝑖
) = {V ∈ 𝑋

ℎ
(Γ
𝑖
) | ∫

Γ𝑖𝑗

V𝑑𝑠 = 0, ∀Γ
𝑖𝑗
⊂ 𝜕Ω
𝑖
} . (14)

Denote𝑋
Δ
(Γ) = ∏

𝑁

𝑖=1
𝑋
Δ
(Γ
𝑖
).

The coarse space and product space 𝑋
Δ
(Γ) play an

important role in the description and analysis of our iterative
method. In essence, we give a decomposition of the space
𝑋
ℎ
(Γ) as follows:

𝑋
ℎ
(Γ) = H (𝑋

𝐻
(Ω)) + 𝑋

Δ
(Γ) . (15)

To present our BDDC preconditioner, we introduce
several space transfer operators. Define the interpolation
operator 𝐼

𝐻
: 𝑋
ℎ
(Γ) → 𝑋

𝐻
(Ω) by

∫
Γ𝑖𝑗

𝐼
𝐻
V𝑑𝑠


Γ
𝑖𝑗



=

∫
Γ𝑖𝑗

V𝑑𝑠

Γ
𝑖𝑗



, ∀Γ
𝑖𝑗
⊂ Γ. (16)

The intergrid transfer operator 𝐼
ℎ

: 𝑋
𝐻
(Ω) → 𝑋

ℎ
(Γ) is

defined by

∫
𝑒
𝐼
ℎ
V𝑑𝑠

|𝑒|
=

∫
𝑒
V𝑑𝑠

|𝑒|
, ∀𝑒 ∈ 𝜕Ω

𝑒

𝑖,ℎ
(𝑖 = 1, . . . , 𝑁) . (17)

We define the extension operator 𝑅𝑇
𝑖
: 𝑋
ℎ
(Γ
𝑖
) → 𝑋

ℎ
(Γ) as

∫
𝑒
𝑅
𝑇

𝑖
V𝑑𝑠

|𝑒|
=

{{

{{

{

∫
𝑒
V𝑑𝑠

|𝑒|
, ∀𝑒 ∈ 𝜕Ω

𝑒

𝑖,ℎ
,

0, ∀𝑒 ∈ Γ \ 𝜕Ω
𝑒

𝑖,ℎ
.

(18)

Its transpose 𝑅
𝑖
is defined by

(𝑅
𝑖
𝑤, V) = (𝑤, 𝑅

𝑇

𝑖
V) , ∀𝑤 ∈ 𝑋

ℎ
(Γ) , V ∈ 𝑋

ℎ
(Γ
𝑖
) . (19)

Denote 𝑅
𝑇

Δ 𝑖
: 𝑋
Δ
(Γ
𝑖
) → 𝑋

ℎ
(Γ) by 𝑅

𝑇

Δ 𝑖
= 𝑅
𝑇

𝑖
|
𝑋Δ(Γ𝑖)

; the
corresponding transpose is defined by

(𝑅
Δ 𝑖
𝑤, V) = (𝑤, 𝑅

𝑇

Δ 𝑖
V) , ∀𝑤 ∈ 𝑋

ℎ
(Γ) , V ∈ 𝑋

Δ
(Γ
𝑖
) . (20)

To overcome the discontinuous coefficients 𝜌
𝑖
(𝑖 =

1, . . . , 𝑁), we define a family of weighted counting functions
𝛿
𝑖
associated with Γ

𝑖
as follows:

𝛿
𝑖
|
𝑒
=

∑
𝑗∈N𝑒

𝜌
𝑗

𝜌
𝑖

, ∀𝑒 ∈ 𝜕Ω
𝑒

𝑖,ℎ
\ 𝜕Ω, (21)

here N
𝑒
is the set of indices 𝑗 of the subregions such that

𝑒 ∈ 𝜕Ω
𝑒

𝑗,ℎ
. Actually, 𝛿

𝑖
are piecewise constants associated

with Γ. Let 𝛿+
𝑖
be the corresponding pseudoinverse; for any

𝑢 ∈ 𝑋
ℎ
(Γ), they provide a partition of unity as follows:

∑

𝑖

𝑅
𝑇

𝑖
𝛿
+

𝑖
(𝑢|
Ω𝑖
) ≡ 𝑢. (22)
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By an elementary argument, we can see

𝜌
𝑖
𝛿
+
2

𝑗
≤ min {𝜌

𝑖
, 𝜌
𝑗
} . (23)

According to the construction of 𝑅𝑇
𝑖
, given the scaling factors

𝛿
+

𝑖
at the subdomain interface elements’ edges, we can define

the two scaled extension operators. 𝑅𝑇
𝐷,𝑖

: 𝑋
ℎ
(Γ
𝑖
) → 𝑋

ℎ
(Γ)

∫
𝑒
𝑅
𝑇

𝐷,𝑖
V𝑑𝑠

|𝑒|
=

{{

{{

{

𝛿
+
∫
𝑒
V𝑑𝑠

|𝑒|
, ∀𝑒 ∈ 𝜕Ω

𝑒

𝑖,ℎ
,

0, ∀𝑒 ∈ Γ \ 𝜕Ω
𝑒

𝑖,ℎ
,

(24)

where 𝑅
𝑇

𝐷,Δ 𝑖
: 𝑋
Δ
(Γ
𝑖
) → 𝑋

ℎ
(Γ), 𝑅𝑇

𝐷,Δ 𝑖
= 𝑅
𝑇

𝐷,𝑖
|
𝑋Δ(Γ𝑖)

.
Following (19) the corresponding transposes are denoted by
𝑅
𝐷,𝑖

and 𝑅
𝐷,Δ 𝑖

, respectively.
In what follows, we describe our BDDC preconditioning

algorithm, by using the basic framework of additive Schwarz
method (or parallel subspace correction method [10]). From
the decomposition (15), we only need to define appropriate
subspace solvers.

First of all, the coarse subspace solver 𝐵
𝐻

: 𝑋
𝐻
(Ω) →

𝑋
𝐻
(Ω) is defined by

(𝐵
𝐻
𝑢
𝐻
, V
𝐻
) = 𝑎
ℎ
(𝑢
𝐻
, V
𝐻
) , ∀𝑢

𝐻
, V
𝐻
∈ 𝑋
𝐻
(Ω) . (25)

On each subdomain, the similar solver 𝐵
𝑖
: 𝑋
Δ
(Γ
𝑖
) → 𝑋

Δ
(Γ
𝑖
)

is given by

(𝐵
𝑖
𝑢, V) = 𝑎

ℎ,𝑖
(𝑢, V) , ∀𝑢, V ∈ 𝑋

Δ
(Γ
𝑖
) . (26)

Remark 1. The bilinear forms on the coarse space can be
different from substructure space; here we only use the exact
solvers; on each subdomain, we avoid the possible singularity
of local subproblem.

Now we define the BDDC preconditioner as

𝐵
𝑏𝑑𝑑𝑐

= 𝑅
𝑇

0
𝐵
−1

𝐻
𝑅
0
+

𝑁

∑

𝑖=1

𝑅
𝑇

𝐷,Δ 𝑖
𝐵
−1

𝑖
𝑅
𝐷,Δ 𝑖

, (27)

where 𝑅𝑇
0
= ∑
𝑁

𝑖=1
𝑅
𝑇

𝐷,𝑖
𝐼
ℎ
, 𝑅
0
is the corresponding transpose

defined by

(𝑅
0
𝑤, V) = (𝑤, 𝑅

𝑇

0
V) , ∀𝑤 ∈ 𝑋

ℎ
(Γ) , V ∈ 𝑋

𝐻
(Ω) . (28)

Let 𝑃
0
be the operator from𝑋

ℎ
(Γ) to𝑋

𝐻
(Ω) defined by

𝑎
ℎ
(𝑃
0
𝑢, V) = 𝑎

ℎ
(𝑢, 𝑅
𝑇

0
V) , ∀𝑢 ∈ 𝑋

ℎ
(Γ) , V ∈ 𝑋

𝐻
(Ω) ,

(29)

and let 𝑃
𝑖
be the operator from𝑋

ℎ
(Γ) to𝑋

Δ
(Γ
𝑖
) defined by

𝑎
ℎ,𝑖
(𝑃
𝑖
𝑢, V) = 𝑎

ℎ
(𝑢, 𝑅
𝑇

Δ,𝑖
V) , ∀𝑢 ∈ 𝑋

ℎ
(Γ) , V ∈ 𝑋

Δ
(Γ
𝑖
) .

(30)

Then the BDDCpreconditioned operator𝑃
𝑏𝑑𝑑𝑐

can bewritten
as

𝑃
𝑏𝑑𝑑𝑐

= 𝑅
𝑇

0
𝑃
0
+

𝑁

∑

𝑖=1

𝑅
𝑇

𝐷,Δ 𝑖
𝑃
𝑖
,

𝐵
𝑏𝑑𝑑𝑐

𝑆
ℎ
= 𝑃
𝑏𝑑𝑑𝑐

.

(31)

The next key theorem gives an estimate on 𝑃
𝑏𝑑𝑑𝑐

.

Theorem 2. The BDDC preconditioned operators 𝑃
𝑏𝑑𝑑𝑐

satis-
fies

𝑎
ℎ
(𝑢, 𝑢) ⪯ 𝑎

ℎ
(𝑃
𝑏𝑑𝑑𝑐

𝑢, 𝑢) ⪯ (1 + log 𝐻
ℎ
)

2

𝑎
ℎ
(𝑢, 𝑢) ,

∀𝑢 ∈ 𝑋
ℎ
(Γ) ,

(32)

where𝐻/ℎ = max
𝑖
(𝐻
𝑖
/ℎ
𝑖
).

4. Technical Tools

In this sectionwe state and prove a technical lemmanecessary
for the proof of Theorem 2. Our theoretical analysis is based
on substructuring theory of conforming element.

We assume𝑉ℎ(Ω
𝑖
) to be the bilinear conforming element

space associated with the partition T
ℎ
(Ω
𝑖
). We split the

interface 𝜕Ω
𝑖
into four open edges E and define a zero

prolong operator 𝐼0E on 𝑉
ℎ
(𝜕Ω
𝑖
) = 𝑉

ℎ
(Ω
𝑖
)|
𝜕Ω𝑖

as for any
V ∈ 𝑉

ℎ
(𝜕Ω
𝑖
)

𝐼
0

EV = {
V, on E,

0, on 𝜕Ω
𝑖
\E.

(33)

For the operator 𝐼0E, we introduce the following result (cf.
[11]).

Lemma 3. For an edgeE of 𝜕Ω
𝑖
, for any V ∈ 𝑉

ℎ
(𝜕Ω
𝑖
), one has


𝐼
0

EV
𝐻1/2(𝜕Ω𝑖)

⪯ (log
𝐻
𝑖

ℎ
𝑖

) ‖V‖
𝐻
1/2
(𝜕Ω𝑖)

. (34)

Remark 4. The above lemma is related to vertex-edge-face
arguments in substructuring methods, in view of character-
istic for the rotated𝑄

1
element; here the results only concern

the inequalities for faces.

Let 𝑉ℎ/2(Ω
𝑖
) be the conforming element space of bilinear

continuous functions on the triangulationT
ℎ/2

(Ω
𝑖
) which is

constructed by joining themidpoints of the edges of elements
of T
ℎ
(Ω
𝑖
). We now introduce a local equivalence map M

𝑖
:

𝑋
ℎ
(Ω
𝑖
) → 𝑉

ℎ/2
(Ω
𝑖
) as follows (cf. [12]).

Definition 5. Given V ∈ 𝑋
ℎ
(Ω
𝑖
), we defineM

𝑖
V ∈ 𝑉

ℎ/2
(Ω
𝑖
) by

the values ofM
𝑖
V at the vertices of the partitionT

ℎ/2
(Ω
𝑖
).

(i) If 𝑃 is a central point of 𝐸, 𝐸 ∈ T
ℎ
(Ω
𝑖
), then

(M
𝑖
V) (𝑃) =

1

4
∑

𝑒𝑖∈𝜕𝐸

1

𝑒𝑖


∫

𝑒𝑖

V𝑑𝑠. (35)

(ii) If 𝑃 is a midpoint of one edge 𝑒 ∈ 𝜕𝐸, 𝐸 ∈ T
ℎ
(Ω
𝑖
),

then

(M
𝑖
V) (𝑃) =

1

|𝑒|
∫

𝑒

V𝑑𝑠. (36)

(iii) If 𝑃 ∈ Ω
𝑖,ℎ
\ 𝜕Ω
𝑖,ℎ
, then

(M
𝑖
V) (𝑃) =

1

4
∑

𝑒𝑖

1

𝑒𝑖


∫

𝑒𝑖

V𝑑𝑠, (37)
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where the sum is taken over all edges 𝑒
𝑖
with the

common vertex 𝑃, 𝑒
𝑖
∈ 𝜕𝐸
𝑖
, 𝐸
𝑖
∈ T
ℎ
(Ω
𝑖
).

(iv) If 𝑃 ∈ 𝜕Ω
𝑖,ℎ
, then

(M
𝑖
V) (𝑃) =

𝑒𝑙


𝑒𝑙
 +

𝑒𝑟


(
1

𝑒𝑙


∫

𝑒𝑙

V𝑑𝑠)

+

𝑒𝑟


𝑒𝑙
 +

𝑒𝑟


(
1

𝑒𝑟


∫

𝑒𝑟

V𝑑𝑠) ,

(38)

where 𝑒
𝑙
∈ 𝜕𝐸
1
⋂𝜕Ω
𝑖
and 𝑒
𝑟
∈ 𝜕𝐸
2
⋂𝜕Ω
𝑖
are the left

and right neighbor edges of 𝑃, 𝐸
1
, 𝐸
2
∈ T
ℎ
(Ω
𝑖
). If 𝑃

is a vertex ofΩ
𝑖
, then 𝐸

1
= 𝐸
2
.

Remark 6. For V ∈ 𝑋
E
ℎ
(Ω
𝑖
), we define an operator ME

𝑖
:

𝑋
E
ℎ
(Ω
𝑖
) → 𝑉

ℎ/2
(Ω
𝑖
) [12, Definition 3.2] ; that is, if 𝑃 is a

vertex ofΩ
𝑖
, let (ME

𝑖
V)(𝑃) = 0, and their stable pseudoinverse

is denoted by M+
𝑖
[12, Lemma 3.2]; here 𝑋

E
ℎ
(Ω
𝑖
) = {V ∈

𝑋
ℎ
(Ω
𝑖
) | ∫
𝑒
V𝑑𝑠 = 0, ∀𝑒 ∈ 𝜕Ω

𝑒

𝑖,ℎ
\E}.

For the operators M
𝑖
and M+

𝑖
, we have the following

results (see [12]):
M𝑖V

𝐻1(Ω𝑖)
≍ |V|𝐻1

ℎ
(Ω𝑖)

, ∀V ∈ 𝑋
ℎ
(Ω
𝑖
) ;

M
+

𝑖
V𝐻1
ℎ
(Ω𝑖)

⪯ |V|𝐻1
ℎ
(Ω𝑖)

, ∀V ∈ 𝑉
ℎ/2

(Ω
𝑖
) .

(39)

For the rotated 𝑄
1
element, we have the following inequality.

Lemma 7. For any 𝑢
𝑖
∈ 𝑋
Δ
(Γ
𝑖
), we can split 𝑢

𝑖
into 𝑢

𝑖
=

∑
Γ𝑖𝑗⊂𝜕Ω𝑖

𝑢
𝑖𝑗
, and one has


𝑢
𝑖𝑗

𝐻1
ℎ
(Ω𝑖)

⪯ (1 + log(
𝐻
𝑖

ℎ
𝑖

))
𝑢𝑖

𝐻1
ℎ
(Ω𝑖)

, (40)

where 𝑢
𝑖𝑗

∈ 𝑋
Δ
(Γ
𝑖
), and for any 𝑒 ∈ Γ

𝑒

𝑖𝑗
, ∫
𝑒
𝑢
𝑖𝑗
𝑑𝑠/|𝑒| =

∫
𝑒
𝑢
𝑖
𝑑𝑠/|𝑒|; for any 𝑒 ∈ 𝜕Ω

𝑒

𝑖,ℎ
\ Γ
𝑖𝑗
, ∫
𝑒
𝑢
𝑖𝑗
𝑑𝑠/|𝑒| = 0.

Proof. By (39), Lemma 3, the inverse trace theorem, trace
theorem, and Poincáre inequality, we obtain


𝑢
𝑖𝑗

𝐻1
ℎ
(Ω𝑖)

≤

M
+

𝑖
H
𝑖
𝐼
0

EM𝑖𝑢𝑖𝑗
𝐻1
ℎ
(Ω𝑖)

⪯

H
𝑖
𝐼
0

EM𝑖𝑢𝑖𝑗
𝐻1
ℎ
(Ω𝑖)

⪯

𝐼
0

EM𝑖𝑢𝑖𝑗
𝐻1/2(𝜕Ω𝑖)

⪯ (1 + log(
𝐻
𝑖

ℎ
𝑖

))
M𝑖𝑢𝑖

𝐻1/2(𝜕Ω𝑖)

≤ (1 + log(
𝐻
𝑖

ℎ
𝑖

))
M𝑖𝑢𝑖

𝐻1(Ω𝑖)

⪯ (1 + log(
𝐻
𝑖

ℎ
𝑖

))
M𝑖𝑢𝑖

𝐻1(Ω𝑖)

⪯ (1 + log(
𝐻
𝑖

ℎ
𝑖

))
𝑢𝑖

𝐻1
ℎ
(Ω𝑖)

,

(41)

where H
𝑖
is a piecewise bilinear harmonic operator, and we

have used the minimal energy property of discrete harmonic
functions.

5. Proof of Theorem 2

In the proof of Theorem 2 we use the abstract framework
of ASM methods (see [13]); we have necessary to prove
three assumptions. Assumption II follows from the standard
coloring argument; now we need to prove Assumption I and
Assumption III.

First we show the following stable decomposition.

Lemma 8 (Assumption I). For any 𝑢 ∈ 𝑋
ℎ
(Γ), there is the

following decomposition:

𝑢 = 𝑅
𝑇

0
𝑢
𝐻
+

𝑁

∑

𝑖=1

𝑅
𝑇

𝐷,Δ 𝑖
𝑢
𝑖
, 𝑢
𝐻
∈ 𝑋
𝐻
(Ω) , 𝑢

𝑖
∈ 𝑋
Δ
(Γ
𝑖
)

(42)

that satisfies

𝑎
ℎ
(𝑢
𝐻
, 𝑢
𝐻
) +

𝑁

∑

𝑖=1

𝑎
ℎ,𝑖
(𝑢
𝑖
, 𝑢
𝑖
) ⪯ 𝑎
ℎ
(𝑢, 𝑢) . (43)

Proof. First we show the decomposition (42). For any func-
tion 𝑢 ∈ 𝑋

ℎ
(Γ), let 𝑢

𝐻
= 𝐼
𝐻
𝑢, and 𝑢

Δ
= 𝑢 − 𝐼

ℎ
𝑢
𝐻
, 𝑢
𝑖
= 𝑢
Δ
|
Ω𝑖
.

From the definitions of 𝐼
𝐻
and 𝐼
ℎ
, we have

∫

Γ𝑖𝑗

𝑢
𝑖
𝑑𝑠 = ∫

Γ𝑖𝑗

𝑢
Δ
𝑑𝑠

= ∫

Γ𝑖𝑗

(𝑢 − 𝐼
ℎ
𝑢
𝐻
) 𝑑𝑠 = ∫

Γ𝑖𝑗

(𝑢 − 𝑢
𝐻
) 𝑑𝑠 = 0;

(44)

by (22) and the definition of 𝑅𝑇
𝐷,Δ 𝑖

, we get

𝑅
𝑇

0
𝑢
𝐻
+

𝑁

∑

𝑖=1

𝑅
𝑇

𝐷,Δ 𝑖
𝑢
𝑖
=

𝑁

∑

𝑖=1

𝑅
𝑇

𝐷,𝑖
𝐼
ℎ
𝑢
𝐻
+

𝑁

∑

𝑖=1

𝑅
𝑇

𝐷,𝑖
(𝑢 − 𝐼

ℎ
𝑢
𝐻
) = 𝑢.

(45)

Then 𝑢
𝑖
∈ 𝑋
Δ
(Γ
𝑖
) and the equality (42) holds.

Now, we prove stable decomposition (43). We assume
𝑢
Γ𝑖𝑗

= ∫
Γ𝑖𝑗

𝑢𝑑𝑠/|Γ
𝑖𝑗
|; then using Lemma 3.5 in [14], Poincaré-

Friedrichs’ inequality, and scaling argument, we can derive

∑

Γ𝑖𝑗 ,Γ𝑖𝑘⊂𝜕Ω𝑖


𝑢
Γ𝑖𝑗
− 𝑢
Γ𝑖𝑘



2

= ∑

Γ𝑖𝑗 ,Γ𝑖𝑘⊂𝜕Ω𝑖

(
1


Γ
𝑖𝑗



∫

Γ𝑖𝑗

(𝑢 − 𝑢
Γ𝑖𝑘
))

2

⪯ ∑

Γ𝑖𝑘⊂𝜕Ω𝑖

(
1

𝐻
2

𝑖


𝑢−𝑢
Γ𝑖𝑘



2

𝐿
2
(Ω𝑖)

+|𝑢|
2

𝐻
1

ℎ
(Ω𝑖)

)

⪯ |𝑢|
2

𝐻
1

ℎ
(Ω𝑖)

.

(46)

From (46) and discrete equivalent norm, we deduce

𝑎
ℎ
(𝑢
𝐻
, 𝑢
𝐻
) =

𝑁

∑

𝑖=1

𝑎
ℎ,𝑖
(𝑢
𝐻
, 𝑢
𝐻
)

≍

𝑁

∑

𝑖=1

𝜌
𝑖

∑

Γ𝑖𝑗,Γ𝑖𝑘⊂𝜕Ω𝑖


𝑢
Γ𝑖𝑗
− 𝑢
Γ𝑖𝑘



2

⪯ 𝑎
ℎ
(𝑢, 𝑢) .

(47)
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Meanwhile, from the fact that the harmonic function has
minimal energy norm and (47), we get

𝑁

∑

𝑖=1

𝑎
ℎ,𝑖
(𝑢
𝑖
, 𝑢
𝑖
) = 𝑎
ℎ
(𝑢
Δ
, 𝑢
Δ
)

= 𝑎
ℎ
(𝑢 − 𝐼

ℎ
𝑢
𝐻
, 𝑢 − 𝐼

ℎ
𝑢
𝐻
)

⪯ 𝑎
ℎ
(𝑢, 𝑢) .

(48)

So (47) and (48) lead to (43), and the proof is completed.

Next we state the local stability as follows.

Lemma 9 (Assumption III). For any 𝑢 ∈ 𝑋
Δ
(Γ
𝑖
), we have

𝑎
ℎ
(𝑅
𝑇

𝐷,Δ 𝑖
𝑢, 𝑅
𝑇

𝐷,Δ 𝑖
𝑢) ⪯ (1 + log

𝐻
𝑖

ℎ
𝑖

)

2

𝑎
ℎ,𝑖
(𝑢, 𝑢) . (49)

And for any 𝑢
𝐻
∈ 𝑋
𝐻
(Ω), one has

𝑎
ℎ
(𝑅
𝑇

0
𝑢
𝐻
, 𝑅
𝑇

0
𝑢
𝐻
) ⪯ (1 + log 𝐻

ℎ
)

2

𝑎
ℎ
(𝑢
𝐻
, 𝑢
𝐻
) . (50)

Proof. To prove (49) we first define 𝜃
Γ𝑖𝑗

∈ 𝑋
ℎ
(Γ) associated

with Γ
𝑖𝑗
⊂ Γ which satisfies

1

|𝑒|
∫

𝑒

𝜃
Γ𝑖𝑗
𝑑𝑠 = {

1, ∀𝑒 ∈ Γ
𝑒

𝑖𝑗
,

0, ∀𝑒 ∈ Γ \ Γ
𝑒

𝑖𝑗
,

(51)

and define a zero prolong operator 𝐸
𝑖
: 𝑋
ℎ
(Ω
𝑖
) → 𝑋

ℎ
(Ω) as

∫

𝑒

𝐸
𝑖
V𝑑𝑠 = {

∫
𝑒
𝐸
𝑖
V𝑑𝑠, ∀𝑒 ∈ Ω

𝑒

𝑖,ℎ
⋃𝜕Ω
𝑒

𝑖,ℎ
,

0, others.
(52)

Then we can decompose 𝑅𝑇
𝐷,Δ 𝑖

𝑢 as follows:

𝑅
𝑇

𝐷,Δ 𝑖
𝑢 = 𝑅

𝑇

𝐷,𝑖
𝑢 = H( ∑

Γ𝑖𝑗⊂Γ𝑖

I
ℎ
(𝜃
Γ𝑖𝑗
(𝐸
𝑖
𝛿
+

𝑖
𝑢)))

= ∑

Γ𝑖𝑗⊂Γ𝑖

H (I
ℎ
(𝜃
Γ𝑖𝑗
(𝐸
𝑖
𝛿
+

𝑖
𝑢))) ,

(53)

hereI
ℎ
is the integral average interpolation operator on the

interface Γ
𝑖𝑗
, satisfying

∫

𝑒

I
ℎ
(𝜃
Γ𝑖𝑗
(𝐸
𝑖
𝛿
+

𝑖
𝑢)) 𝑑𝑠=∫

𝑒

𝜃
Γ𝑖𝑗
𝑑𝑠 ⋅ ∫

𝑒

𝐸
𝑖
𝛿
+

𝑖
𝑢𝑑𝑠, ∀𝑒 ∈ Γ

𝑒

𝑖𝑗
.

(54)

Note that the support of 𝑅
𝑇

𝐷,𝑖
𝑢 is contained in

Ω
𝑖
⋃
Γ𝑖𝑗⊂𝜕Ω𝑖

(Ω
𝑗
⋃Γ
𝑖𝑗
); we denote �̃�

𝑗
= (𝑅

𝑇

𝐷,𝑖
𝑢)|
Ω𝑗
,

�̃�
𝑖

= (𝑅
𝑇

𝐷,𝑖
𝑢)|
Ω𝑖
. From Lemma 7 and the definition of

𝛿
+

𝑖
, we derive

�̃�𝑖


2

𝐻
1

𝜌(Ω𝑖)
=

𝑅
𝑇

𝐷,𝑖
𝑢


2

𝐻
1

𝜌(Ω𝑖)

⪯ ∑

Γ𝑖𝑗⊂𝜕Ω𝑖


H (I

ℎ
(𝜃
Γ𝑖𝑗
(𝐸
𝑖
𝛿
+

𝑖
𝑢)))



2

𝐻
1

𝜌(Ω𝑖)

= ∑

Γ𝑖𝑗⊂𝜕Ω𝑖


H
𝑖
(I
ℎ
(𝜃
Γ𝑖𝑗
(𝐸
𝑖
𝛿
+

𝑖
𝑢)))



2

𝐻
1

𝜌(Ω𝑖)

⪯ (1 + log(
𝐻
𝑖

ℎ
𝑖

))

2

H𝑖 (𝐸𝑖𝛿
+

𝑖
𝑢)


2

𝐻
1

𝜌(Ω𝑖)

≤ (1 + log(
𝐻
𝑖

ℎ
𝑖

))

2

H𝑖𝑢


2

𝐻
1

𝜌(Ω𝑖)

= (1 + log(
𝐻
𝑖

ℎ
𝑖

))

2
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(55)

Moreover, since �̃�
𝑗
is discrete harmonic in Ω

𝑗
with

∫
𝑒
�̃�
𝑗
𝑑𝑠 = 0 for any 𝑒 ∈ 𝜕Ω

𝑒

𝑗
\ Γ
𝑖𝑗
, then from Lemma 3.3 in

[12], we have
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𝑗
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𝑗
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. (56)

Since the meshes on subdomain Ω
𝑖
and Ω

𝑗
align across the

interface Γ
𝑖𝑗
, using the above inequality yields


�̃�
𝑗



2

𝐻
1

𝜌(Ω𝑗)
= 𝜌
𝑗


�̃�
𝑗



2

𝐻
1

ℎ
(Ω𝑗)

⪯ 𝜌
𝑗


M

E
𝑗
�̃�
𝑗



2

𝐻
1/2

00 (Γ𝑖𝑗)

= 𝜌
𝑗


M

E
𝑖
�̃�
𝑖𝑗



2

𝐻
1/2

00
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,

(57)

where �̃�
𝑖𝑗

∈ 𝑋
Δ
(Γ
𝑖
), and for any 𝑒 ∈ Γ

𝑒

𝑖𝑗
, ∫
𝑒
�̃�
𝑖𝑗
𝑑𝑠/|𝑒| =

∫
𝑒
�̃�
𝑖
𝑑𝑠/|𝑒|; for any 𝑒 ∈ 𝜕Ω

𝑒

𝑖,ℎ
\ Γ
𝑖𝑗
, ∫
𝑒
�̃�
𝑖𝑗
𝑑𝑠/|𝑒| = 0.

Using (23), the trace theorem, and Lemma 3, we obtain
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(58)

where 𝑢
𝑖𝑗

∈ 𝑋
Δ
(Γ
𝑖
), and for any 𝑒 ∈ Γ

𝑒

𝑖𝑗
, ∫
𝑒
𝑢
𝑖𝑗
𝑑𝑠/|𝑒| =

∫
𝑒
𝑢𝑑𝑠/|𝑒|; for any 𝑒 ∈ 𝜕Ω

𝑒

𝑖,ℎ
\ Γ
𝑖𝑗
, ∫
𝑒
𝑢
𝑖𝑗
𝑑𝑠/|𝑒| = 0.
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Table 1: The number of iterations and condition numbers.

𝑀×𝑀
𝐻/ℎ = 4 𝐻/ℎ = 16

𝑘 = 2 𝑘 = 4 𝑘 = 6 𝑘 = 2 𝑘 = 4 𝑘 = 6

4 × 4 9 (2.68) 9 (2.87) 9 (2.87) 11 (3.84) 11 (3.83) 11 (3.76)
8 × 8 10 (2.78) 10 (2.74) 10 (2.73) 13 (4.25) 13 (4.16) 13 (4.17)
16 × 16 10 (2.86) 11 (2.84) 12 (2.83) 13 (4.39) 14 (4.34) 14 (4.34)
32 × 32 10 (2.89) 11 (2.86) 12 (2.84) 13 (4.45) 13 (4.45) 14 (4.39)
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Figure 1: Plot of the condition numbers as the function of (1 +

log(𝐻/ℎ))
2.

From (57) and (58), we complete the proof of (49).
Using the similar techniques in (49) and summing over

all subdomains, we can complete the proof of (50).

6. Numerical Results

In this section, we show numerical results of our method
using the model problem

− div (𝜌∇𝑢) = 𝑓, in Ω,

𝑢 = 0, on 𝜕Ω,

(59)

where Ω = [0, 1]
2. The domain is composed of 𝑀 × 𝑀

subsquares; their mesh sizes are 𝐻, and the subsquares are
divided into smaller ones with mesh sizes ℎ. The coefficient 𝜌
is either 1 or 10𝑘 (𝑘 = 2, 4, 6).

We use the preconditioned conjugate gradient (PCG)
method with zero initial guess for the discrete system of
equations. The stopping criterion for the PCG method is
when the 2-norm of the residual is reduced by the factor
of 10−6 of the initial guess. An estimate for the condition
number of the corresponding system is computed by using
the Lanczos algorithm.

In Table 1, we show the number of iterations and the
condition numbers with different ratio 𝐻/ℎ. In Figure 1, we
plot the condition numbers as the function of (1+ log(𝐻/ℎ))

2

for 16 domains. From the results in Table 1 and Figure 1, we

can see that the convergence of our method is quasioptimal
since the number of iterations is independent of jumps in
coefficients and almost independent of mesh sizes.
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