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A generalized form of a cooperative game with fuzzy coalition variables is proposed. The character function of the new game is
described by the Concave integral, which allows players to assign their preferred expected values only to some coalitions. It is
shown that the new game will degenerate into the Tsurumi fuzzy game when it is convex. The Shapley values of the proposed
game have been investigated in detail and their simple calculation formula is given by a linear aggregation of the Shapley values on
subdecompositions crisp coalitions.

1. Introduction

There are many solution concepts in crisp cooperative game
which are allocations for the profits of a cooperative game,
such as Shapley value [1], Banzhaf value [2], and 𝜏-value [3].
However, there are many possible or vague factors that might
influence players’ decisions such that the cooperation is full
of uncertainty. As a result, these solutions are not suitable to
games with vague factors.

In fuzzy environment, fuzzy cooperative games theory
extends crisp games’ results by using fuzzy set theory (such
as Zadeh [4], Mareš [5], and Dubois and Prade [6]). It also
focuses on the problems of how to express fuzzy coalitions,
how to evaluate fuzzy payoffs, and how to distribute it among
players.

Nowadays the fuzzy games mainly consist of two types.
One is games with fuzzy coalitions, in which players partly
take part in a coalition, but exact profits of fuzzy coalitions
can be gained. For examples, Aubin [7] and Butnariu [8]
defined a fuzzy gamewhose character functionwas the aggre-
gated worth of the coalitions profits with respect to players’
participation degree. The other is games with fuzzy payoffs,
a game with fuzzy payoffs but the coalitions are still crisp
game coalitions. For examples, Mareš [9, 10] and Mareš and
Vlach [11] suggested that the values assigned to coalitions

were fuzzy quantities even though the domain of the charac-
ter function of fuzzy games remained to be accurate like crisp
games.

In games with fuzzy coalitions literature, Tsurumi et al.
[12] pointed out shortcomings of the gameproposed byAubin
and Butnariu and proposed a class of fuzzy games by the
Choquet integral. Borkotokey [13] took a cooperative game
with fuzzy coalitions and fuzzy character functions into con-
sideration simultaneously, where character functions were
fuzzy value which mapped the set of real numbers to the
closed interval [0, 1].

At present, the Shapley values of fuzzy games have been
studied by many scholars after Butnariu [14] who firstly
defined fuzzy Shapley function on a limited class of fuzzy
games with proportional values. But it was neither monotone
nondecreasing nor continuous with regard to rates of players’
participation. Later, Butnariu and Kroupa [15] similarly gave
the Shapley values on fuzzy games with weighted function.
Tsurumi et al. also discussed the Shapley values on their fuzzy
game, which was both monotone nondecreasing and contin-
uous with regard to players’ participation rates because of the
advantageous properties of the Choquet integral. Borkotokey
[13] discussed its Shapley value on games whose payoffs and
coalitions are both fuzzy.
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Actually, players mostly prefer to estimate cooperative
profits on their vague knowledge of the game. Based on this,
integrals with fuzzy measures or fuzzy capacities should be
suitable to model fuzzy games. The integral theory had made
use of a cooperative game that appeared in Weber [16] and
Azrieli and Lehrer [17]. Besides Tsurumi et al. [12], Dow and
Werlang [18, 19] applied the Choquet integral to game theory
and finance. In many cases, fuzzy capacities assign decision-
subjective expected values to some coalitions but not to all.
Therefore, we will at first introduce a new cooperative game
form by the Concave integral with respect to fuzzy capacity,
which has been discussed in detail by Lehrer [20], and will
investigate the Shapley values on the new fuzzy cooperative
games in detail.

The lecture will be organized as follows. In Section 2, we
will recall the concepts of crisp cooperative game and its
Shapley values will also be recalled. In Section 3, some games
with fuzzy coalitions and several game forms, such as But-
nariu and Tsurumi fuzzy game, will be given. Moreover, we
define a new fuzzy game by the Concave integral and its sev-
eral properties will also be provided.Meanwhile, we illustrate
that the proposed game is an extension of Tsurumi fuzzy
game. In Section 4, we discuss the Shapley values for the
new game, which can be gained by a linear aggregation of
the Shapley values on subdecompositions crisp coalitions.
Finally, some conclusions appear in Section 5.

2. Crisp Cooperative Game and
the Shapley Value

A finite set of players 𝑁 = {1, 2, . . . , 𝑛} is a nonempty set, in
which players may take part in different feasible subcoalition
of𝑁.The greatest coalition𝑁 is the grand set and the smallest
coalition is 𝜙. The power set 𝑃(𝑆) is the family of all crisp
subcoalitions of 𝑆 ⊆ 𝑁.

A crisp cooperative game on player set 𝑁 is denoted by
V where the character function V : 𝑃(𝑁) → 𝑅

+
∪ {0} with

V(𝜙) = 0. For any a 𝑆 ∈ 𝑃(𝑁), the worth V(𝑆) assigning to 𝑆
can be regarded as the maximal worth or cost of the coalition
𝑆which is obtained when players in 𝑆work together. We take
the notation 𝐺(𝑁, V) to express the class of all crisp games
with player set𝑁.

For a nonempty subset 𝑆 ∈ 𝑃(𝑁), the simple games 𝑢
𝑆
are

defined by

𝑢
𝑆
(𝐴) = {

1, if 𝑆 ⊆ 𝐴,
0, otherwise.

(1)

And each cooperative game V ∈ 𝐺(𝑁, V) can be represented
by 𝑢

𝑆
as follows:

V = ∑

𝑇∈𝑃(𝑁)\{𝜙}

𝑐
𝑆
(V) 𝑢

𝑆
, (2)

where 𝑐
𝑆
(V) = ∑

𝐵∈𝑃(𝑁):𝐵⊆𝑆
(−1)

|𝑆|−|𝐵|V(𝐵).
The game V ∈ 𝐺(𝑁, V) is said to be convex when

V (𝑆 ∪ 𝑇) + V (𝑆 ∩ 𝑇) ≥ V (𝑆) + V (𝑇) , ∀𝑆, 𝑇 ∈ 𝑃 (𝑁) .

(3)

The convex game V ∈ 𝐺(𝑁, V) is said to be superadditive,
if any disjoint crisp coalitions 𝑆 and 𝑇 satisfy

V (𝑆 ∪ 𝑇) ≥ V (𝑆) + V (𝑇) , ∀𝑆, 𝑇 ∈ 𝑃 (𝑁) , 𝑆 ∩ 𝑇 = 𝜙.

(4)

The notation 𝐺
0
(𝑁, V) represents all superadditave crisp

cooperative games. For the game V ∈ 𝐺(𝑁, V), players 𝑖 and 𝑗
are said to be symmetric, if 𝑆 ⊆ 𝑁 \ {𝑖, 𝑗} such that

V (𝑆 ∪ 𝑖) = V (𝑆 ∪ 𝑗) . (5)

The player 𝑖 ∈ 𝑁 is a dummy player of the game, if for any
𝑆 ⊆ 𝑁 \ {𝑖} such that

V (𝑆 ∪ 𝑖) = V (𝑆) + V (𝑖) . (6)

The player 𝑖 ∈ 𝑁 is a null player in a coalition𝑊 for a game
V ∈ 𝐺

0
(𝑁, V), if

V (𝑆) = V (𝑆 ∪ {𝑖}) , ∀𝑆 ∈ 𝑃 (𝑊 \ {𝑖}) . (7)

Definition 1. An imputation for a crisp cooperative game V ∈
𝐺(𝑁, V) is a vector 𝑥 = (𝑥

1
, 𝑥

2
, . . . , 𝑥

𝑛
) ∈ 𝑅

𝑛

+
∪ {0} satisfying

(1) ∑
𝑖∈𝑁

𝑥
𝑖
= V(𝑁),

(2) 𝑥
𝑖
≥ V(𝑖), ∀𝑖 ∈ 𝑁.

It is obvious that V ∈ 𝐺
0
(𝑁, V)when imputation for a crisp

cooperative game V ∈ 𝐺(𝑁, V) is nonempty.

Definition 2. Let 𝐺
0
(𝑁, V), 𝑊 ∈ 𝑃(𝑁); then 𝑆 ∈ 𝑃(𝑊) is

called a carrier in a coalition𝑊 for a game V if

V (𝑆 ∩ 𝑇) = V (𝑇) , ∀𝑇 ∈ 𝑃 (𝑊) . (8)

If the set of all carriers in coalition 𝑊 for V is denoted by
𝐶(𝑊 | V), then

𝐶 (𝑊 | V) = {𝑆 ∈ 𝑃 (𝑁) | V (𝑆 ∩ 𝑇) = V (𝑇) , ∀𝑇 ∈ 𝑃 (𝑁)} .
(9)

A well-known solution for cooperative game V ∈

𝐺
0
(𝑁, V), the Shapley value is a mathematical expectation on

𝑃(𝑁\{𝑖})with regard tomarginal contribution V(𝑇∪𝑖)−V(𝑇)
where 𝑇 ⊆ 𝑁 \ {𝑖}. Shapley [1] defined the function satisfying
the following 4 axioms.

Definition 3. A function 𝑓 : 𝐺
0
(𝑛, V) → (𝑅

𝑛

+
)
𝑃(𝑁) is said to

be a Shapley value on𝐺
0
(𝑁, V) if it satisfies the following four

axioms.

Axiom 1. If V ∈ 𝐺
0
(𝑁, V) and𝑊 ∈ 𝑃(𝑁), then

∑

𝑖∈𝑁

𝑓


𝑖
(V) (𝑊) = V (𝑊) ,

𝑓


𝑖
(V) (𝑊) = 0, ∀𝑖 ∉ 𝑊,

(10)

where 𝑓
𝑖
(V)(𝑊) is the 𝑖th element of 𝑓(V)(𝑊) ∈ 𝑅

𝑛

+
.

Axiom 2. If V ∈ 𝐺
0
(𝑁, V),𝑊 ∈ 𝑃(𝑁), and 𝑇 ∈ 𝐶(𝑊 | V), then

𝑓


𝑖
(V) (𝑊) = 𝑓



𝑖
(V) (𝑇) , ∀𝑖 ∈ 𝑁. (11)
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Axiom 3. If V ∈ 𝐺
0
(𝑁, V),𝑊 ∈ 𝑃(𝑁), 𝑖, 𝑗 ∈ 𝑊, and V(𝑆∪{𝑖}) =

V(𝑆 ∪ {𝑗}) for any 𝑆 ∈ 𝑃(𝑊 \ {𝑖, 𝑗}), then

𝑓


𝑖
(V) (𝑊) = 𝑓



𝑗
(V) (𝑊) . (12)

Axiom 4. For any V
1
, V

2
∈ 𝐺

0
(𝑁, V), define a game V

1
+ V

2
∈

𝐺
0
(𝑁, V) by (V

1
+ V

2
)(𝑆) = V

1
(𝑆) + V

2
(𝑆) for any 𝑆 ∈ 𝑃(𝑁). If

V
1
, V

2
∈ 𝐺

0
(𝑁, V) and𝑊 ∈ 𝑃(𝑁), then

𝑓


𝑖
(V

1
+ V

2
) (𝑊) = 𝑓



𝑖
(V

1
) (𝑊) + 𝑓



𝑖
(V

2
) (𝑊) , ∀𝑖 ∈ 𝑁.

(13)

Shapley [1] also gave the uniquely explicit form of a Shap-
ley value on 𝐺

0
(𝑁, V) which was obtained by extending the

Shapley value for the grand coalition𝑁 as below.

Theorem 4. Define a function 𝑓 : 𝐺
0
(𝑁, V) → (𝑅

𝑛

+
)
𝑃(𝑁) by

𝑓


𝑖
(V) (𝑊) =

{
{
{

{
{
{

{

∑

𝑇∈𝑃𝑖(𝑊)

𝛽 (|𝑇| ; |𝑊|)

⋅ {V (𝑇) − V (𝑇 \ {𝑖})} , 𝑖𝑓 𝑖 ∈ 𝑊,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

(14)

where 𝑃
𝑖
(𝑊) = {𝑖 ∈ 𝑇 | 𝑇 ∈ 𝑃(𝑊)}, 𝛽(|𝑇|; |𝑊|) = (|𝑇| − 1)! ⋅

(|𝑊|− |𝑇|)!/ |𝑊|! and | ⋅ |is the number of players in set ⋅. Then
the function 𝑓is the unique Shapley function on 𝐺

0
(𝑁, V).

It is obvious that 𝑓(V) is an imputation of the cooperative
game 𝐺

0
(𝑁, V). Meanwhile, if V ∈ 𝐺

0
(𝑁, V) is convex, then 𝑖 ∈

𝑁 and 𝑆 ⊆ 𝑇 imply that 𝑓
𝑖
(V)(𝑆) ≤ 𝑓

𝑖
(V)(𝑇).

3. Fuzzy Coalition Games

Let us start by presenting some general definitions related to
fuzzy coalition games.

3.1. Basic Concepts. We consider cooperative fuzzy games
with the player set 𝑁 = {1, 2, . . . , 𝑛}. A fuzzy coalition 𝑆 is
a fuzzy subset of the finite set 𝑁, which is a vector 𝑠 =

(𝑠
1
, 𝑠
2
, . . . , 𝑠

𝑛
) where 𝑠

𝑖
∈ [0, 1] describes the membership

grade of player 𝑖 in the fuzzy coalition 𝑆. We note that a dif-
ferent coalition has different vector 𝑠 = (𝑠

1
, 𝑠
2
, . . . , 𝑠

𝑛
), so we

also call it as fuzzy coalition variable. If element 𝑠
𝑖
= 1 when

𝑖 fully take part in 𝑆 and others 𝑠
𝑖
= 0, then the coalition 𝑆 is

a crisp coalition.
Consider the crisp coalition 𝑒

𝑘
= {0, 0, . . . , 1, . . . , 0}

where the 𝑘th element is 1 and others are zero. The fuzzy
coalition variable 𝑠 = (𝑠

1
, 𝑠
2
, . . . , 𝑠

𝑛
) has the regular form

𝑠 = ∑

𝑖∈𝑁

𝑠
𝑖
𝑒
𝑖

. (15)

For the fuzzy coalition 𝑆 and �̃� with fuzzy coalition
variables vector 𝑠 and 𝑢, 𝑠

𝑖
≤ 𝑢

𝑖
(∀𝑖 ∈ 𝑁) if and only if 𝑆 ⊆ �̃�.

The class of all fuzzy coalitions in �̃� is denoted by 𝐿(�̃�); that
is, 𝐿(�̃�) = {𝑆 | 𝑆 ⊆ �̃�}. The level set of fuzzy coalition 𝑆
is the set [𝑆]

𝑡
= {𝑖 ∈ 𝑁 | 𝑠

𝑖
≥ 𝑡}; its 𝑡-section is the set

𝑆
𝑡
= {𝑖 | 𝑖 ∈ 𝑁, 𝑠

𝑖
= 𝑡}which is a player set with the same level

𝑟, and its support set is the set Supp(𝑆) = {𝑖 ∈ 𝑁 | 𝑠
𝑖
> 0}.

A fuzzy coalition game Ṽ is the function Ṽ : 𝐿(𝑁) → 𝑅
+
∪

{0}with V(𝜙) = 0. We take the notation𝐺(𝑁, Ṽ) as the class of
all fuzzy coalition games Ṽ. We call V ∈ 𝐺(𝑁, Ṽ) continuous,
for any two fuzzy coalitions 𝑆 and ̃

𝑇 with variables 𝑠 =

(𝑠
1
, 𝑠
2
, . . . , 𝑠

𝑛
) and 𝑡 = (𝑡

1
, 𝑡
2
, . . . , 𝑡

𝑛
), respectively, if

lim
𝑑→0

V(∑
𝑖∈𝑆

𝑠
𝑖
𝑒
𝑖

) = V(∑
𝑖∈𝑇

𝑠
𝑖
𝑒
𝑖

) , (16)

where 𝑑 = max
𝑖∈𝑁
|𝑠
𝑖
− 𝑡

𝑖
|. A game V ∈ 𝐺(𝑁, Ṽ) is said to be

monotonic, for every fuzzy coalition 𝑆 and �̃�, 𝑆 ⊆ �̃� implies
V(𝑆) ≤ V(�̃�).

In this paper, we assume that every fuzzy coalition vari-
ables maps into the lattice ([0, 1], ∧, ∨), where ∧ and ∨ are the
minimum and maximum operators, respectively. For any
fuzzy coalition 𝑆, �̃� ∈ 𝐿(𝑁), we adopt the usual definition
of the union and intersection of fuzzy subsets given by

(𝑆 ∪ �̃�) (𝑖) = {

𝑠
𝑖
∨ 𝑢

𝑖
, 𝑖 ∈ Supp 𝑆 ∪ Supp �̃�,

0, others,

(𝑆 ∩ �̃�) (𝑖) = {

𝑠
𝑖
∧ 𝑢

𝑖
, 𝑖 ∈ Supp �̃� ∩ Supp �̃�,

0, others.

(17)

Similarly to crisp convex game, for all 𝑆, �̃� ∈ 𝐿(𝑁), V ∈
𝐺(𝑁, Ṽ) is said to be fuzzy convex, if it satisfies

V (𝑆) + V (�̃�) ≤ V (𝑆 ∪ �̃�) + V (𝑆 ∩ �̃�) , (18)

and Ṽ ∈ 𝐺(𝑁, Ṽ) is said to be superadditive such that

V (𝑆 ∪ �̃�) ≥ V (𝑆) + V (�̃�) (19)

with 𝑆 ∩ �̃� = 𝜙.

Definition 5. A function 𝑦 : 𝐿(�̃�) → 𝑅
𝑛

+
is said to be an

imputation for a fuzzy game V ∈ 𝐺(𝑁, Ṽ) in fuzzy coalition
�̃� ∈ 𝐿(𝑁) with fuzzy coalition variable 𝑢 = (𝑢

1
, 𝑢

2
, . . . , 𝑢

𝑛
),

if
(1) 𝑦

𝑖
(�̃�) = 0, ∀𝑖 ∉ Supp(�̃�),

(2) ∑
𝑖∈𝑁

𝑦
𝑖
(�̃�) = V(�̃�),

(3) 𝑦
𝑖
(�̃�) ≥ 𝑢

𝑖
V(𝑒𝑖),

where 𝑦
𝑖
(�̃�) = (𝑦

1
(�̃�), 𝑦

2
(�̃�), . . . , 𝑦

𝑛
(�̃�)).

Definition 6. Let V ∈ 𝐺(𝑁, Ṽ); the player 𝑖 ∈ 𝑁 is said to be a
dummy player on fuzzy coalition �̃� ∈ 𝐿(𝑁) with fuzzy coali-
tion variable 𝑢 = (𝑢

1
, 𝑢

2
, . . . , 𝑢

𝑛
), if for any fuzzy coalition 𝑆,

V(( ∑

𝑗∈Supp𝑆\𝑖
𝑠
𝑗
𝑒
𝑗

) ∪ 𝑠
𝑖
𝑒
𝑖

) = V( ∑

𝑗∈Supp𝑆\𝑖
𝑠
𝑗
𝑒
𝑗

) + V (𝑠
𝑖
𝑒
𝑖

)

(20)

and if

V(( ∑

𝑗∈Supp𝑆\𝑖
𝑠
𝑗
𝑒
𝑗

) ∪ 𝑠
𝑖
𝑒
𝑖

) = V( ∑

𝑗∈Supp𝑆\𝑖
𝑠
𝑗
𝑒
𝑗

) . (21)

The player 𝑖 is called a null player on fuzzy coalition �̃�.
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Example 7. Let 𝑁 = {1, 2, 3} and for any fuzzy coalition
variable 𝑥 = (𝑥

1
, 𝑥

2
, 𝑥

3
), define V(𝑥) ∈ 𝐺(𝑁, Ṽ) by

V (𝑥) = {
𝑥
1
+ 𝑥

2
+ 𝑥

3
, if 𝑥

3
≥ 0.4,

𝑥
1
+ 𝑥

2
, otherwise.

(22)

Suppose a fuzzy coalition �̃� ∈ 𝐿(𝑁) with the fuzzy variable
value 𝑢 = (0.4, 0.6, 0.7); then for any fuzzy coalition 𝑆 with
fuzzy variable value 𝑠 = (𝑠

1
, 𝑠
2
, 𝑠
3
), player 3 is a dummy player

when 𝑠
3
< 0.4 and he is a null player when 𝑠

3
≥ 0.7.

Definition 8. Let V ∈ 𝐺(𝑁, Ṽ), �̃� ∈ 𝐿(𝑁); then 𝑆 ∈ 𝐿(�̃�) is
called a fuzzy carrier in a coalition �̃� if for any ∀̃𝑇 ∈ 𝐿(�̃�)

such that

V (𝑆 ∩ ̃𝑇) = V (̃𝑇) . (23)

The set of all carriers in fuzzy coalition �̃� for V ∈ 𝐺(𝑁, Ṽ) is
denoted by 𝐶(�̃� | V); it is obvious that

𝐶 (�̃� | V) = {𝑆 ∈ 𝐿 (�̃�) | V (𝑆 ∩ ̃𝑇) = V (̃𝑇) , ∀̃𝑇 ∈ 𝐿 (�̃�)} .
(24)

3.2. The Present Forms for Fuzzy Coalition Games. In the
field of fuzzy cooperative games with fuzzy coalitions, there
were several definitions given by aggregating function on
fuzzy coalition variables, such as Butnariu game, Butnariu
and Kroupa game, and Tsurumi game.

In Butnariu game, V(𝑆) was an aggregated worth of the
crisp coalitions 𝑆

𝑡
where the players have the same participa-

tion level 𝑡, defined by

V (𝑆) = ∑

𝑡∈[0,1]

V (𝑆
𝑡
) ⋅ 𝑡, ∀𝑆 ∈ 𝐿 (𝑁) . (25)

It is obvious that the game value is a linear aggregation
functionwhich is aweighted average on the setswith the same
participation levels, namely, a fuzzy game with proportional
values as the associated crisp game.We denote the fuzzy game
with proportional values as the notation𝐺𝑃

(𝑁). It is a one-to-
one correspondence between a crisp game and a fuzzy game
with proportional values.

Butnariu and Kroupa [15] proposed a fuzzy game model
with weight function as follows:

V (𝑆) = ∑

𝑡∈[0,1]

𝜓 (𝑡) V (𝑆
𝑡
) , (26)

where𝜓 : [0, 1] → 𝑅 is a function with the properties𝜓(𝑡) =
0 ⇔ 𝑡 = 0 and 𝜓(1) = 1.

Similarly, it is also a simple linear aggregation function
which cannot embody the interaction among players with
different participation levels. Moreover, if 𝜓(𝑡) = 𝑡 implies
that the game is equivalent to the proportional game, we
denote it as 𝐺𝜓

(𝑁).
Tsurumi et al. introduced another form definition based

on the Choquet integral, which was not only monotone
nondecreasing but also continuous with regard to rates of

players’ participation. Let 𝑆 ∈ 𝐿(𝑁), 𝑄(𝑆) = {𝑠
𝑖
| 𝑠

𝑖
> 0, 𝑖 ∈

𝑁} and rearrange elements in 𝑄(𝑆) such that 0 = ℎ
0
≤ ℎ

1
<

ℎ
2
< ⋅ ⋅ ⋅ < ℎ

𝑞(𝑆)
; then for any 𝑆 ∈ 𝐿(𝑁), a game V : 𝐿(𝑁) → 𝑅

is defined by

V (𝑆) =
𝑞(𝑆)

∑

𝑙=1

V ([𝑆]
ℎ𝑙

) ⋅ (ℎ
𝑙
− ℎ

𝑙−1
) , (27)

where 𝑞(𝑆) is the cardinality of 𝑄(𝑆).
The fuzzy game given by Tsurumi et al. is simply denoted

by 𝐺Ch
(𝑁). It is apparent that the fuzzy game V ∈ 𝐺Ch

(𝑁) is
a Choquet integral of the function ℎwith respect to V derived
from level set. We note that ℎ

𝑙−1
< ℎ

𝑙
implies that [𝑆]

ℎ𝑙
⊆

[𝑆]
ℎ𝑙−1

, so the worth of coalition 𝑆 is the maximum sum on all
subsets which is an including chain.

Example 9. Let𝑁 = {1, 2, 3} and let V be a character function
on𝑁 which is joint workers’ output. V(1) = V(2) = V(3) = 2,
V(1, 3) = 8, V(1, 2) = 9, V(2, 3) = 5, and V(1, 2, 3) = 10.

Suppose that the fuzzy coalition 𝑠 = (1, 0.4, 0.6); rear-
range it as 0.4 < 0.6 < 1; thus, the value of this fuzzy coalition
is evaluated by (27) as follows:

V (𝑆) =
𝑞(𝑆)

∑

𝑙=1

V ([𝑆]
ℎ𝑙

) ⋅ (ℎ
𝑙
− ℎ

𝑙−1
)

= V ([𝑆]
0.4

) × 0.4 + V ([𝑆]
0.6

)

× (0.6 − 0.4) + V ([𝑆]
1

) × (1 − 0.6)

= V (1, 2, 3) × 0.4 + V (1, 3)

× 0.2 + V (1) × 0.4 = 6.4.

(28)

However, there are another linear aggregation values
which are greater than that of Tsurumi’s form. For example,
we make a linear sum as

V (𝑆) = 0.4 × V (1, 2) + 0.6 × V (1, 3) = 8.4. (29)

Hence, Tsurumi’s class cannot be considered as an opti-
mal product on 𝑃(𝑁), for fuzzy variables assign subjective
expected values to some coalitions but not to all in Tsurumi
game. As a result Tsurumi fuzzy game is not suitable in some
situations.

3.3. A Class of Fuzzy Coalition Games with the Concave Inte-
gral. As mentioned above, the present forms for fuzzy coali-
tion games were only limited to some special games and will
be invalid in many game situations. Next, we will consider
another extended game with fuzzy coalitions, that is, the
fuzzy game with the Concave integral, where Tsurumi game
can be taken as a special case as the proposed new game.
Firstly, we recall the fuzzy capacity and the Concave integral.

Let 𝑁 be a finite set (|𝑁| = 𝑛); a capacity 𝜇 over 𝑁 is a
function 𝜇 : 𝑃(𝑁) → 𝑅

+
∪ {0} such that 𝑆 ⊆ 𝑇 ⊆ 𝑁 implies

𝜇(𝑆) ≤ 𝜇(𝑇) with 𝜇(𝜙) = 0. A random variable over 𝑁 is
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a function𝑋 : 𝑁 → 𝑅 and a random variable is nonnegative
if 𝑥

𝑖
≥ 0 for every 𝑖 ∈ 𝑁.
We proposed fuzzy capacity game concept defined by the

following way.

Definition 10. Let 𝐴 ∈ 𝐿(𝑁); the pair (V, 𝐴) is said to be a
fuzzy capacity game if V : 𝐿(𝑁) → 𝑅

+
∪{0} is monotonic and

continuous, and there is a positive𝑀 such that V(𝑎) ≤ 𝑀|𝑎|

for every 𝑎 ∈ 𝐿(𝐴).

Definition 11. Let 𝐴 ∈ 𝐿(𝑁); the pair (V, 𝐴) is said to be an
additive fuzzy capacity game, for every fuzzy coalition vari-
able 𝑎 ∈ 𝐿(𝐴), if there is a nonnegative constant vector 𝑝 =

(𝑝
1
, 𝑝

2
, . . . , 𝑝

𝑛
) such that V(𝑎) = ∑𝑛

𝑖=1
𝑎
𝑖
𝑝
𝑖
.

It is not hard to see that the limited game given by But-
nariu is an additive fuzzy capacity game. A fuzzy capacity
game assigns values (subjective expected value) to fuzzy
coalition random variables, in which players express their
preferences of some coalitions but not of all. The fuzzy coali-
tion 𝐴 might contain only extreme or discrete points of the
domain of 𝐿(𝑆) where 𝑆 ⊆ 𝐿(𝑁) such as (1, 1, . . . , 1) and
(0, 0, . . . , 0), therefore Vmay be partially nonadditive or non-
additive on its domains.

The integral aggregates all available fuzzy coalitions,
including individual assessments of the likelihood of events
and expected values of variables, into a comprehensive value.
By this value, the players reevaluate their likely coalitions or
expected values on random coalition variables.

Let 𝑠 be a random variable; a subdecomposition of 𝑠 is a
finite summation ∑

𝐴𝑖⊆𝑁
𝛼
𝑖
𝐴
𝑖
that satisfies

∑

𝐴𝑖⊆𝑁

𝛼
𝑖
1
𝐴𝑖
≤ 𝑠, (𝛼

𝑖
≥ 0) ,

𝐴
𝑖
⊆ 𝑁, (𝑖 = 1, 2, 3, . . . , 2

𝑛

) .

(30)

Definition 12. Let V ∈ 𝐺(𝑁, Ṽ) be a fuzzy capacity game, let 𝑆 ∈
𝐿(𝑁) be a random fuzzy coalition with nonnegative variable
𝑠 = (𝑠

1
, 𝑠
2
, . . . , 𝑠

𝑛
), and define a game VCav : 𝐿(𝑁) → 𝑅

+
∪ {0}

by

VCav (𝑆) = ∫
Cav

𝑠 𝑑V = min {𝑓 (𝑠)} , (31)

where the minimum is taken all over concave and homoge-
neous functions 𝑓 : 𝑅𝑛

+
→ 𝑅 and 𝑓(1

𝑇
) ≥ V(𝑇) for every 𝑇 ⊆

𝑁, and 1
𝑇
is the indicator of 𝑇 which is the random variable

that takes the value 1 over 𝑇 and the value 0, otherwise.
By Definition 12, VCav(𝑆) can be gained by the values on

crisp coalitions which correspond with subdecompositions
of 𝑠.

We denote all fuzzy games defined by the concave integral
as 𝐺Cav

(𝑁).
From the above definition, the function 𝑓 is defined on

all over concave coalitions. It is easy to prove the following
lemma.

Lemma 13. Let V ∈ 𝐺(𝑁, Ṽ) be a fuzzy capacity game; for every
random fuzzy coalition 𝑆 ∈ 𝐿(𝑁) with nonnegative variable
𝑠 = (𝑠

1
, 𝑠
2
, . . . , 𝑠

𝑛
),

∫

𝐶𝑎V
𝑠 𝑑V = max{∑

𝑇⊆𝑁

𝛼
𝑇
V (𝑇) , ∑

𝑇⊆𝑁

𝛼
𝑇
1
𝑇
= 𝑠, 𝛼

𝑇
≥ 0} .

(32)

The game V𝐶𝑎V : 𝐿(𝑁) → 𝑅
+
∪ {0} can also be calculated by

V𝐶𝑎V (𝑆) = ∫
𝐶𝑎V

𝑠 𝑑V = max ∑

𝑇𝑖⊆𝑁

𝛼
𝑇𝑖
V (𝑇

𝑖
)

s.t. ∑

𝑇𝑖⊆𝑁

𝛼
𝑇𝑖
1
𝑇𝑖
= 𝑠,

𝑇
𝑖
⊆ 𝑁, (𝑖 = 1, 2, 3, . . . , 2

𝑛

) ,

𝛼
𝑇𝑖
≥ 0, (𝑖 = 1, 2, 3, . . . , 2

𝑛

) .

(33)

Remark 14. When 𝑆 ⊆ 𝑁, ∫Cav 1
𝑆
𝑑V = max{∑

𝑇⊆𝑁
V(𝑇),

∑
𝑇⊆𝑁

1
𝑇
= 1} = V(𝑆). It is apparent that the fuzzy game with

the concave integral extends the crisp game.

Example 15. Consider again Example 9; for the fuzzy coali-
tion 𝑠 = (1, 0.4, 0.6), by inequality (33), we have

VCav (𝑆) =
Cav

∫ 𝑠 𝑑V= max ∑

𝑇𝑖⊆𝑁

𝛼
𝑇𝑖
V (𝑇

𝑖
)

s.t. ∑

𝑇𝑖

𝛼
𝑇𝑖
1
𝑇𝑖
= (1, 0.4, 0.6) ,

𝑇
𝑖
∈ {{1} , {2} , {3} , {1, 3} , {1, 2} , {2, 3} , {1, 2, 3}} ,

𝛼
𝑇𝑖
∈ {0.4, 0.6, 1} .

(34)

Hence,

𝑇
1
= {1, 2} , 𝑇

2
= {1, 3} , 𝛼

𝑇1
= 0.4, 𝛼

𝑇2
= 0.6.

(35)

So

VCav (𝑆) = 0.4 × 9 + 0.6 × 8 = 8.4. (36)

We know that VCav(𝑆) = ∫

Cav
𝑠 𝑑V is the maximum of

the values ∑𝑘

𝑖=1
𝛼
𝑇𝑖
𝜇(𝑇

𝑖
) among all possible decompositions

of 𝑆 with the coalition variable 𝑠. The maximum focuses all
possible decompositions rather than restrict viable decompo-
sitions like the fuzzy game given by the Choquet integral.

In the fuzzy game given by Tsurumi et al., the Choquet
integral of nonnegative 𝑋 with respect to a capacity V is
defined by

∫

Ch
𝑋𝑑𝜇 =

𝑛

∑

𝑖=1

(𝑋
𝜎(𝑖)

− 𝑋
𝜎(𝑖−1)

) V (𝑄
𝑖
) , (37)
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where 𝜎 is a permutation on𝑁 such that 0 = 𝑋
𝜎(0)

≤ 𝑋
𝜎(1)

≤

𝑋
𝜎(2)

≤ ⋅ ⋅ ⋅ ≤ 𝑋
𝜎(𝑛)

and 𝑄
𝑖
= {𝜎(𝑖), 𝜎(2), . . . , 𝜎(𝑛)}.

Let 𝛼
𝑖
= 𝑋

𝜎(𝑖)
− 𝑋

𝜎(𝑖−1)
; note that 𝑋 = ∑𝛼

𝑖
1
𝑄𝑖

is a
decomposition of𝑋.That is to say that the Choquet integral is
defined under the special decomposition of𝑋. By contrast, all
possible decompositions are allowed in the concave integral.
By this way, it implies that ∫Ch 𝑋𝑑𝜇 ≤ ∫Cav 𝑋𝑑𝜇 for any 𝑋.
In addition, it has been proven that ∫Ch 𝑋𝑑𝜇 = ∫Cav 𝑋𝑑𝜇 if
and only if 𝜇 is convex (see [17]).

Lemma 16. Let V ∈ 𝐺𝐶𝑎V
(𝑁) be a fuzzy capacity game, and let

𝑆 ∈ 𝐿(𝑁) be a random fuzzy coalition with nonnegative
variable 𝑠 = (𝑠

1
, 𝑠
2
, . . . , 𝑠

𝑛
); then

V𝐶ℎ (𝑆) = ∫
𝐶ℎ

𝑠 𝑑V = max ∑

𝑇𝑖⊆𝑁

𝛼
𝑇𝑖
V (𝑇

𝑖
) , (38)

where 𝑇
𝑗
⊆ 𝑇

𝑖
(∀𝑖 < 𝑗).

Theorem 17. Let a fuzzy capacity game V ∈ 𝐺𝐶𝑎V
(𝑁); then V

is continuous with respect to the fuzzy coalition variables.

Proof. For any two nonnegative random fuzzy coalitions �̃�
and 𝑆 with variables 𝑢 and 𝑠, define a distance 𝑑 on 𝐿(𝑁) by

𝑑 (𝑆, �̃�) = max
𝑖∈𝑁





𝑠
𝑖
− 𝑢

𝑖





. (39)

We have

𝑑 (VCav (𝑆) , VCav (�̃�))

=






VCav (𝑆) − VCav (�̃�)







=













max ∑
𝑆𝑖⊆𝑁

𝛼
𝑆𝑖
V (𝑆

𝑖
) −max ∑

𝑈𝑖⊆𝑁

𝛼


𝑈𝑖

V (𝑈
𝑖
)













≤ max












∑

𝑆𝑖⊆𝑁

𝛼
𝑆𝑖
V (𝑆

𝑖
) − ∑

𝑈𝑖⊆𝑁

𝛼


𝑈𝑖

V (𝑈
𝑖
)













≤ max
𝑆𝑖⊆𝑁,𝑈𝑖⊆𝑁

∑






𝛼
𝑆𝑖
V (𝑆

𝑖
) − 𝛼



𝑈𝑖

V (𝑈
𝑖
)







≤ ∑ max
𝑆𝑖⊆𝑁,𝑈𝑖⊆𝑁

(V (𝑆
𝑖
) , V (𝑈

𝑖
))






𝛼
𝑆𝑖
− 𝛼



𝑈𝑖







≤ ∑ max
𝑆𝑖⊆𝑁,𝑈𝑖⊆𝑁

(V (𝑆
𝑖
) , V (𝑈

𝑖
))max

𝑖∈𝑁





𝑠
𝑖
− 𝑢

𝑖






≤ 𝑑 (𝑆,
̃
𝑇)∑ max

𝑆𝑖⊆𝑁,𝑈𝑖⊆𝑁

(V (𝑆
𝑖
) , V (𝑈

𝑖
)) .

(40)

Since there exists a constant 𝑀 such that ∑max
𝑆𝑖⊆𝑁,𝑈𝑖⊆𝑁

(V(𝑆
𝑖
), V(𝑈

𝑖
)) ≤ 𝑀, we get

𝑑 (VCav (𝑆) , VCav (�̃�)) ≤ 𝑀𝑑 (𝑆, �̃�) . (41)

Therefore, when 𝑑(𝑆, �̃�) → 0 then 𝑑(VCav(𝑆), VCav(�̃�)) →

0.

Example 18. Continuing with Example 9, for another fuzzy
coalition �̃� with 𝑢 = (0.4, 1, 0.6), by inequality (33), we have

VCav (�̃�) = ∫

Cav
𝑢 𝑑V = max ∑

𝑇𝑖⊆𝑁

𝛼
𝑇𝑖
V (𝑇

𝑖
)

= 0.4V (1, 2) + 0.6V (2, 3) = 6.6.

(42)

By (27), we also get

VCh (�̃�) = ∫

Ch
𝑢 𝑑V =

𝑞(�̃�)

∑

𝑙=1

V ([�̃�]
ℎ𝑙

) ⋅ (ℎ
𝑙
− ℎ

𝑙−1
)

= V ([�̃�]
0.4

) × 0.4 + V ([�̃�]
0.6

)

× (0.6 − 0.4) + V ([�̃�]
1

) × (1 − 0.6)

= 0.4V (1, 2, 3) + 0.2V (2, 3) + 0.4V (2) = 5.8.

(43)

From the above examples, we note that VCav(𝑆) ≥ VCav(�̃�)
while VCh(𝑆) ≥ VCh(�̃�).

Theorem 19. Let V ∈ 𝐺(𝑁, Ṽ) be a fuzzy capacity game; V is
convex if and only if for any two nonnegative random fuzzy
coalitions �̃� and 𝑆with variables𝑢 and 𝑠, respectively, V𝐶𝑎V(𝑆) ≥
V𝐶𝑎V(�̃�) whenever V𝐶ℎ(𝑆) ≥ V𝐶ℎ(�̃�).

Proof. If a fuzzy capacity game V ∈ 𝐺(𝑁, Ṽ) is convex, then by
the property of the concave integral, ∫Ch 𝑠 𝑑V = ∫Cav 𝑠 𝑑V and
∫

Ch
𝑢 𝑑V = ∫

Cav
𝑢 𝑑V, so when VCh(𝑆) ≥ VCh(�̃�), it implies that

VCav(𝑆) ≥ VCav(�̃�).
Conversely, if V is not convex, then there exits a non-

negative variable 𝑥 such that ∫Ch 𝑥 𝑑V ̸= ∫

Cav
𝑥 𝑑V. Since

∫

Cav
𝑥𝑑V ≥ ∫

Ch
𝑥𝑑V, then ∫Cav 𝑥𝑑V > ∫

Ch
𝑥𝑑V; there is at

least a crisp coalition 𝑆 ⊆ 𝑁 and a nonnegative constant 𝑐
such that

∫

Cav
𝑠 𝑑V > ∫

Cav
𝑐1

𝑇
𝑑V > ∫

Ch
𝑠 𝑑V. (44)

We have

VCav (𝑆) > 𝑐V (𝑆) > VCh (𝑆) . (45)

Similarly,

VCav (�̃�) > 𝑚V (𝑈) > VCh (�̃�) , (46)

where the crisp coalition 𝑈 ⊆ 𝑁 and 𝑚 is a nonnegative
constant.

Therefore, whenever VCh(𝑆) ≥ VCh(�̃�), it cannot be con-
firmed that VCav(𝑆) ≥ VCav(�̃�); thus V is convex.

Since∫Ch𝑋𝑑𝜇 = ∫Cav𝑋𝑑𝜇 if and only if𝜇 is convex, con-
versely V is convex if and only if VCav(𝑆) = VCh(𝑆), for any
𝑆 ⊆ 𝐿(𝑁).
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4. The Shapley Values on Fuzzy Coalition
Games with the Concave Integral

The fuzzy Shapley value is one of the important solutions for
fuzzy games. It is interesting to study the Shapley function for
game V ∈ 𝐺Cav

(𝑁).

4.1. The Shapley Axioms for Games with Fuzzy Coalitions.
Tsurumi et al. defined the Shapley function which is based
on the natural extension of carrier and null player to fuzzy
games. Before introducing the definition, we provide some
notations introduced by Tsurumi et al.

For any �̃� ∈ 𝐿(𝑁), 𝑆 ∈ 𝐿(�̃�), and 𝑖, 𝑗 ∈ 𝑁,

𝑆
�̃�

𝑖
(𝑗) = {

𝑢
𝑖
, if 𝑗 = 𝑖,

𝑠
𝑗
, otherwise,

𝑆
�̃�

𝑖𝑗
(𝑘) =

{
{

{
{

{

min {𝑠
𝑖
, 𝑢

𝑗
} , if 𝑘 = 𝑖,

min {𝑠
𝑗
, 𝑢

𝑖
} , if 𝑘 = 𝑗,

𝑠
𝑘
, otherwise,

𝑝
𝑖𝑗
(𝑆) (𝑘) =

{
{

{
{

{

𝑠
𝑗
, if 𝑘 = 𝑖,

𝑠
𝑖
, if 𝑘 = 𝑗,
𝑠
𝑘
, otherwise.

(47)

Obviously, 𝑆�̃�
𝑖
, 𝑆�̃�

𝑖𝑗
, and 𝑝

𝑖𝑗
(𝑆

�̃�

𝑖𝑗
) ∈ �̃�(�̃�).

Definition 20. Let 𝐺
(𝑁, Ṽ) ⊆ 𝐺(𝑁, Ṽ); a function 𝑓 :

𝐺

(𝑁, Ṽ) → (𝑅

𝑛

+
∪ 0)

𝐿(𝑁) is said to be a Shapley value on
𝐺

(𝑁, Ṽ) if it satisfies the following four axioms.

Axiom 1. If V ∈ 𝐺
(𝑁, Ṽ) and �̃� ∈ 𝐿(𝑁), then

∑

𝑖∈Supp �̃�

𝑓
𝑖
(V) (�̃�) = V (�̃�) ,

𝑓
𝑖
(V) (�̃�) = 0, ∀𝑖 ∉ Supp �̃�,

(48)

where 𝑓
𝑖
(V)(�̃�) is the ith element of 𝑓(V)(�̃�) ∈ 𝑅𝑛

+
.

Axiom 2. If V ∈ 𝐺
(𝑁, Ṽ), �̃� ∈ 𝐿(𝑁), and ̃𝑇 ∈ 𝐶(�̃� | V), then

𝑓
𝑖
(V) (�̃�) = 𝑓

𝑖
(V) (̃𝑇) , ∀𝑖 ∈ 𝑁. (49)

Axiom 3. If V ∈ 𝐺
(𝑁, Ṽ), �̃� ∈ 𝐿(𝑁), 𝑖, 𝑗 ∈ 𝑁, �̃��̃�

𝑖𝑗
∈ 𝐶(�̃� | V),

and V(𝑆) = V(𝑝
𝑖𝑗
[𝑆]) for any 𝑆 ∈ 𝐿(�̃��̃�

𝑖𝑗
), then

𝑓
𝑖
(V) (�̃�) = 𝑓

𝑗
(V) (�̃�) . (50)

Axiom 4. For any Ṽ
1
, Ṽ

2
∈ 𝐺


(𝑁, Ṽ), define a game V

1
+ V

2
by

(V
1
+ V

2
)(𝑆) = V

1
(𝑆) + V

2
(𝑆) for any 𝑆 ∈ �̃�(𝑁). If V

1
+ V

2
∈

𝐺

(𝑁, Ṽ) and �̃� ∈ �̃�(𝑁), then

𝑓
𝑖
(V

1
+ V

2
) (�̃�) = 𝑓

𝑖
(V

1
) (�̃�) + 𝑓

𝑖
(V

2
) (�̃�) , ∀𝑖 ∈ 𝑁.

(51)

These axioms for the Shapley value are extensions of the
crisp Shapley axioms and are suitable to games with fuzzy
coalitions. It is unnecessary to transform the Shapley axioms
to deal with our fuzzy cooperative games.

Theorem 21. If V ∈ V𝐶ℎ(𝑁) and 𝑆 ⊆ �̃� ∈ 𝐿(𝑁), then
𝑓
𝑖
(V)(𝑆) ≤ 𝑓

𝑖
(V)(�̃�), ∀𝑖 ∈ 𝑁.

Proof. For 𝑆 ⊆ �̃� ∈ 𝐿(𝑁), note that 𝑆 ⊆ �̃� if and only if [𝑆]
ℎ
⊆

[�̃�]
ℎ
for any ℎ ∈ (0, 1]. Since V ∈ 𝐺

0
(𝑁, V) is convex, [𝑆]

ℎ
⊆

[�̃�]
ℎ
implies that 𝑓

𝑖
(V)([𝑆]

ℎ
) ≤ 𝑓



𝑖
(V)([𝑇]

ℎ
) for any 𝑖 ∈ 𝑁;

therefore, 𝑓
𝑖
(V)(𝑆) ≤ 𝑓

𝑖
(V)(�̃�) for any 𝑖 ∈ 𝑁.

4.2.The ShapleyValues for SimpleGamewith FuzzyCoalitions.
Following Shapley [1], with any nonempty coalition 𝑆 ∈

𝑃(𝑁), we consider the fuzzy simple game 1
�̃�
defined by

1
�̃�
(𝐴) = {

1, if ̃𝑇 ⊆ 𝐿 (𝐴) ,
0, otherwise,

(52)

and the number

𝑐
�̃�
(V) = ∑

𝐵∈𝑃(𝑁):𝐵⊆𝑇

(−1)
|𝑇|−|𝐵|VCav(∑

𝑗∈𝐵

𝑡
𝑗
𝑒
𝑗

) , (53)

where 𝑡 = (𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑛
) is a fuzzy coalition variable of ̃𝑇 ⊆

𝐿(𝐴).
Consider

𝑐
�̃�
(V) = ∑

𝐵∈𝑃(𝑁):𝐵⊆𝑇

(−1)
|𝑇|−|𝐵|VCav(∑

𝑗∈𝐵

𝑡
𝑗
𝑒
𝑗

)

= ∑

𝐵∈𝑃(𝑁):𝐵⊆𝑇

(−1)
|𝑇|−|𝐵|max

{

{

{

∑

𝑗∈𝐵

𝛼
𝑇𝑗
V (𝑇

𝑗
) ,

∑

𝑗∈𝐵

𝛼
𝑇𝑗
1
𝑇𝑗
= 𝑡, 𝛼

𝑇𝑗
≥ 0

}

}

}

= max
{

{

{

∑

𝑗∈𝐵,𝐵⊆𝑇

𝛼
𝑇𝑗

∑

𝐵∈𝑃(𝑁):𝐵⊆𝑇

(−1)
|𝑇|−|𝐵|V (𝑇

𝑗
) ,

∑

𝑗∈𝐵

𝛼
𝑇𝑗
1
𝑇𝑗
= 𝑡, 𝛼

𝑇𝑗
≥ 0

}

}

}

= max
{

{

{

∑

𝑗∈𝐵,𝐵⊆𝑇

𝛼
𝑇𝑗
𝑐
𝑇𝑗
(V) ,

∑

𝑗∈𝐵

𝛼
𝑇𝑗
1
𝑇𝑗
= 𝑡, 𝛼

𝑇𝑗
≥ 0

}

}

}

.

(54)
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In addition, for any a cooperative game V ∈ 𝐺(𝑁, V),

∑

�̃�∈𝐿(𝑁)\{𝜙}

𝑐
�̃�
(VCav) 1

�̃�

= ∑

�̃�∈𝐿(𝑁)\{𝜙}

max
{

{

{

∑

𝑗∈𝐵,𝐵⊆𝑇

𝛼
𝑇𝑗
𝑐
𝑇𝑗
(V) ,

∑

𝑗∈𝐵

𝛼
𝑇𝑗
1
𝑇𝑗
= 𝑡, 𝛼

𝑇𝑗
≥ 0

}

}

}

1
�̃�

= max ∑

�̃�∈𝐿(𝑁)\{𝜙}

{

{

{

∑

𝑗∈𝐵,𝐵⊆𝑇

𝛼
𝑇𝑗
𝑐
𝑇𝑗
(V) ,

∑

𝑗∈𝐵

𝛼
𝑇𝑗
1
𝑇𝑗
= 𝑡, 𝛼

𝑇𝑗
≥ 0

}

}

}

1
�̃�

= max ∑

�̃�∈𝐿(𝑁)\{𝜙}

∑

𝑗∈𝐵,𝐵⊆𝑇

𝛼
𝑇𝑗
𝑐
𝑇𝑗
(V) 1

�̃�
,

(∑

𝑗∈𝐵

𝛼
𝑇𝑗
1
𝑇𝑗
= 𝑡, 𝛼

𝑇𝑗
≥ 0)

= max ∑

𝑗∈𝐵,𝐵⊆𝑇

𝛼
𝑇𝑗

∑

�̃�∈𝐿(𝑁)\{𝜙}

𝑐
𝑇𝑗
(V) 1

�̃�
,

(∑

𝑗∈𝐵

𝛼
𝑇𝑗
1
𝑇𝑗
= 𝑡, 𝛼

𝑇𝑗
≥ 0)

= max ∑

𝑗∈𝐵,𝐵⊆𝑇

𝛼
𝑇𝑗

∑

supp(�̃�)∈𝑃(𝑁)\{𝜙}

𝑐
𝑇𝑗
(V) 1supp(�̃�),

(∑

𝑗∈𝐵

𝛼
𝑇𝑗
1
𝑇𝑗
= 𝑡, 𝛼

𝑇𝑗
≥ 0)

= max ∑

𝑗∈𝐵,𝐵⊆𝑇

𝛼
𝑇𝑗

∑

supp(�̃�)∈𝑃(𝑁)\{𝜙}

𝑐
𝑇𝑗
(V) 1supp(�̃�),

(∑

𝑗∈𝐵

𝛼
𝑇𝑗
1
𝑇𝑗
= 𝑡, 𝛼

𝑇𝑗
≥ 0)

= max ∑

𝑗∈𝐵,𝐵⊆𝑇

𝛼
𝑇𝑗
V (𝑇

𝑗
) ,

(∑

𝑗∈𝐵

𝛼
𝑇𝑗
1
𝑇𝑗
= 𝑡, 𝛼

𝑇𝑗
≥ 0)

= VCav (̃𝑇) .

(55)

Hence,

VCav (̃𝑇) = ∑

�̃�∈𝐿(𝑁)\{𝜙}

𝑐
�̃�
(VCav) 1

�̃�
. (56)

Lemma 22. Let 𝑆 ∈ 𝐿(𝑁); then for any ̃𝑇 ⊆ 𝐿(𝑆), a Shapley
value on the simple game 1

�̃�
is as follows:

𝑓
𝑖
(1

�̃�
) (𝑆) =

{
{

{
{

{

1







̃
𝑇







, 𝑖𝑓 𝑖 ∈ Supp (̃𝑇) ,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(57)

Proof. Let 𝑆 ∈ 𝐿(𝑁) with fuzzy coalition variable 𝑠 =

(𝑠
1
, 𝑠
2
, . . . , 𝑠

𝑛
); for all ̃𝑇 ⊆ 𝐿(𝑆), it is obvious that 1

�̃�
(𝑆 ∩

̃
𝑇) =

1
�̃�
(
̃
𝑇), and ̃𝑇 is a fuzzy carrier in fuzzy coalition 𝑆.

Axiom 1. Consider

∑

𝑖∈Supp(𝑆)

𝑓
𝑖
(1

�̃�
) (𝑆) = 1

�̃�
(𝑆) = 1

�̃�
(
̃
𝑇)

= ∑

𝑖∈Supp(�̃�)

1







̃
𝑇







= ∑

𝑖∈Supp(�̃�)

𝑓
𝑖
(1

�̃�
) (
̃
𝑇) ,

∑

𝑖∉Supp(𝑆)

𝑓
𝑖
(1

�̃�
) (𝑆) = 0.

(58)

That is,

∑

𝑖∈Supp(𝑆)

𝑓
𝑖
(1

�̃�
) (𝑆) = 1

�̃�
(𝑆) ,

𝑓
𝑖
(1

�̃�
) (𝑆) = 0, ∀𝑖 ∉ Supp 𝑆.

(59)

Axiom 2. For any 𝑘 ∈ Supp(𝑆) \ Supp(̃𝑇), 𝑓
𝑘
(1

�̃�
)(𝑆) = 0. ̃𝑇 ⊆

̃
𝑇 ∪ (𝑠

𝑘
𝑒
𝑘
) and 1

�̃�
(
̃
𝑇 ∪ (𝑠

𝑘
𝑒
𝑘
)) = 1

�̃�
(
̃
𝑇); then ̃𝑇 ∪ (𝑠

𝑘
𝑒
𝑘
) is also

a fuzzy carrier in coalition 𝑆, so

𝑓
𝑘
(1

�̃�
) (𝑆) = 𝑓

𝑘
(1

�̃�
) (
̃
𝑇) . (60)

For any 𝑘 ∈ Supp(̃𝑇), 𝑓
𝑘
(1

�̃�
)(𝑆) = 1/|

̃
𝑇| and 𝑓

𝑘
(1

�̃�
)(
̃
𝑇) =

1/|
̃
𝑇|.

Axiom 3. For any 𝑖, 𝑗 ∈ Supp ̃𝑇, let 𝐵 ∈ 𝐿(Supp 𝑆 \ {𝑖, 𝑗}); by
the fuzzy simple definition, 1

�̃�
(𝐵∪(𝑠

𝑖
𝑒
𝑖
)) = 1

�̃�
(𝐵∪(𝑠

𝑗
𝑒
𝑗
)) = 0,

so 𝑓
𝑖
(1

�̃�
)(𝑆) = 𝑓

𝑗
(1

�̃�
)(𝑆).

Axiom 4. For any two fuzzy simple games 1
�̃�1

and 1
�̃�2

, define
(1

�̃�1

+ 1
�̃�2

)(𝑆) = 1
�̃�1

(𝑆) + 1
�̃�2

(𝑆), ∀𝑆 ∈ 𝐿(𝑁). If 1
�̃�1

+ 1
�̃�2

is also
a fuzzy simple game, then

∑

𝑖

𝑓
𝑖
(1

�̃�1

+ 1
�̃�2

) (𝑆) = (1
�̃�1

+ 1
�̃�2

) (𝑆) = 1
�̃�1

(𝑆) + 1
�̃�2

(𝑆)

= ∑

𝑖

𝑓
𝑖
(1

�̃�1

) (𝑆) +∑

𝑖

𝑓
𝑖
(1

�̃�2

) (𝑆) .

(61)

It satisfies for any 𝑖 ∈ 𝑁, 𝑓
𝑖
(1

�̃�1

+ 1
�̃�2

)(𝑆) = 𝑓
𝑖
(1

�̃�1

)(𝑆) +

𝑓
𝑖
(1

�̃�2

)(𝑆).
It is evident that 𝑓

𝑖
(1

�̃�
)(𝑆) = 𝑓

𝑖
(1

�̃�
)(
̃
𝑇), ∀𝑖 ∈ 𝑁.
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4.3.The Shapley Values for Game with Concave Integral. For a
fuzzy coalition 𝑆 ∈ 𝐿(𝑁) with fuzzy coalition variable 𝑠 =
(𝑠
1
, 𝑠
2
, . . . , 𝑠

𝑛
), we simply denote it by crisp game marks as

follows:

𝑤
𝑆
({1}) = VCav (𝑠

1
𝑒
1

) ,

𝑤
𝑆
({1, 2}) = VCav(

2

∑

𝑗=1

𝑠
𝑗
𝑒
𝑗

) ,

...

𝑤
𝑆
(𝑇) = VCav(∑

𝑗∈𝑇

𝑠
𝑗
𝑒
𝑗

) ,

...

𝑤
𝑆
(𝑁) = VCav(∑

𝑗∈𝑁

𝑠
𝑗
𝑒
𝑗

) .

(62)

If we let 𝑐
�̃�
(𝑤) = ∑

𝐵∈𝐿(𝑁):𝐵⊆Supp�̃�(−1)
|�̃�|−|𝐵|

𝑤
𝑆
(𝐵), it is

obvious that 𝑐
�̃�
(V) is a linear sum with the concave integral

on 𝐿(𝑆), and

∑

�̃�∈𝐿(𝑁)\{𝜙}

𝑐
�̃�
(𝑤) 1

�̃�
(𝐵)

= ∑

�̃�∈𝐿(𝑁)\{𝜙}

∑

𝐵∈𝐿(𝑁):𝐵⊆Supp�̃�

(−1)
|�̃�|−|𝐵|

𝑤
𝑆
(𝐵) 1

�̃�
(𝐵)

= 𝑤
𝑆
(𝐵) .

(63)

Therefore,

𝑓
𝑖
(𝑤

𝑆
) (𝑆) = 𝑓

𝑖
( ∑

�̃�∈𝐿(𝑁)\{𝜙}

𝑐
�̃�
(𝑤) 1

�̃�
(𝐵)) (𝑆)

= ∑

�̃�∈𝐿(𝑁)\{𝜙}

𝑐
�̃�
(𝑤) 𝑓

𝑖
(1

�̃�
(𝐵)) (𝑆)

= ∑

�̃�∈𝐿(𝑁)\{𝜙}

𝑐
�̃�
(𝑤)

1







̃
𝑇







= ∑

�̃�∈𝐿(𝑁)\{𝜙}

∑

𝑖∈𝑇,𝐵∈𝑃(𝑁):𝐵⊆𝑇

(−1)
|𝑇|−|𝐵|

𝑤
𝑆
(𝐵)

1

|𝑇|

= ∑

𝑖∈𝑇⊆𝑆∈𝑃(𝑁)

𝛽 (|𝑇| ; |𝑆|) ⋅ {𝑤
𝑆
(𝑇) − 𝑤

𝑆
(𝑇 \ 𝑖)} ,

(64)

where 𝑇 = ∑
𝑗∈𝑇

𝑠
𝑗
𝑒
𝑗 and 𝑆 = ∑

𝑗∈𝑆
𝑠
𝑗
𝑒
𝑗.

Hence, the Shapley value of player 𝑖 on the fuzzy coalition
𝑆 will be

𝑓
𝑖
(𝑤

𝑆
) (𝑆) = ∑

𝑖∈𝑇⊆𝑆∈𝑃(𝑁)

(|𝑇| − 1)! (|𝑆| − |𝑇|)!

|𝑆|!

× {𝑤
𝑆
(𝑇) − 𝑤

𝑆
(𝑇 \ 𝑖)} .

(65)

Lemma 23. Let V ∈ 𝐺𝐶𝑎V
(𝑁) be a fuzzy capacity game, and let

𝑆 ∈ 𝐿(𝑁) be a random fuzzy coalition with nonnegative vari-
able 𝑠 = (𝑠

1
, 𝑠
2
, . . . , 𝑠

𝑛
); then the vector

𝑓 (𝑤
𝑆
) (𝑆) = (𝑓

1
(𝑤

𝑆
) (𝑆) , 𝑓

2
(𝑤

𝑆
) (𝑆) , . . . , 𝑓

𝑛
(𝑤

𝑆
) (𝑆))

(66)

is an imputation of the fuzzy coalition 𝑆, where 𝑓
𝑖
(𝑤

𝑆
)(𝑆) is

defined as (65).

Proof. For any 𝑖 ∉ supp 𝑆, it is apparent that 𝑓
𝑖
(𝑤

𝑆
)(𝑆) = 0

and ∑
𝑖∈supp 𝑆 𝑓𝑖(𝑤𝑆

)(𝑆) = 𝑤
𝑆
(𝑆). So ∑

𝑖∈𝑁
𝑓
𝑖
(𝑤

𝑆
)(𝑆) = 𝑤

𝑆
(𝑆).

Meanwhile,

𝑓
𝑖
(𝑤

𝑆
) (𝑆) = ∑

𝑖∈𝑇⊆𝑆∈𝑃(𝑁)

(|𝑇| − 1)! (|𝑆| − |𝑇|)!

|𝑆|!

× {𝑤
𝑆
(𝑇) − 𝑤

𝑆
(𝑇 \ 𝑖)}

≥ ∑

𝑖∈𝑇⊆𝑆∈𝑃(𝑁)

(|𝑇| − 1)! (|𝑆| − |𝑇|)!

|𝑆|!

𝑤
𝑆
(𝑖)

= 𝑤
𝑆
(𝑖) = VCav (𝑠

𝑖
𝑒
𝑖

) ≥ 𝑠
𝑖
V (𝑒𝑖) .

(67)

Therefore, we have 𝑓
𝑖
(𝑤

𝑆
)(𝑆) ≥ 𝑠

𝑖
V({𝑒𝑖}) for any 𝑖 ∈ 𝑆, so

𝑓(𝑤
𝑆
)(𝑆) is an imputation.

Lemma 24. Let V ∈ 𝐺𝐶𝑎V
(𝑁) be a convex game; for any fuzzy

coalitions 𝑆, �̃� ∈ 𝐿(𝑁) such that 𝑆 ⊆ �̃�; then 𝑓
𝑖
(𝑤

𝑆
)(𝑆) ≤

𝑓
𝑖
(𝑤

�̃�
)(�̃�) (∀𝑖 ∈ 𝑁).

Proof. If V ∈ 𝐺
Cav
(𝑁) is convex implies that V ∈ 𝐺

Ch
(𝑁).

From Theorem 21, for fuzzy coalitions 𝑆, �̃� ∈ 𝐿(𝑁), then
𝑓
𝑖
(V)(𝑆) ≤ 𝑓

𝑖
(V)(�̃�) for any 𝑖 ∈ 𝑁.

Therefore, for any 𝑖 ∈ 𝑁, 𝑓
𝑖
(𝑤

𝑆
)(𝑆) ≤ 𝑓

𝑖
(𝑤

𝑆
)(�̃�) ≤

𝑓
𝑖
(𝑤

�̃�
)(�̃�).

Lemma 24 suggests that on game V ∈ 𝐺Cav
(𝑁), 𝑓

𝑖
(𝑤

𝑆
)(𝑆)

is monotone nondecreasing with respect to fuzzy coalition
variable when V ∈ 𝐺

Cav
(𝑁) is convex. In fact, 𝑓

𝑖
(𝑤

𝑆
)(𝑆) is

also continuous with respect to fuzzy coalition variable when
V ∈ 𝐺Cav

(𝑁).
The next lemma can easily be proved by the samemanner

as Lemma 24.

Lemma 25. Let V ∈ 𝐺𝐶𝑎V
(𝑁); then 𝑓

𝑖
(𝑤

𝑆
)(𝑆) is also continu-

ous with respect to fuzzy coalition variable for any 𝑖 ∈ 𝑁.

Example 26. Let 𝑁 = {1, 2, 3, 4}, 𝑆 ∈ 𝐿(𝑁) with the fuzzy
coalition variable 𝑠 = (𝑠

1
, 0.4, 0.7, 0.7), V(1) = 120, V(2) = 150,



10 Journal of Applied Mathematics

V(3) = V(4) = 180, V(1, 2) = 450, V(1, 3) = V(1, 4) = V(2, 3) =
V(2, 4) = 480, V(3, 4) = 600, V(1, 2, 3) = V(1, 2, 4) = 840,
V(2, 3, 4) = V(1, 3, 4) = 900, V(1, 2, 3, 4) = 1500.

Now we consider the Shapley value of player 1 in fuzzy
coalition 𝑆 by (65); we have

𝑓
1
(𝑤

𝑆
) (𝑆) =

{
{

{
{

{

340𝑠
1
, 0 ≤ 𝑠

1
< 0.4,

240𝑠
1
+ 40, 0 ≤ 𝑠

1
< 0.4,

120𝑠
1
+ 124, 0 ≤ 𝑠

1
< 0.4.

(68)

Note that the game is convex such that the Shapley
𝑓
1
(𝑤

𝑆
)(𝑆) is the same as that of Tsurumi game.

Theorem 27. Let V ∈ 𝐺𝐶𝑎V
(𝑁) be a fuzzy capacity game, and

let 𝑆 ∈ 𝐿(𝑁) be a random fuzzy coalition with nonnegative
variable 𝑠 = (𝑠

1
, 𝑠
2
, . . . , 𝑠

𝑛
); reorder its components such that

𝑠
𝑗1
< 𝑠

𝑗2
< ⋅ ⋅ ⋅ < 𝑠

𝑗𝑛
; then 𝑓

𝑖
(𝑤

𝑆
)(𝑆) (∀𝑖 ∈ 𝑁) can be calculated

by

𝑓
𝑖
(𝑤

𝑆
) (𝑆)

= max ∑

𝑖∈𝑇⊆𝑆∈𝑃(𝑁)

(|𝑇| − 1)! (|𝑆| − |𝑇|)!

|𝑆|!

× {{V (𝑇 ∩ 𝑇
1
) − V ((𝑇 \ 𝑖) ∩ 𝑇

1
)} 𝛼

𝑠𝑗1

+ {V (𝑇 ∩ 𝑇
2
) − V ((𝑇 \ 𝑖) ∩ 𝑇

2
)} 𝛼

𝑠𝑗2

+ ⋅ ⋅ ⋅ + {V (𝑇 ∩ 𝑇
𝑚
) − V ((𝑇 \ 𝑖) ∩ 𝑇

𝑚
)} 𝛼

𝑠𝑗𝑚

} ,

(69)

where ∑
𝑆𝑗
𝛼
𝑠𝑗
1
𝑆𝑗
≤ 𝑠 and 𝑠

𝑗𝑚
= 𝑠

𝑖
(1 ≤ 𝑚 ≤ 𝑛).

Proof. Let 𝑄(𝑇) = 𝑄(∑
𝑗∈𝑇

𝑠
𝑗
𝑒
𝑗
) = {𝑠

𝑗
| 𝑠

𝑗
> 0, 𝑗 ∈ 𝑇}, 𝑞 =

|𝑄(𝑇)|; reorder the elements in 𝑄(𝑇) such that 𝑠
𝑗1
< 𝑠

𝑗2
<

⋅ ⋅ ⋅ < 𝑠
𝑗𝑞
.

For the fuzzy variable 𝑠, let ∑𝑞

𝑗=1
𝛼
𝑠𝑗
1
𝑆𝑗
≤ 𝑠, where 𝛼

𝑠𝑗
= 1

if the set𝑇
𝑗
is a subdecomposition set, else 𝛼

𝑠𝑗
= 0 and 𝑆

𝑗
∈ 𝑁

(𝑗 = 1, 2, . . . , 𝑞).Then all the subdecomposition sets 𝑆
1
< 𝑆

2
<

⋅ ⋅ ⋅ < 𝑆
𝑞
correspond with the order.

Let 𝑠
𝑗𝑚
= 𝑠

𝑖
, 1 ≤ 𝑚 ≤ 𝑞. For any a subdecomposition 𝑇,

by V ∈ 𝐺Cav
(𝑁),

V(∑
𝑗∈𝑇

𝑠
𝑗
𝑒
𝑗

) − V( ∑

𝑗∈𝑇\𝑖

𝑠
𝑗
𝑒
𝑗

)

= 𝑤
𝑆
(𝑇) − 𝑤

𝑆
(𝑇 \ 𝑖)

= max {V (𝑇 ∩ 𝑇
1
) 𝛼

𝑠𝑗1

+ V (𝑇 ∩ 𝑇
2
) 𝛼

𝑠𝑗2

+ ⋅ ⋅ ⋅ + V (𝑇 ∩ 𝑇
𝑞
) 𝛼

𝑠𝑗𝑞

}

−max {V ((𝑇 \ 𝑖) ∩ 𝑇
1
) 𝛼

𝑠𝑗1

− V ((𝑇 \ 𝑖) ∩ 𝑇
2
) 𝛼

𝑠𝑗2

− ⋅ ⋅ ⋅ − V ((𝑇 \ 𝑖) ∩ 𝑇
𝑞
) 𝛼

𝑠𝑗𝑞

} .

(70)

It is obvious that (𝑇∩𝑇
𝑘
) = V((𝑇\ 𝑖)∩𝑇

𝑘
); for any𝑚+1 ≤

𝑘 < 𝑞, we get

𝑤
𝑆
(𝑇) − 𝑤

𝑆
(𝑇 \ 𝑖)

= max {V (𝑇 ∩ 𝑇
1
) 𝛼

𝑠𝑗1

+ V (𝑇 ∩ 𝑇
2
) 𝛼

𝑠𝑗2

+ ⋅ ⋅ ⋅ + V (𝑇 ∩ 𝑇
𝑚
) 𝛼

𝑠𝑗𝑚

}

−max {V ((𝑇 \ 𝑖) ∩ 𝑇
1
) 𝛼

𝑠𝑗1

− V ((𝑇 \ 𝑖) ∩ 𝑇
2
) 𝛼

𝑠𝑗2

− ⋅ ⋅ ⋅ − V ((𝑇 \ 𝑖) ∩ 𝑇
𝑚
) 𝛼

𝑠𝑗𝑚

} .

(71)

Therefore,

𝑓
𝑖
(𝑤

𝑆
) (𝑆) = ∑

𝑖∈𝑇⊆𝑆∈𝑃(𝑁)

(|𝑇| − 1)! (|𝑆| − |𝑇|)!

|𝑆|!

× {𝑤
𝑆
(𝑇) − 𝑤

𝑆
(𝑇 \ 𝑖)}

= ∑

𝑖∈𝑇⊆𝑆∈𝑃(𝑁)

(|𝑇| − 1)! (|𝑆| − |𝑇|)!

|𝑆|!

× ∑

𝑗

max {V (𝑇 ∩ 𝑇
𝑗
) − V ((𝑇 \ 𝑖) ∩ 𝑇

𝑗
)} 𝛼

𝑠𝑗

= max ∑

𝑖∈𝑇⊆𝑆∈𝑃(𝑁)

(|𝑇| − 1)! (|𝑆| − |𝑇|)!

|𝑆|!

× { {V (𝑇 ∩ 𝑇
1
)

−V ((𝑇 \ 𝑖) ∩ 𝑇
1
)} 𝛼

𝑠𝑗1

+ {V (𝑇 ∩ 𝑇
2
) − V ((𝑇 \ 𝑖) ∩ 𝑇

2
)} 𝛼

𝑠𝑗2

+ ⋅ ⋅ ⋅ + {V (𝑇 ∩ 𝑇
𝑚
)

−V ((𝑇 \ 𝑖) ∩ 𝑇
𝑚
)} 𝛼

𝑠𝑗𝑚

} .

(72)

Define a function 𝑓 : 𝐺Cav
(𝑁) → (𝑅

𝑛

+
∪ {0})

𝐿(𝑁) by

𝑓
𝑖
(V) (𝑆) = max ∑

𝑇𝑗⊆𝑁

𝛼
𝑇𝑗
𝑓


𝑖
(V) (𝑇

𝑗
)

s.t. ∑

𝑇𝑗

𝛼
𝑇𝑗
1
𝑇𝑗
= 𝑠,

𝑇
𝑗
⊆ 𝑁, (𝑗 = 1, 2, . . . , 2

𝑛

) ,

𝛼
𝑇𝑗
≥ 0, (𝑗 = 1, 2, . . . , 2

𝑛

) ,

(73)

where 𝑓 is the function given inTheorem 4.
Note that (73) is a concave integral on the fuzzy coalition

𝑆 with regard to 𝑓(V). Next we will show that 𝑓 is a Shapley
function on 𝐺Cav

(𝑁).
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Theorem 28. Let V ∈ 𝐺𝐶𝑎V
(𝑁) be a fuzzy capacity game, and

let 𝑆 ∈ 𝐿(𝑁) be a random fuzzy coalition with nonnegative
variable 𝑠 = (𝑠

1
, 𝑠
2
, . . . , 𝑠

𝑛
); then the function defined by (73) is

a Shapley function on 𝐺𝐶𝑎V
(𝑁).

Proof. We will show that 𝑓 satisfies the axioms in
Definition 20.

Axiom 1. Let V ∈ 𝐺Cav
(𝑁) and 𝑆 ∈ 𝐿(𝑁). By ∑

𝑖∈𝑁
𝑓


𝑖
(V)(𝑇

𝑗
) =

V(𝑇
𝑗
) for any 𝑇

𝑗
⊆ 𝑁, we get

∑

𝑖∈Supp 𝑆

𝑓
𝑖
(V) (𝑆) = ∑

𝑖∈Supp 𝑆

max ∑

𝑇𝑗⊆𝑁

𝛼
𝑇𝑗
𝑓


𝑖
(V) (𝑇

𝑗
)

= max ∑

𝑇𝑗⊆𝑁

𝛼
𝑇𝑗

∑

𝑖∈Supp 𝑆

𝑓


𝑖
(V) (𝑇

𝑗
)

= max ∑

𝑇𝑗⊆𝑁

𝛼
𝑇𝑗
V (𝑇

𝑗
) = VCav (𝑆)

s.t. ∑

𝑇𝑗

𝛼
𝑇𝑗
1
𝑇𝑗
= 𝑠,

𝑇
𝑗
⊆ 𝑁, (𝑗 = 1, 2, . . . , 2

𝑛

) ,

𝛼
𝑇𝑗
≥ 0, (𝑗 = 1, 2, . . . , 2

𝑛

) .

(74)

If 𝑖 ∉ Supp 𝑆, then 𝑖 ∉ 𝑇
𝑗
(𝑗 = 1, 2, . . . , 𝑛) such that𝑓

𝑖
(V)(𝑇

𝑗
) =

0. So 𝑓
𝑖
(V)(𝑆) = 0 when 𝑖 ∉ Supp 𝑆.

Thus,

∑

𝑖∈Supp 𝑆

𝑓
𝑖
(V) (𝑆) = V (𝑆) ,

𝑓
𝑖
(V) (𝑆) = 0, ∀𝑖 ∉ Supp 𝑆.

(75)

Axiom 2. Let 𝑆 ∈ 𝐿(𝑁); denote a subdecomposition 𝑆 =

{∑
𝑗
𝛼
𝑗
𝑆
𝑗
| 𝑆

𝑗
∈ 𝑃(𝑁), 𝑗 ∈ 2

𝑛
} such that ∑

𝑗
𝛼
𝑗
1
𝑆𝑗
≤ 𝑠 and

∑
𝑗
𝛼
𝑠𝑗
= 1. Let ̃𝑇 ∈ 𝐶(𝑆 | V); then its subdecomposition is

denoted by 𝑇; this implies that 𝑇 ∈ 𝐶(𝑆 | V), so 𝑓
𝑖
(V)(𝑆) =

𝑓


𝑖
(V)(𝑇). We can easily obtain

𝑓
𝑖
(V) (𝑆) = 𝑓

𝑖
(V) (̃𝑇) , ∀𝑖 ∈ 𝑁. (76)

Axiom 3. Let 𝑆 ∈ 𝐿(𝑁), 𝑆𝑆
𝑖𝑗
∈ 𝐶(𝑆V), and V(̃𝑇) = V(𝑝

𝑖𝑗
[
̃
𝑇]), for

any ̃𝑇 ∈ 𝐿(𝑆
𝑆

𝑖𝑗
). We note that 𝑆𝑆

𝑖𝑗
(𝑖) = 𝑆

𝑆

𝑖𝑗
(𝑗); if 𝑖, 𝑗 ∉ Supp 𝑆𝑆

𝑖𝑗

then 𝑓
𝑖
(V)(𝑆𝑆

𝑖𝑗
) = 𝑓

𝑗
(V)(𝑆𝑆

𝑖𝑗
) = 0.

Since 𝑆𝑆
𝑖𝑗
∈ 𝐶(𝑆 | V), by Axiom 1, we have 𝑓

𝑖
(V)(𝑆) =

𝑓
𝑗
(V)(𝑆) = 𝑓

𝑖
(V)(𝑆𝑆

𝑖𝑗
) = 𝑓

𝑗
(V)(𝑆𝑆

𝑖𝑗
) = 0.

On the other hand, if 𝑖, 𝑗 ∈ Supp 𝑆𝑆
𝑖𝑗
that means 𝑖, 𝑗 ∈

Supp 𝑆 and 𝑆 = 𝑆𝑆
𝑖𝑗
.

From V(̃𝑇) = V(𝑝
𝑖𝑗
[
̃
𝑇]) for any ̃𝑇 ∈ 𝐿(𝑆𝑆

𝑖𝑗
), we get

V (̃𝑇 ∪ 𝑒𝑗) = V (̃𝑇 ∪ 𝑒𝑖) for ̃𝑇 ∈ 𝐿 (Supp 𝑆 \ {𝑖, 𝑗}) . (77)

So from the proof of Axiom 2, we obtain 𝑓
𝑖
(V)(𝑆) = 𝑓

𝑗
(V)(𝑆);

then the following equation is found:

𝑓
𝑖
(V) (𝑆𝑆

𝑖𝑗
) = ∑

𝑖∈Supp 𝑆𝑆
𝑖𝑗

max ∑

𝑇𝑗⊆𝑁

𝛼
𝑇𝑗
𝑓


𝑖
(V) (𝑇

𝑗
)

= ∑

𝑖∈𝑆

max𝑓
𝑖
(V) (𝑆) = ∑

𝑗∈𝑆

max𝑓
𝑗
(V) (𝑆)

= 𝑓
𝑗
(V) (𝑆𝑆

𝑖𝑗
) .

(78)

Thus,

𝑓
𝑖
(V) (𝑆) = 𝑓

𝑗
(V) (𝑆) . (79)

Axiom 4. Let Ṽ
1
, Ṽ

2
∈ 𝐺

Cav
(𝑁); define a game V

1
+ V

2
by (V

1
+

V
2
)(�̃�) = V

1
(�̃�) + V

2
(�̃�) for any �̃� ∈ �̃�(𝑁).

If V
1
+ V

2
∈ 𝐺

Cav
(𝑁) and 𝑆 ∈ 𝐿(𝑁), then

∑

𝑖∈Supp 𝑆

𝑓
𝑖
(V

1
+ V

2
) (𝑆)

= ∑

𝑖∈Supp 𝑆

max ∑

𝑇𝑗⊆𝑁

𝛼
𝑇𝑗
𝑓


𝑖
(V

1
+ V

2
) (𝑇

𝑗
)

= ∑

𝑖∈Supp 𝑆

max ∑

𝑇𝑗⊆𝑁

{𝛼
𝑇𝑗
𝑓


𝑖
(V

1
) (𝑇

𝑗
) + 𝛼

𝑇𝑗
𝑓


𝑖
(V

2
) (𝑇

𝑗
)}

= ∑

𝑖∈Supp 𝑆

𝑓
𝑖
(V

1
) (𝑆) + 𝑓

𝑖
(V

2
) (𝑆) .

(80)

Therefore,

𝑓
𝑖
(V

1
+ V

2
) (𝑆) = 𝑓

𝑖
(V

1
) (𝑆) + 𝑓

𝑖
(V

2
) (𝑆) , ∀𝑖 ∈ 𝑁.

(81)

These axioms for the Shapley value are extensions of the
crisp Shapley axioms and are suitable to games with fuzzy
coalitions.

Example 29. We recall Example 15; the fuzzy coalition 𝑠 =
(1, 0.4, 0.6) has the maximum subdecomposition∑

𝑇𝑖⊆𝑁
𝛼
𝑇𝑖
𝑇
𝑖

such that VCav(𝑆) = ∑
𝑇𝑖⊆𝑁

𝛼
𝑇𝑖
V(𝑇

𝑖
), where 𝛼

𝑇1
= 0.4, 𝛼

𝑇2
=

0.6, 𝑇
1
= {1, 2}, and 𝑇

2
= {1, 3}.

First, we calculate the Shapley values on coalition 𝑇
1
and

𝑇
2
:

𝑓


1
(V) (𝑇

1
) =

1

2

(V (𝑇
1
) − V (2)) +

1

2

V (1) =
9

2

,

𝑓


2
(V) (𝑇

1
) =

1

2

(V (𝑇
1
) − V (1)) +

1

2

V (2) =
9

2

.

(82)

Similarly, 𝑓
1
(V)(𝑇

2
) = 𝑓



2
(V)(𝑇

2
) = 4.
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So fromTheorem 28,

𝑓
1
(V) (𝑆) = 𝛼

𝑇1
𝑓


1
(V) (𝑇

1
) + 𝛼

𝑇2
𝑓


1
(V) (𝑇

2
)

= 0.4 ×

9

2

+ 0.6 × 4 = 4.2,

𝑓
2
(V) (𝑆) = 𝛼

𝑇1
𝑓


2
(V) (𝑇

1
) + 𝛼

𝑇2
𝑓


2
(V) (𝑇

2
)

= 0.4 ×

9

2

+ 0.6 × 4 = 4.2.

(83)

Note that 𝑓
1
(V)(𝑆) + 𝑓

2
(V)(𝑆) = VCav(𝑆).

4.4. The Shapley Values on Restricted Fuzzy Coalitions of the
Concave Game. For the convenience to give available fuzzy
imputation on restrict fuzzy coalitions �̃�, let us define 𝑆�̃� ∈

𝐿(�̃�) with the fuzzy coalition variable 𝑠𝑢 = ∑
𝑖∈𝑆
𝑢
𝑖
𝑒
𝑖.

Definition 30. A function 𝑦 : 𝐿(�̃�) → 𝑅
𝑛

+
is said to be

imputation for a fuzzy game V ∈ 𝐺(𝑁, Ṽ) in fuzzy coalition
�̃� ∈ 𝐿(𝑁) with fuzzy coalition variable 𝑢 = (𝑢

1
, 𝑢

2
, . . . , 𝑢

𝑛
),

if

(1) 𝑦
𝑖
(�̃�) = 0, ∀𝑖 ∉ Supp(�̃�),

(2) ∑
𝑖∈𝑁

𝑦
𝑖
(�̃�) = V(�̃�),

(3) 𝑦
𝑖
(�̃�) ≥ V(𝑖�̃�),

where 𝑦
𝑖
(�̃�) = (𝑦

1
(�̃�), 𝑦

2
(�̃�), . . . , 𝑦

𝑛
(�̃�)).

The player 𝑖 ∈ 𝑁 is a dummy player on restrict fuzzy
coalition �̃� ∈ 𝐿(𝑁) when

V (𝑆�̃� ∪ 𝑖�̃�) = V (𝑆�̃�) + V (𝑖�̃�) . (84)

And the player 𝑖 is a null player if

V (𝑆�̃� ∪ 𝑖�̃�) = V (𝑆�̃�) . (85)

Definition 31. Let V ∈ 𝐺(𝑁, Ṽ), �̃� ∈ 𝐿(𝑁); then 𝑆 ∈ 𝐿(�̃�) is
called a fuzzy carrier in restrict coalition �̃�, if for any ∀̃𝑇 ∈

𝐿(�̃�) such that

V (𝑆�̃� ∩ ̃𝑇�̃�) = V (̃𝑇�̃�) . (86)

Denoting the carrier set as 𝐶
�̃�
(V), it is obvious that

𝐶
�̃�
(V)

= {𝑆 ∈ 𝐿 (�̃�) | V (𝑆�̃� ∩ ̃𝑇�̃�) = V (̃𝑇�̃�) , ∀̃𝑇 ∈ 𝐿 (�̃�)} .
(87)

According to the above discussion, the existence of the
Shapley values on restricted coalition is possible. It is not hard
to prove the following theorem and corollary.

Theorem 32. Let V ∈ 𝐺𝐶𝑎V
(𝑁) be a fuzzy capacity game, and

let 𝑆 ∈ 𝐿(𝑁) be a random fuzzy coalition with nonnegative

variable 𝑠 = (𝑠
1
, 𝑠
2
, . . . , 𝑠

𝑛
); then the Shapley value on restrict

fuzzy coalitions �̃� with nonnegative variable 𝑢 = (𝑢
1
, 𝑢

2
, . . . ,

𝑢
𝑛
) is as follows:

𝑓
𝑖
(V) (𝑆�̂�)

= ∑

𝑖∈𝑇⊆𝑆∈𝑃(𝑁)

(|𝑇| − 1)! (|𝑆| − |𝑇|)!

|𝑆|!

× {𝑤
𝑆
�̃� (𝑇) − 𝑤

𝑆
�̃� (𝑇 \ 𝑖)} .

(88)

Corollary 33. Let V ∈ 𝐺
𝐶𝑎V
(𝑁) be a fuzzy capacity game,

and 𝑆 ∈ 𝐿(𝑁) be a random fuzzy coalition with nonnegative
variable 𝑠 = (𝑠

1
, 𝑠
2
, . . . , 𝑠

𝑛
); then the Shapley value for any 𝑖 ∈

𝑁 on restricted fuzzy coalitions �̃� with nonnegative variable
𝑢 = (𝑢

1
, 𝑢

2
, . . . , 𝑢

𝑛
) can be calculated by

𝑓
𝑖
(V) (𝑆 �̃�) = max ∑

𝑇𝑗⊆𝑁

𝛼
𝑇𝑗
𝑓


𝑖
(V) (𝑇

𝑗
)

𝑠.𝑡. ∑

𝑇𝑗

𝛼
𝑇𝑗
1
𝑇𝑗
= 𝑠

𝑢

,

𝑇
𝑗
⊆ 𝑁, (𝑗 = 1, 2, . . . , 2

𝑛

) ,

𝛼
𝑇𝑗
≥ 0, (𝑗 = 1, 2, . . . , 2

𝑛

) ,

(89)

where 𝑓 is the function given in Theorem 4.

5. Conclusion

We have proposed an extension of fuzzy cooperative games
with fuzzy coalitions by the concave integral so as to address
the optimal profits from all subdecompositions of fuzzy coali-
tions.Theproposed class of games ismore realistic since it has
continuity except for the other properties such as superaddi-
tivity and convexity. Meanwhile, the proposed fuzzy game is
also an extension of the game with the Choquet integral form
defined by Tsurumi et al.

In fuzzy game, the Shapley values of game with fuzzy
coalitions are also an important solution concept. Inspired
by Tsurumi et al., the general Shapley values for games with
fuzzy coalitions are proposed, and the correlation with the
crisp Shapley values is discussed. Further, we give the simpli-
fied expression by the crisp Shapley values. In fact, as long as
the fuzzy coalition variables are given, the Shapley value of
a player with a certain participation level can be completely
obtained similarly to that of crisp cooperative game.
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