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In offshore oil and gas engineering the pipeline abandonment and recovery is unavoidable and its mechanical analysis is necessary
and important. For this problem a third-order differential equation is used as the governing equation in this paper, rather than the
traditional second-order one. The mathematical model of pipeline abandonment and recovery is a moving boundary value problem,
which means that it is hard to determine the length of the suspended pipeline segment. A novel technique for the handling of the
moving boundary condition is proposed, which can tackle the moving boundary condition without contact analysis. Based on a
traditional numerical method, the problem is solved directly by the proposed technique. The results of the presented method are
in good agreement with the results of the traditional finite element method coupled with contact analysis. Finally, an approximate
formula for quick calculation of the suspended pipeline length is proposed based on Buckingham’s Pi-theorem and mathematical

fitting.

1. Introduction

Bad weather is frequent during laying offshore pipelines,
so the pipeline abandonment and recovery operation is
unavoidable. In offshore oil and gas engineering the pipeline
laying engineers need to do detailed mechanical analysis to
determine the operation parameters and then make sure that
the pipeline will not overstress during the operation. To do
the mechanical analysis the mathematical model is a very
important problem. In the abandonment operation the A&R
cable lowers a pipeline down to the seabed by a pull head and
in the recovery operation lifts it up to the sea level. During
the process the pipelin€’s axial forces, bending moments must
be controlled in a reasonable scope to prevent its strength
damage. The calculation of these quantities is very useful to
guide the operation. So the mathematical model of pipeline
abandonment and recovery should be established.

The sketch of the pipeline abandonment and recovery
operation is shown in Figure 1. In the processes a pipeline is
lifted up from the seabed to the sea surface or put down to
the seabed from the sea surface by joint A. The two physical

processes are generally called one point lifting and lowering.
The processes are mutually inversed and can be described by
the same mathematical model. A lot of papers have reported
the pipeline installation of mathematical models which are
closely related to this operation. Palmer et al. [1] investigated
the stresses and configurations of the pipelines being laid
from a lay barge over a stinger. They derived equations
governing the configuration and solved them by different
techniques. Meanwhile they suggested a nondimensionalized
governing equation. Mattheij and Rienstra [2] studied the
pipeline S-laying model based on a second-order nonlin-
ear differential equation. In the work they explained some
difficulties in approximating the numerical solutions. Zhu
and Cheung [3] presented an analytical method for finding
the elastic deflection of submerged pipelines laid with an
adjustable stinger. They claimed that the method costs less
computational time than the finite element method (FEM).
Guarracino and Mallardo [4] showed a refined analytical
analysis of the pipeline S-lay problem. They used a singular
perturbation technique and found out a useful analytical
solution which took into account the overall effects of
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the pipe cross-section ovalization. Timoshenko et al. [5]
provided some analytical and numerical solutions for the
pipeline deepwater S-lay which quantified the loading history
effects. The analytical solution was fully developed for an
arbitrary pipe material model and it was agreed well with
the numerical results. Lenci and Callegari [6] developed
three simple analytical models for the J-lay problem. By
the models the boundary layer phenomenon was correctly
detected and the influence of the soil stiftness was studied. By
the means of extensive numerical studies, Kashani and Young
[7] found that in ultradeepwater pipeline laying problem the
installation parameters were sensitive to pipe wall thickness.
Gong et al. [8, 9] made a parameter sensitivity analysis of S-
lay technique for deepwater pipelines. The stiffened catenary
theory was applied to establish the governing differential
equations. They also presented a numerical iteration method
for solving the pipeline configurations, and its validity was
further verified by means of a comparison with results
obtained from OFFPIPE. Wang et al. [10-12] did some
analyses on both S-lay and J-lay problems. They proposed
a novel numerical model which could take into account
the influence of ocean currents and seabed stiffness. In
the model the pipeline was divided into two parts and the
continuity of the two parts was guaranteed at the touch
down point (TDP). They also presented an analytical model
for the pipeline J-lay behavior with plastic seabed. Duan et
al. [13] proposed an installation system for deepwater riser
S-laying and carried some laboratory scale pipeline lifting
experiments by this system. Szczotka [14] studied the pipeline
J-lay problem by a modified rigid finite element method
(RFEM). A modification of the stiffness coeflicients and
the corresponding model was proposed. They claimed the
model could take into account wave and sea current loads,
hydrodynamic forces and material nonlinearity. Yuan et al.
[15] presented a novel numerical model for the pipeline S-
lay problem. They claimed that the model could be used
to investigate the overall configuration, internal forces, and
strain of the pipelines. On the pipeline abandonment and
recovery problem which is very similar to the pipeline
laying problem, Andreuzzi and Maier [16] and Datta [17]
did the pioneering works. They presented an analytical and
a graphical approach for the problem and adopted the finite
difference method to analyze the pipeline configurations.
Dai et al. [18] studied the configuration of pipelines by
the spline collocation method and presented a graphical
approach showing the relationship between the configuration
and axial forces of the pipeline. Xing et al. [19] continued
the research. They built a nonlinear equation system and
modeled the pipeline lifting process as a moving boundary
problem. By numerical methods the limit moments of some
pipelines were obtained. In the researches of pipeline aban-
donment and recovery, most previous researchers seemed to
investigate the problem by a second-order beam equation.
However, in our previous research [20] we found that the
boundary value problems with the second-order equation
cannot tackle the beginning stage of pipeline lifting and the
ending stage of pipeline lowing accurately. They produced
very different configurations, bending moments at the two
stages than the third-order equation boundary value problem
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FIGURE 1: Pipeline abandonment and recovery operation.

or Orcaflex. The pipeline in abandonment and recovery
operation undergoes a process from a large-angle deflection
to a small-angle deflection or from a small-angle deflection
to a large-angle deflection. In the problem the boundary
condition is moving, which means that it is hard to determine
the length of the suspended pipeline segment. The finite
element method coupled with contact elements can be used
to analyze this problem. However, sometimes it is hard
to converge and costs time. Obviously the simple catenary
model [21] or stiffened catenary model [22] can never be used
to simulate the whole process, so a new mathematical model
should be established.

In this paper a mathematical model and a new strategy
to tackle the moving boundary without contact analysis are
presented. On the other hand the length of the suspended
pipeline segment is very important because it can quicken the
calculation. So finally a length approximate formula is pre-
sented based on Buckingham’s Pi-theorem and mathematical
fitting.

2. Mathematical Model

On the problem the following simplifications are made based
on offshore engineering experience [4, 6, 17, 19]: the marine
environment is stable, the seabed can be regarded as rigid
plane, the lifting and lowering processes are slow, and the
material of pipelines is isotropic and always in the elastic state.
As shown in Figure 2, the touch down point (TDP, the point
where the suspended pipeline contacts with the seabed) is
located at the origin O of the Cartesian coordinate system,
where Tj, is the resultant force at joint A, H, and V,, are the
horizontal force and the vertical force at the origin, w is the
pipeline submerged weight per unit length, 0 is the angle
between the pipeline axis and the horizon, and 6, is the angle
between the direction of T, and the horizon. The natural
coordinate system is established along the pipeline. It is clear
that the physical quantities of the pipeline are the functions
of the arc length s.

2.1. Governing Differential Equations. The pipeline is
regarded as a tensioned beam. There are usually two kinds
of differential equations which are used to analyze this
problem, a second-order one and a third-order one, and the
third-order one is more suitable for the beginning stage of
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FIGURE 2: Mechanical parameters of the pipeline single point lifting
and lowering model.
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FIGURE 3: Force analysis of a short pipeline segment.

pipeline lifting and the ending stage of pipeline lowing [20].
So in this paper the third-order one has been used. Taking a
short segment of the pipeline, as shown in Figure 3, it is easy
to deduce the basic governing differential equations [23].
Resolving forces normal to the segment axis leads to

dF —TdO + wdscos0 + f (s)ds = 0. 1)
According to F = dM/ds, (1) leads to

’M . df

?—T£+wcos9+f(s)=0. (2)
According to beam theory, there is the following equation,
where E is elastic modulus and I is second moment of area of
the pipe cross section:

M de

M _4av 3
EI ds ®)
Substituting (3) into (2), then (2) becomes
3
EI%—T£+wcos(9+f(s)=0. (4)
Resolving forces in the segment axis leads to
il—f = wsin 6. (5)

In the pipeline abandonment and recovery problem, f(s) is
assumed to be zero, so the governing differential equations
for the pipeline lifting and lowering by one point are shown
as follows:

4’6 do
El— -T— +wcosf =0,
ds? ds
(6)
ar

— —wsinf = 0.
ds !

2.2. Boundary Conditions. According to the similar problems
(10, 24], the following boundary conditions are chosen for this
problem:

at the origin: 6(0) = 0, T(0) = H, = T, cos 8, M(0) =
0)

at the joint: M(L) = 0, T(L) = Ty,

where M is the bending moment of the suspended pipeline
segment and L is its length. According to (3), M(0) = 0 and
M(L) = 0 are equivalent to (d0/ds)(0) = 0 and (d0/ds)(L) =
0.

To sum up, the whole mathematical model for the
pipeline abandonment and recovery is the following bound-
ary value problem:

3
EI% —T% +wcosO =0,

d—T —wsinf =0
ds S

7)

do
0(0)=0, = (0)=0,

T (0) = Hy =T, cos0,, Z—e (L)=0.
s

3. Numerical Solutions

3.1. Numerical Solution Method. It is hard to get the analytical
solutions of the mathematical model presented above. So in
this research the traditional numerical method, fourth-order
accurate finite difference has been used to get the numerical
solutions.

3.2. Tackling the Moving Boundary. Notice that the boundary
conditions of the model are moving; in another word, the
parameter L is usually an unknown before numerical solving.
Solving this problem with moving boundary is challenging.
The parameter L must be given first then the problem can
be solved in numerical methods. The method of variable
substitution, s = €L, has been taken, so the boundary
becomes 0 and 1, and (7) becomes

g@—2@+wcos(9—0
L3de?  Lde -

T
d— —wLsinf =0,

de



do
0(0) =0, %(0) =0,

T (0) = Hy = T, cos 0, ;ﬁ(l)=0.
€

(8)

However, the unknown parameter L just goes into the differ-
ential equations and still cannot be determined. According
to the balance of axial forces at the lifting joint, the equation
T(L) = T, cos(0, — O(L)) has been added as a supplementary
boundary condition herein. Using this condition L can be
calculated in the following steps:

(1) suppose L = T,(sin 0,/w);

(2) solve the boundary value problem (8) by the fourth-
order accurate finite difference method or other
numerical methods;

(3) get axial force T, at the joint of the pipeline from the
results (provided the pipeline divided into » pieces);
then compare the value T, and T, cos(6, — 6,,). If the
absolute value of their difference is very small, the
L decided in the last step is approximately equal to
the length of suspended pipelines and the work is
finished. Otherwise, take the following step;

(4) decrease the value of L with a suitable increment if
T, > T, cos(6,-0,) and repeat from the second step to
the third step until T,, < T, cos(6,—0,,), or increase the
value of L with a suitable increment if T, < T, cos(0,—
0,) and repeat from the second step to the third step
until T,, > T, cos(6, — 6,,).

Note. the value of the increment controls the precision of the
calculation of L. To improve the precision, one can repeat the
fourth step with a smaller increment. Finally if the increment
is smaller than the allowable error, the length parameter L is
determined.

4. Engineering Application

4.1. Calculation of Pipeline’s Physical Quantities. For engi-
neering application, the pipeline’s physical quantities during
abandonment or recovery, such as pipeline’s configuration,
bending moments, must be calculated. After numerical cal-
culation of (8), the angle 0;, the tension force T;, and the
suspended pipeline length L are all known, and then the
coordinates of the suspended pipeline can be calculated by
the following formulas:

x; =X +L(g —g_)cos0,_y,
_ )
Yi =Y tL(g—gy)sin6,_y.

And the bending moment of the pipeline can be calculated by
the following formula:

EI0,- 6,
M, = —-1—=—, 10
e (10)
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TABLE 1: Basic values of the pipeline in the example.

Size (inch) EI (Pa-m?) w (N/m)
12 31399320 350

TaBLE 2: Different loads on the pipeline in the first case.

T, (KN) 100 300 500 700 900 1100 1300 1500

TaBLE 3: Different angles of the loads in the second case.

6,C) 70 72 74 76 78 80 82 84 86 88 90

4.2. A Numerical Calculation Example. Using MATLAB, (8)
with the basic values shown in Table1 is calculated as an
example. More details for the numerical solving method of
this problem can refer to solving ODEs with MATLAB [25].

Consider the first case. Suppose that the angle 8, keeps as
a constant of 80°, and the loads are varying in the pipeline
abandonment or recovery operation, as shown in Table 2.
The results corresponding to these loads are obtained. The
configurations of the pipeline and the corresponding bending
moments are shown in Figures 4 and 5, respectively. From
Figure 4 we know that the mathematical model proposed
above can be used in a large scope of water depth (deeper
than 3500m) and can simulate the whole lowering and
lifting process. And from Figure 5 we know that the bending
moment becomes bigger and bigger when the pipeline is
lifting. So the most dangerous situation usually happens at
the beginning of abandonment or at the end of recovery.

Consider the second case. Keeping the tension T as
a constant of 800KN, varying the angle 6, as shown in
Table 3, the pipeline configurations and bending moments
are also obtained by calculations, as shown in Figures 6 and 7
separately.

From Figures 6 and 7 we know that the angle has a great
effect on the pipeline configuration and bending moments. It
can be seen that while the angle 6, increases from 70 degree
to 90 degree the bending moment of the pipeline increases
greatly, especially when 6, > 84. And it is clear that the
bending moment is more sensitive to the parameter angle 0,
than to the parameter load Tj,.

4.3. Results Comparison. It is necessary to compare the
results calculated by the presented model and method with
the traditional finite element analysis results. The software
called DRICAS is developed by the model and method
presented above. Meanwhile Orcaflex is also used, which is
a world’s leading package for pipeline finite element analysis
and it tackles the moving boundary condition by the contact
analysis formula [26]. The comparisons of one of their
configuration results and bending moments are shown in
Figures 8 and 9, respectively. It can be seen that these results
are in good agreement. That indicates that the model and
the method established for tackling the moving boundary
condition in this paper are correct and effective.



Journal of Applied Mathematics

4000 T T T T T T T T

3500 +

3000

2500 +

2000 +

1500 +

y (m, water depth)

1000 +

500 +

0 500 1000 1500 2000 2500 3000 3500 4000 4500
x (m, seabed)

0

— 100kN —— 900kN
--- 300kN —— 1100kN
...... 500 kN —— 1300kN
.—.— 700kN —— 1500 kN

FIGURE 4: Configurations of the suspended pipeline in the first case.
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FIGURE 5: Bending moments of the suspended pipeline in the first
case.

5. Simple Calculation Methods

5.1. Similarity Criterions of Model Experiment. Sometimes
it is necessary to simulate the pipeline recovery and aban-
donment by model experiments. According to dimensional
analysis theory [27], by equation (dT/de) — wLsin 0 = 0 and
equation (EI/L*)(d*0/de’) — (T/L)(d0/de) + wcosO = 0,
the similarity criterions of such kind of model experiments
are obtained; that is, EI/wL® and T/wL, respectively. That
means if we want to simulate the pipeline abandonment and
recovery processes in the laboratory, we should make sure
that the values of EI/wL?® and T/wL of the model are equal

5
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FIGURE 6: Configurations of the suspended pipeline in the second

case.
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FIGURE 7: Bending moments of the suspended pipelines in the
second case.

to the corresponding values of the actual offshore pipeline
operation project.

5.2. Approximate Formula of Suspended Pipeline Length.
From the numerical calculation procedures it is known that
the length of the suspended pipeline is a key parameter of this
problem. A simple approximate formula will be very useful
to quicken the solving of this boundary value problem. It is
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known that the length of suspended pipeline is related to Ty,
EI, w, and 6. According to Buckingham’s Pi-Theorem [27], a
dimensionless function is derived as shown in (11)

2
L;—L :f(EIw 60). an
0

3 b
TO

To determine (11) completely, the boundary value problem
(8) has been solved extensively within the range 0 < 7; <
500, (76/180m) < m, < (90/180rm), where supposing m; =
EIw?/T,*, m, = 6,, and m; = T/wL. Using these results
the approximate formula for 77; has been obtained by math-
ematical fitting as shown in (12). Once 7; is known, the
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suspended pipeline length L can be calculated by equation
L = m;T,/w. And if the suspended pipeline length L is
known, the steps presented in Section 3.2 can be reduced and
hence the computational time for solving the problem:

m, = —0.40857,"* + 5.1627,°° — 3.8957,

—-0.9793

- 0.773m, +1.5435,
<0<7T <1 76 <m, < %0 )
V=0 T80n 2 180 ) (12)
= —0.1247, " = 0.7737,"77 + 2.526,

76 90
(1<n15500, —<712£—>.
1807 1807

6. Conclusions

In offshore engineering the pipeline S-laying, J-laying, aban-
donment and recovery operations can be all governed by (6)
which is suitable for the deepwater situation. The differences
between these processes are mainly in the boundary condi-
tions.

Reasonable boundary conditions for the problem of
pipeline abandonment and recovery are that at the TDP
the angle and the bending moment are equal to zero and
the tension loading is equal to the loading force horizontal
component, and at the joint the bending moment is equal to
zero. The whole mathematical model for this problem is (7)
or (8), a moving boundary value problem.

The new direct tackling method for the moving boundary
of this problem is effective and can get as accurate results as
the traditional finite element method coupled with contact
analysis.

The similarity criterions for model experiments of
pipeline abandonment and recovery are EI/wL? and T/wL.

The suspended pipeline length can be calculated first by
approximate formula (12) which can quicken the solving of
the pipeline abandonment and recovery problem.
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