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The present paper achieves a semianalytical solution for the buckling and vibration of isotropic rectangular plates. Two opposite
edges of plate are simply supported and others are either free, simply supported, or clamped restrained against rotation. The
general Levy type solution and strip technique are employed with transition matrix method to develop a semianalytical approach
for analyzing the buckling and vibration of rectangular plates. The present analytical approach depends on reducing the strips
number of the decomposed domain of plate without escaping the results accuracy. For this target, the transitionmatrix is expressed
analytically as a series with sufficient truncation numbers. The effect of the uni-axial and bi-axial in-plane forces on the natural
frequency parameters and mode shapes of restrained plate is studied. The critical buckling of rectangular plate under compressive
in-plane forces is also examined. Analytical results of buckling loads and vibration frequencies are obtained for various types of
boundary conditions.The influences of the aspect ratios, buckling forces, and coefficients of restraint on the buckling and vibration
behavior of rectangular plates are investigated. The presented analytical results may serve as benchmark solutions for such plates.
The convergence and efficiency of the present technique are demonstrated by several numerical examples compared with those
available in the published literature. The results show fast convergence and stability in good agreement with compressions.

1. Introduction

The buckling problem of a thin rectangular elastic plate
subjected to in-plane compressive forces is important in
the aircraft and automotive industries. Kumar Panda and
Ramachandra [1] offered a brief historical review on this
subject. Due to the additional complexity of achieving the
analytical solution of the plate problems under nonclassical
boundary conditions, analysis for the effect of the in-plane
force and buckling of the plate becomes difficult. Several
methods, such as Rayleigh-Ritz, finite element, finite differ-
ence, and Fourier series method, are available. Singh and
Dey [2] discussed the transverse vibration of rectangular
plates subjected to in-plane forces by a difference based on
variational approach. Finite strip transition matrix method
(FSTM) was used by Farag and Ashour [3, 4] as a numerical
technique depending on Runge-Kutta method to solve the
vibration of rectangular plate as an initial value problem.
Consequently, the method has been improved and applied

successfully for several problems of stepped rectangular and
applied forces [5]. The method was improved to analyze
the rectangular plates subjected to a combination of flexural
vibration and in-plane forces [6]. El sayad and Ghazy [7]
applied Rayleigh-Ritz method for free vibration of Mindlin
trapezoidal plates. Buckling and vibration of rectangular
plates in the presence of in-plane forces have been investi-
gated by Xiang andWang [8] and Xiang andWei [9], an exact
solution for plates with two opposite edges simply supported.
Paik and Thayamballi [10] used an analytical method to
study the buckling strength characteristic of isotropic plates
with two opposite edges simply supported and other edges
elastically restrained. Akhavan et al. [11] established exact
solutions for buckling analysis of rectangular Mindlin plates
under in-plane loads resting on Pasternak elastic foundation.
Gorman [12] used the superposition method to obtain the
free vibration frequencies and buckling of in-plane loaded
plates with rotational elastic edge supports. Kheirikhah et
al. [13] analyzed the biaxial buckling of soft-core composite
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Figure 1: In-plane forces acting on isotropic rectangular plate.

sandwich plates using improved high-order theory. Bank
and Yin [14] studied the uni-axial buckling of orthotropic
plates with free and rotationally restrained unloaded edges.
Lopatin and Morozov [15] studied the buckling of the SSCF
rectangular orthotropic plate subjected to linearly varying
in-plane loading. Wang [16] discussed buckling analysis of
skew fiber-reinforced composite laminates based on first-
order shear deformation plate theory. Rodrigues et al. [17]
applied the radial basis functions-differential quadrature
collocation and a unified formulation to analyze the bending,
vibration, and buckling of laminated plates according to
Murakami’s Zig-Zag theory. Buckling of thin skew fiber-
reinforced composite laminates was also studied by Wang
[18]. Krishna Reddy and Palaninathan [19] investigated the
case of buckling of laminated skew plates. Ovesy and Fazilati
[20] analyzed the buckling and free vibration via finite strips
of composite plates with cutout based on two different mod-
eling approaches. Kaidas andDickinson [21] used the numer-
ical integration in a Rayleigh-Ritz to study the vibration
and buckling calculations for rectangular plates subjected
to complicated in-plane stress distributions. Mei and Yang
[22] investigated the free vibrations of finite element plates
subjected to complex middle-plane force systems. Zhang and
Wang [23] studied elastoplastic buckling of thick rectangular
plates by using the differential quadrature method. Gianetti
et al. [24] and Diez et al. [25] used the Galerkin method to
study the transverse vibrations of rectangular plates subject
to in-plane and shear forces. Thai and Choi [26] applied an
efficient and simple refined theory to analyze the buckling
of functionally graded plates. Ibrahim et al. [27] studied
buckling of composite thin walled beams by refined theory.

Recently, Farag and Ashour [3, 4] expressed a semi-
analytical solution for vibrations of free stepped plate and
buckling of plate subjected to in-plane forces. applying the
transition matrix as a power matrix with exponential series
which differs from one strip to another, producing a relatively

length technique. In the present paper, the plate is divided
into a limited number of equal strips.The transitionmatrix is
expressed mathematically in explicit closed form to reduce
the labor needed for crossing the proposed strips of plate.
The plate strip is solved by a combination between the
transition matrix and strip method. As can be seen, the
present method directly gives a closed form expression for
natural frequency of the investigated plate under a variation
of boundary conditions at the initial and final ends of strips.
Buckling and vibration of a rectangular plate subjected to
normal in-plane forces are studied in the present paper. The
studied plate is assumed to be rectangular, isotropic, and
simply supported for the two opposite edges. Other edges
are elastically restrained against rotation 𝐸

𝑅
. The simply

supported edge S and clamped edge C are investigated as
particular case of 𝐸

𝑅
. The achieved technique is applied to

study the effect of uni-axial and biaxial in-plane forces on the
critical buckling, natural frequency, and mode shape.

2. Equation of Motion

Regarding to the dimensionless partial differential equation
of motion for vibrating plate subjected to in-plane forces 𝑁

𝑥

and 𝑁
𝑦
shown in Figure 1 is expressed as
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where 𝛽 = 𝑎/𝑏 is the aspect ratio and 𝑎, 𝑏 are the dimensions
of plate in 𝜁, 𝜂 directions, respectively.

The other magnitudes𝑚 and𝐷, respectively, are the plate
mass per unit area and plate modulus of rigidity such that
𝐷 = 𝐸ℎ

3
/(12−]2), 𝐸 is themodulus of elasticity, ] is Poisson’s

ratio, and ℎ is the plate thickness. The plate is considered
to be rectangular, isotropic, with edges simply supported S,
clamped𝐶, and restrained against rotation𝐸

𝑅
.The transverse

deflection 𝑊 is defined as
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(𝜂) sin (𝑚𝜋𝜁) sin𝜔𝑡, (2)

where Ψ
𝑚
(𝜂) is unknown function to be determined for the

boundary conditions at 𝜂 = 0, 1.
Equation (2) is used to reduce the partial differential

equation (1) into the following ordinary differential equation:
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where, 𝜆2
𝑚

= 𝜔
2
𝑎
4
(𝑚/𝐷),𝑁

𝑥
= 𝑁
𝑥
𝑎
2
/𝐷, and𝑁

𝑦
= 𝑁
𝑦
𝑎
2
/𝐷.



Journal of Applied Mathematics 3

Consequently, the plate equation of motion will be
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where
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If the plate is divided into 𝑁 number of equal strips with
constant dimensions and homogenous material, the general
solution of the ordinary differential equation (4) can be
expressed inside 𝑗th strip at local distance 𝛿

𝑗
from its initial

edge as

{Ψ
𝑚
}
𝑗
= [𝐾
𝑚,1/𝑁

]
𝑄=𝑗

[𝐾
𝑚,𝛿𝑗

] {Ψ
𝑚
}
0
, (6)

where

[𝐾
𝑚,1/𝑁

] =

[
[
[

[

𝐾
11

𝐾
12

𝐾
13

𝐾
14

𝐾
21

𝐾
22

𝐾
23

𝐾
24

𝐾
31

𝐾
32

𝐾
33

𝐾
34

𝐾
41

𝐾
42

𝐾
43

𝐾
44

]
]
]

]

, (7)

where the matrix elements 𝐾
𝑖,𝑗
, 𝑖 = 1, 2, 3, 4 and 𝑗 =

1, 2, 3, 4, are expressed in the Appendix.
In (6), the matrix power 𝑄 is equal to the number 𝑗

of strips and matrix [𝐾
𝑚,𝛿𝑗

] is obtained from [𝐾
𝑚,1/𝑁

] by
replacing 1/𝑁with 𝛿

𝑗
. Applying (6) for each nodal line at the

end of each strip until the final end 𝐹 can be reached; one can
obtain the final end vector as

{Ψ
𝑚
}
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𝑚,1/𝑁

]
𝑁
{Ψ
𝑚
}
0
. (8)

Two characteristic equations for the plate vibration are
obtained when the boundary conditions at 𝜂 = 0, 1 are sat-
isfied. The natural frequency or buckling parameters are the
Eigen values of the characteristic matrix of these equations.
The corresponding Eigen vectors create the mode shapes.

3. Boundary and Initial Conditions

Boundary conditions for edges elastically restrained against
rotations 𝐸

𝑅
at (𝜂= 0,1) can be formulated as
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(9)

The magnitudes R
𝑜
,R
𝐹
are restraint coefficients against

rotation at 𝜂= 0,1, respectively.
The initial vector {Ψ

𝑚
}
0
is expressed for various types of

boundary conditions at 𝜂 = 0, namely, for edge elastically
restrained against rotation, simply supported edge, clamped
edge, respectively, such that
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The magnitudes 𝑏
1
and 𝑏

2
are two arbitrary constants to

be determined according to the proposed final boundary
conditions at 𝜂= 0,1.

4. Buckling Natural Frequency and
Mode Shape

The final solution for buckling natural frequency parameters
is obtained by applying the boundary conditions at the final
edge of plate as in (8).Natural frequencies are the Eigen values
of the characteristic equations:
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Matrix [𝐴
𝑖𝑗
], 𝑖 = 1, 2, 𝑗 = 1, 2, matches the properties of

plates and the coefficient of restraint against rotation. The
mode shape vibration is given by the amplitude 𝑊(𝜁

𝑗
, 𝜂
𝑗
) at

point 𝑁(𝜁
𝑗
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where 𝛿

𝑗
= 𝜂
𝑗
− 𝑗/𝑁. For each strip 𝑆

𝑗
, the local coordinate

𝜂
𝑗

= 𝑗/𝑁 + 𝛿
𝑗
of point N is referred to the first edge of

strip 𝛿
𝑗
, 𝑗 = 1, 2, 3, . . . , 𝑁.

5. Results and Discussions

The reliability of presentmethod is verified bymeans ofmany
cases for plates under in-plane forces which are compared
with the available exact values based on closed formulae
[8]. Table 1 shows the convergence of the buckling load for
full simply supported rectangular plate with aspect ratios
𝛽 = 1, 1.5, 2. The normalized uni-axial buckling load 𝜆cr =

−𝑁
𝑥
𝑎
2
/𝐷𝜋
2 is calculated using only four wide strips with

truncation number 𝑁 varying from 2 to 6. The results show
fast convergence and good agreement with the exact values.
In Table 2, the results of normalized uni-axial buckling load
𝜆cr = −𝑁

𝑥
𝑎
2
/𝐷𝜋
2 for rectangular full simply supported

plates SSSS under uni-axial load𝑁
𝑥
or𝑁
𝑦
are compared with

those of available literature [8, 10]. The results are calculated
for aspect ratios 𝛽 varying from 0.15 to 2. Also the results are
obtained in Table 3 for SCSC rectangular plate subjected to
uni-axial load𝑁

𝑥
or𝑁
𝑦
where the comparisons give excellent

agreement.
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Table 1: Convergence of the buckling forces 𝜆cr = −(𝑁
𝑥
𝑎
2
/𝐷𝜋
2
) of full simply supported rectangular isotropic plates under uni-axial load

𝑁
𝑥
.

Critical buckling load 𝜆cr due to 𝑁, 𝛽
𝛽 𝑁 = 2 𝑁 = 3 𝑁 = 4 𝑁 = 5 𝑁 = 6 Exact [8]
1.0 3.9997 4.0000 4.0000 4.0000 4.0000 4
1.5 24.9971 24.9998 25.0000 25.0000 25.0000 25
2.0 10.5615 10.5624 10.5625 10.5625 10.5625 10.5625

Table 2: Comparisons for the buckling forces 𝜆cr of rectangular isotropic plates SSSS under uni-axial load 𝑁
𝑥
; or 𝑁

𝑥
.

𝛽
𝜆cr = −(𝑁

𝑥
𝑎
2
/𝐷𝜋
2
) 𝜆cr = −(𝑁

𝑦
𝑎
2
/𝐷𝜋
2
)

Present Exact [8] [6] Present Exact [8] [6]
0.15 0.95816605 —
0.25 1.128906247 1.128906252 1.128906247
0.35 1.260007167
0.50 1.56250000 1.56250000 1.562500000 4.09131879 4.09131879
0.65 2.023506256 4.281435537
0.75 2.441406250 2.441406250 2.441406250 4.34021181 4.34027760 4.34021181
0.85 2.967006237 4.106579447
1.00 4.0000 4.00000000 3.999999990 4.00000006 4.00000000 4.00000006
1.15 5.394006247 4.078643686
1.25 6.566406250 6.566406250 6.566406250 4.20250002 4.20250000 4.20250002
1.35 7.966506249 4.371196821
1.50 10.56250000 10.56250000 10.56250000 4.69444443 4.69444442 4.69444443
1.65 13.85700619 5.089809442
1.75 16.50390623 16.50306239 16.50390623 5.38903626 5.38903061 5.38903626
1.85 19.55850615 5.714684090
2.00 25.00000000 25.00000000 24.99999999 6.25000001 6.25000000 6.25000001

Table 3: Comparisons for the buckling forces 𝜆cr of rectangular
isotropic plates SCSC under uni-axial load 𝑁

𝑥
; or 𝑁

𝑥
.

𝛽
𝜆cr = −(𝑁

𝑥
𝑎
2
/𝐷𝜋
2
) 𝜆cr = −(𝑁

𝑦
𝑎
2
/𝐷𝜋
2
)

Present [6] Present [6]
0.50 1.922821352 1.922820900 4.047239747
0.75 4.002710767 4.002710767 5.553056186 5.52549351
0.85 5.457252361 5.910420828
1.00 8.604450855 8.604450855 6.74343791 6.74343791
1.15 13.25680793 7.854177784
1.25 17.41291859 17.41291859 8.72822985 8.72822985
1.35 22.58349926 9.700364123
1.50 32.59556551 32.59556551 11.3327751 11.3327751
1.65 45.84690249 13.16514162
1.75 56.80188160 56.80188160 14.4946584 14.4946584
1.85 69.69626919 15.90899653
2.00 93.16322000 93.16322000 18.1873798 18.1873798

6. Analytical Expression for Plate
Natural Frequency

Three cases of vibrations for plates subjected to in-plane
forces and restrained boundary conditions are selected to
show the analytical expressions of natural frequency. The

plate has two opposite edges simply supported and the
other edges are elastically restrained against rotation. The
restrained coefficient is taken as 0.10 and the compression
uni-axial loads are 𝑁

𝑥
= 𝑁
𝑦

= −40, −30, −20. In each case,
the series expression of the natural frequency is obtained
analytically by the computer algebraic solution Maple-13 as
in (13)–(15). The obtained equations of frequency are plotted
as shown in Figures 2, 3, and 4.

Case 1. If 𝑁
𝑥

= 𝑁
𝑦

= −40, the obtained frequency equation
will be:

𝑓 (𝜆) = −0.00133311724𝜆
2
+ 0.290110

−14
𝜆
8

− 0.5495 10
−19
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+ 0.598299 10
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4
+ 0.1927 10

−46
𝜆
20

+ 0.882 10
−53

𝜆
22

− 0.487 10
−58

𝜆
24

+ 0.397 10
−64

𝜆
2
+ 0.46 10

−70
𝜆
28

− 0.838 10
−76

𝜆
30

+ 0.47 10
−83

𝜆
32
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Figure 2: Graphical representation of frequency equation of Case 1.

+ 0.1285 10
−87

𝜆
34

+ 0.159 10
−94

𝜆
36

− 0.2839 10
−100

𝜆
38

+ 0.1383 10
−105

𝜆
40

+ 0.229 10
−111

𝜆
42

+ 0.1428 10
−117

𝜆
44

+ 0.3983 10
−124

𝜆
46

+ 0.2914 10
−131

𝜆
48

− 0.5099 10
−138

𝜆
50

+ 0.2499 = 0.

(13)

The negative values of the solution are rejected and the
positive solutions in some different modes are 14.354, 54.754,
108.348, and 179.813. Equation (13) is plotted in Figure 2 to
show the possible values of natural frequency.

Case 2. If 𝑁
𝑥

= 𝑁
𝑦

= −30, the obtained frequency equation
will be

𝑓 (𝜆) = − 0.00145𝜆
2
+ 0.61882 10

−6
𝜆
4

− 0.69886 10
−10

𝜆
6
+ 0.29279 10

−14
𝜆
8

− 0.55264 10
−19

𝜆
10

+ 0.53528 10
−24

𝜆
12

− 0.29280 10
−29

𝜆
14

+ 0.96979 10
−35

𝜆
16

− 0.19588 10
−40

𝜆
18

+ 0.1928 10
−46

𝜆
20

+ 0.89 10
−53

𝜆
22

− 0.488 10
−58

𝜆
24

+ 0.397 10
−64

𝜆
26

+ 0.464 10
−70

𝜆
28

− 0.838 10
−76

𝜆
30

+ 0.5 10
−83

𝜆
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+ 0.1285 10
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𝜆
34
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Figure 3: Graphical representation of frequency equation of Case 2.

+ 0.3983 10
−124

𝜆
46

+ 0.2916 10
−131

𝜆
48

− 0.5099 10
−138

𝜆
50

+ 0.38 76 = 0.

(14)

The negative values of the solution are rejected and the
positive solutions in some different modes are 17.457, 55.648,
108.803, and 180.088. Equation (14) is plotted in Figure 3 to
show the possible values of natural frequency.

Case 3. If 𝑁
𝑥

= 𝑁
𝑦

= −20, the obtained frequency equation
will be

𝑓 (𝜆) = − 0.00157𝜆
2
+ 0.63968 10

−6
𝜆
4

− 0.71047 10
−10

𝜆
6
+ 0.29552 10

−14
𝜆
8

− 0.55582 10
−19

𝜆
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+ 0.5373 10
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𝜆
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− 0.29356 10
−29

𝜆
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− 0.97148 10
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− 0.19609 10
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−76

𝜆
30

+ 0.47 10
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𝜆
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+ 0.1283 10
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𝜆
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+ 0.1591 10
−94

𝜆
36

− 0.2889 10
−100

𝜆
38

+ 0.13737 10
−105

𝜆
40

+ 0.22840 10
−111

𝜆
42

+ 0.14265 10
−117

𝜆
44

+ 0.39820 10
−124

𝜆
46

+ 0.29168 10
−131

𝜆
48

− 0.50993 10
−138

𝜆
50

+ 0.53688 = 0.

(15)

The negative values of the solution are rejected and the
positive solutions in some different modes are 20.086, 56.528,
109.255, and 180.364. Equation (15) is plotted in Figure 4 to
show the possible values of natural frequency.
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Figure 4: Graphical representation of frequency equation of Case 3.
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Figure 5: The first mode shape of the SSSS plate subjected to uni-
axial in-plane force 𝑁

𝑥
= −20.

7. Analytical and Graphical Representation of
the Mode Shape

Mode shapes for five cases of SSSS and SCSC plate are
obtained analytically as in (16)–(20). Also, the vibrating plate
surfaces for these cases are represented graphically in 3Dplots
by means of Maple-13 as shown in Figures 5–9.

Case 1. In the first mode of the full simply supported square
plate SSSS, when Nx = −20 and 𝜆 = 13.8652, the equation of
the vibrating surface shape of the plate is

𝐹 (𝜉, 𝜂) = sin (𝜋𝜂)

× (10
11
𝜉 + 0.50𝜉

2
− 0.1644 10

12
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Figure 6: The first mode shape of the SSSS plate subjected to uni-
axial in-plane force 𝑁

𝑥
= −40.
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Figure 7:The secondmode shape of the SSSS plate subjected to uni-
axial in-plane force 𝑁

𝑥
= −20.

− 0.1907 10
11
𝜉
7
+ 0.4768𝜉

8
+ 0.2614 10

10
𝜉
9

+ 0.1595𝜉
10

− 0.2346 10
9
𝜉
11

+ 0.0355𝜉
12

+ 0.1484 10
8
𝜉
13

+ 0.0057𝜉
14

− 697587𝜉
15

+ 0.000715𝜉
16

+ 25312.19𝜉
17

+ 0.0000692𝜉
18

− 730.469𝜉
19
) = 0.

(16)
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Figure 8: The first mode shape of the SCSC plate subjected to uni-
axial in-plane force 𝑁

𝑥
= −40.
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Figure 9: The second mode shape of the SCSC plate subjected to
uni-axial in-plane force 𝑁

𝑥
= −40.

The obtained equation is plotted to give the mode shape of
the studied plate as shown in Figure 5.

Case 2. In the second mode of the full simply supported
square plate SSSS, when Nx = −40 and 𝜆 = 45.1201, the
equation of the vibrating surface shape of the plate is

𝐹 (𝜉, 𝜂) = sin (𝜋𝜂)

× (10
11
𝜉 + 0.50𝜉

2
− 0.6571 10

12
𝜉
3

+ 0.8224𝜉
4
+ 0.1295 10

11
𝜉
5

+ 3.78𝜉
6
− 0.1216 10

13
𝜉
7

+ 2.47𝜉
8
+ 0.6662𝜉

9
+ 2.29𝜉

10

− 0.2388 10
12
𝜉
11

+ 0.8291𝜉
12

+ 0.6036 10
11
𝜉
13

+ 0.3126𝜉
14

− 0.1133 10
11
𝜉
15

+ 0.071𝜉
16

+ 0.1643 10
10
𝜉
17

+ 0.0144 10
11
𝜉
18

− 0.1894 10
9
𝜉
19
) = 0.

(17)

The obtained equation is plotted to give the mode shape of
the studied plate as shown in Figure 6.

Case 3. In the second mode of the full simply supported
square plate SSSS, when Nx = −20 and 𝜆 = 47.2595986, the
equation of the vibrating surface shape of the plate is

𝐹 (𝜉, 𝜂) = sin (𝜋𝜂)

× (10
11
𝜉 + 0.50𝜉

2
− 0.6571 10

12
𝜉
3

+ 0.8224𝜉
4
+ 0.1295 10

13
𝜉
5
+ 3.78𝜉

6

− 0.1216 10
13
𝜉
7
+ 2.47𝜉

8
+ 0.6662 10

12
𝜉
9

+ 2.29𝜉
10

− 0.2388 10
12
𝜉
11

+ 0.8291𝜉
12

+ 0.6036 10
11
𝜉
13

+ 0.3126𝜉
14

− 0.1133 10
11
𝜉
15

+ 0.071𝜉
16

+ 0.1643 10
10
𝜉
17

+ 0.01441𝜉
18

− 0.1894 10
9
𝜉
19
) = 0.

(18)

The obtained equation is plotted to give the mode shape of
the studied plate as shown in Figure 7.

Case 4. In the first mode of the SCSC, when Nx = −40 and 𝜆

= 21.09053660, the equation of the vibrating surface shape of
the plate is

𝐹 (𝜉, 𝜂) = sin (𝜋𝜂)

× (0.50𝜉
2
− 1.03𝜉

3
+ 0.8224𝜉

4

− 1.02𝜉
5
+ 1.57𝜉

6
− 1.394𝜉

7

+ 0.917𝜉
8
− 0.632𝜉

9
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+ 0.433𝜉
10

− 0.244𝜉
11

+ 0.122𝜉
12

− 0.0583𝜉
13

+ 0.0263𝜉
14

− 0.0113𝜉
15

+ 0.00471𝜉
16

− 0.00156𝜉
17

+ 0.0005𝜉
18

− 0.000177𝜉
19
) = 0.

(19)

The obtained equation is plotted to give the mode shape of
studied plate as shown in Figure 8.

Case 5. In the secondmode of the SCSC, whenNx = −40 and
𝜆 = 56.96696795, the equation of the vibrating surface shape
of the plate is

𝐹 (𝜉, 𝜂) = sin (𝜋𝜂)

× (0.50𝜉
2
− 1.39𝜉

3
+ 0.8224𝜉

4

− 1.378𝜉
5
+ 5.461𝜉

6
− 6.535𝜉

7

+ 3.659𝜉
8
− 3.406𝜉

9

+ 4.641𝜉
10

− 3.534𝜉
11

+ 1.785𝜉
12

− 1.15𝜉
13

+ 0.878𝜉
14

− 0.49𝜉
15

+ 0.217𝜉
16

− 0.107𝜉
17

+ 0.0563𝜉
18

− 0.0248𝜉
19
) = 0.

(20)

The obtained equation is plotted to give the mode shape of
the studied plate as shown in Figure 9.

8. Conclusion

Levy type solution and strip technique are employed
with transition matrix method to develop a semianalytical
approach for analyzing the buckling and vibration of rectan-
gular plates.The reduction strips number for the decomposed
domain of plate without escaping the results accuracy is
the main idea of the present technique. For this target,
the transition matrix is expressed analytically as a series
with sufficient truncation numbers. The transition matrix is
expressed mathematically in explicit closed form to reduce
the labor needed for crossing the proposed strips of plate.The
plate strip is solved by a combination between the transition
matrix and strip method. As can be seen, the present method
directly gives a closed form expression for natural frequency
of the investigated plate under a variation of boundary
conditions at the initial and final ends of strips. The effect
of the uni-axial and biaxial in-plane forces on the natural
frequency parameters and mode shapes of restrained plate
is studied. The critical buckling of rectangular plate under
compressive in-plane forces is examined. Analytical results
of buckling loads and vibration frequencies are obtained for
various types of boundary conditions. The influences of the
aspect ratios, buckling forces, and coefficients of restraint
on the buckling and vibration behavior of rectangular plates

are investigated. The mode shape of the vibrating surface
is specified in 3D graphs. The convergence stability of the
present technique is examined and the obtained results are
compared with those available in the published literature.The
results show fast convergence and stability in good agreement
with compressions.

Appendix

The matrix elements 𝐾
𝑖,𝑗
, 𝑖 = 1, 2, 3, 4, and 𝑗 = 1, 2, 3, 4 are

analytically obtained as

𝐾
11

= 1 +
𝐺
41

24𝑁4
+

𝐺
43
𝐺
41

720𝑁6
+

𝐺
2

41
+ 𝐺
2

43
𝐺
41

40320𝑁8
,

𝐾
12

=
1

𝑁
+

𝐺
41

120𝑁5
+

𝐺
41
𝐺
43

5040𝑁7
,

𝐾
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=
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2𝑁2
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𝐺
43

24𝑁4
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41

+ 𝐺
2

43

720𝑁6
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41
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43
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2

43
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