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DNA tile assembly models are a class of mathematically distributed and parallel biocomputing models in DNA tiles. In previous
works, tile assembly models have been proved be Turing-universal; that is, the system can do what Turing machine can do. In this
paper, we use tile systems to solve computational hard problem. Mathematically, we construct three tile subsystems, which can be
combined together to solve vertex cover problem. As a result, each of the proposed tile subsystems consists of Θ(1) types of tiles,
and the assembly process is executed in a parallel way (like DNA’s biological function in cells); thus the systems can generate the
solution of the problem in linear time with respect to the size of the graph.

1. Introduction

In the history of human designing computing devices,
nature has provided brilliant ideas and frameworks to design
intelligent computing models. Recently, due to the highly
distributed and parallel features, bioinspired computing,
including DNA computing [1–4], membrane computing [5–
9], and neural-like computing [10–12], have received a lot of
research attention.One of the famous results of biocomputing
is Adleman’s DNA computing model, which uses DNA
molecule to solve a Hamiltonian path problem in tubes
[1]. It demonstrated the feasibility of solving combinatorial
problems by molecular computing, which used the vast
parallelism of DNA molecule to do the combinatorial search
among a large number of possible solutions. Till now, DNA
computing has been heavily developed and used in different
research fields, such as breaking cryptosystems [2, 13], hiding
messages [4, 13], and computing functions [14]. However,
most of the proposed DNA computing models are not
autonomous, which require human intervention in each step,
and the scale of the problems solved by DNA computing
is restricted by the large numbers of laboratory procedures,
error-prone reactions, and the time consumed. In the present
work, we focus on a kind of DNA computing models, named
DNA tile assembly model.

DNA tile assembly model can automatically organize
the components into defined aggregates with stable and
robust structures [15]. Following the research line, it was
theoretically proved that the tile assembly model of DNA
computing is Turing-universal [2], while the experimental
demonstration of computation using DNA tile was initialled
in [16]. For general introduction of DNA tile assembly mod-
els, one can refer to the respective chapter of [2]. Recently,
DNA assembly systems were also used in some other fields
such as binary counters [17], computing Sierpinski triangles
[18], and theoretically performing sum and product of two
numbers [19].

In this work, we use DNA tile assembly model to solve
the famous NP-hard problem—vertex cover problem. Specif-
ically, three tile self-assembly subsystems are constructed,
which can constitute subsets of vertices, calculate the types
of vertices in each subset, and count the number of vertices
covered by the vertex in a subset, respectively. We combine
the three subsystems to construct an integrated tile system
that can solve vertex cover problems in linear time.As a result,
we obtain that each subsystem consists of Θ(1) types of tiles,
and the system can generate the solution of the problem in
linear timewith respect to the size of the graph (due to the fact
that each tile in the systems can do the assembly operation in
a parallel way).



2 Journal of Applied Mathematics

2. DNA Tile Self-Assembly Model

This section is started by recalling some useful notions and
formal definition of DNA tile self-assembly model proposed
in [19].

Let Σ be a finite alphabet of binding domains, with null ∈
Σ. A tile overΣ is a unit square with 4-tuple ⟨𝜎

𝑁
, 𝜎
𝐸
, 𝜎
𝑆
, 𝜎
𝑊
⟩ ∈

Σ
4 indicating, respectively, the glues on the north, east, south,

and west sides of the tile. A position is an element of Z2. The
set of directions 𝐷 = {𝑁, 𝐸, 𝑆,𝑊} is a set of four functions
from position to position, such that, for all positions (𝑥, 𝑦),
(𝑥, 𝑦) ∈ Z2, then𝑁(𝑥, 𝑦) = (𝑥, 𝑦 + 1), 𝐸(𝑥, 𝑦) = (𝑥 + 1, 𝑦),
𝑆(𝑥, 𝑦) = (𝑥, 𝑦 − 1), and𝑊(𝑥, 𝑦) = (𝑥 − 1, 𝑦). The positions
(𝑥, 𝑦) and (𝑥, 𝑦) are neighbors if and only if ∃𝑑 ∈ 𝐷 such
that𝑑(𝑥, 𝑦) = (𝑥, 𝑦). For a tile 𝑡, for𝑑 ∈ 𝐷, we refer to 𝑏𝑑

𝑑
(𝑡)

as the binding domain of tile 𝑡 on 𝑑’s side. According to this
definition, tiles may not be rotated. A special tile, empty =

⟨𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙⟩, represents the absence of all other tiles.
Thebinding domains determine the interaction between tiles.

A function 𝑔 : Σ×Σ → R is a strength function denoting
the strength of the binding domains. The function 𝑔 can be
calculated as

𝑔 (𝜎, 𝜎

) = {

+value, if 𝜎 = 𝜎,
0, otherwise.

(1)

The value may be 0, 1, or 2 (resp., called null, weak, and
strong bonds).

Let 𝑇 be a set of tiles containing the empty tile. One
configuration of𝑇 is a function𝐴:Z×Z → 𝑇, and (𝑥, 𝑦) ∈ 𝐴
if and only if 𝐴(𝑥, 𝑦) ̸= 𝑒𝑚𝑝𝑡𝑦. One configuration is finite if
and only if there is only a finite number of distinct positions
(𝑥, 𝑦) ∈ 𝐴. One tile system SYS is a triple ⟨𝑇, 𝑔, 𝜏⟩, with 𝑇
being a finite set of tiles containing empty, 𝑔 is a strength
function, and 𝜏 ∈ N is the temperature. If𝐴 is a configuration,
then a tile 𝑡 can attach to 𝐴 at position (𝑥, 𝑦) and produce a
new configuration 𝐴 if and only if

(1) (𝑥, 𝑦) ∉ 𝐴,

(2) ∑
𝑑∈𝐷

𝑔(𝑏𝑑
𝑑
(𝑡), 𝑏𝑑

𝑑
−1(𝐴(𝑑(𝑥, 𝑦)))) ≥ 𝜏,

(3) for all (𝑢, V) ∈ 𝑍2, (𝑢, V) ̸= (𝑥, 𝑦) ⇒ 𝐴

(𝑢, V) = 𝐴(𝑢, V),

(4) 𝐴(𝑥, 𝑦) = 𝑡.

For a tile system SYS = ⟨𝑇, 𝑔, 𝜏⟩, a set of tiles Γ, and a
seed configuration 𝑆 : Z2 → Γ, if the above conditions
are satisfied, one may attach tiles of 𝑇 to 𝑆. Configurations
produced by repeated attachments of tiles from 𝑇 are said
to be produced by SYS on 𝑆. If this process terminates, the
configuration is called the final configuration 𝐹.

Let SYS = ⟨𝑇, 𝑔, 𝜏⟩, and let 𝑆
0
be a seed configuration

such that SYS produces a unique final configuration 𝐹 on 𝑆
0
,

𝑊
0
⊆ 2
𝑇×Z2 the set of all tile position pairs ⟨𝑡, (𝑥, 𝑦)⟩ such that

𝑡 can attach to 𝑆
0
at (𝑥, 𝑦), and 𝑆

𝑖
the configuration produced

by adding all the elements of 𝑊
𝑖−1

to 𝑆
𝑖−1

in one time step,
where 𝑖 = 1, 2, . . .. Number 𝑛 is the smallest natural number
such that 𝑆

𝑛
≡ 𝐹, where 𝑛 indicates the assembly time of 𝑆 on

𝑆
0
to produce 𝐹.
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Figure 1: (a) Tiles in Γ
𝑠𝑒𝑒𝑑

with the name written on the top; (b) the
meaning of the tiles in 𝑇V to encode edges 𝑉𝑖𝑉𝑗 and vertex 𝑉

𝑖
or 𝑉
𝑗
.

3. Solving Vertex Cover Problem by
DNA Tile Assembly Model

The vertex cover tile system contains a set of tiles denoted by
𝑇V𝑐, which can be divided into three disjoint subsets of tiles
𝑇V, 𝑇𝑡, and 𝑇

𝑘
. (Mathematically, we have 𝑇V𝑐 = 𝑇V ∪ 𝑇

𝑡
∪

𝑇
𝑘
.) The functions of the tiles in distinguished subsets are

different. Specifically, the tiles in 𝑇V are nondeterministically
chosen to constitute a vertices subset covering all the edges;
the tiles in 𝑇

𝑡
calculate the types in the constituted vertices

subset; the tiles in 𝑇
𝑘
can be used to count the number of

vertices that are not in the constituted vertices subset and
determine whether the result meets the requirement of the
problem.

The tile systems described above will use 𝑛
𝑉
types of tiles

to encode the vertices, as well as 𝑛
𝐸
types of tiles to encode

the edges in the graph. The set of the tiles used to encode the
vertices and edges in the graph are denoted by

Γ
𝑠𝑒𝑒𝑑

= {𝑒𝑒 = ⟨𝑛𝑢𝑙𝑙, 𝑒𝑒, 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙⟩,
𝑉
𝑖
= ⟨𝑛𝑢𝑙𝑙, 𝑉

𝑖
, 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙⟩,

𝑅𝑅 = ⟨𝑛𝑢𝑙𝑙, 𝑅𝑅, 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙⟩,
𝑉
𝑖
𝑉
𝑗
= ⟨𝑉
𝑖
𝑉
𝑗
, 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙⟩,

𝑃𝑃 = ⟨𝑃𝑃, 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙⟩,
𝑒𝑛𝑑 = ⟨𝑒𝑛𝑑, 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙⟩,
1 = ⟨1, 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙⟩ | 1 ≤ 𝑖, 𝑗 ≤ 𝑛

𝑉
}.

The seeds are graphically shown in Figure 1(a).

3.1. Constituting One Subset. For a given seed configuration
consisting of a given graph, we start by describing a tile
system that can use tiles from 𝑇V to nondeterministically
constitute a vertices subset covering all the edges and to
encode the vertices and edges with these tiles. The strategy
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Figure 2: SYSV produces a final configuration 𝐹 on 𝑆V such that
𝐹 produces one subset of vertices. (a) An example graph; (b) the
example seed configuration; (c) in this example, 𝐹 constitutes one
subset 𝑉

1
, 𝑉
3
, 𝑉
1
, 𝑉
1
.

used to encode an edge (𝑉
𝑖
, 𝑉
𝑗
) ∈ 𝐸 by tiles can be found

from Figure 1(b), where the symbols on the sides of the tiles
indicate the edge or vertex.

In the following, we will give an example of a directed
graph 𝛾 = (𝑉, 𝐸) with 4 vertices (denoted by 𝑉

1
, 𝑉
2
, 𝑉
3
, and

𝑉
4
; see Figure 2(a)) to explain the process of constituting one

subset.The seed configuration 𝑆V is designed by the following
binding domains: 𝑏𝑑

𝑆
(𝑆(0, 0)) = 𝑉

1
𝑉
2
, 𝑏𝑑
𝑆
(𝑆(1, 0)) = 𝑉

2
𝑉
3
,

𝑏𝑑
𝑆
(𝑆(2, 0)) = 𝑉

1
𝑉
3
, 𝑏𝑑
𝑆
(𝑆(3, 0)) = 𝑉

1
𝑉
4
, 𝑏𝑑
𝑆
(𝑆(4, 0)) =

𝑃𝑃, 𝑏𝑑
𝑆
(𝑆(5, 0)) = 1, 𝑏𝑑

𝑆
(𝑆(6, 0)) = 1, and 𝑏𝑑

𝑆
(𝑆(7, 0)) =

𝑒𝑛𝑑; see Figure 2(b). And the SYSV produces a set of final
configurations 𝐹 on 𝑆V such that 𝐹(0, 1) = 𝑉

1
, 𝐹(1, 1) = 𝑉

3
,

𝐹(2, 1) = 𝑉
1
, 𝐹(3, 0) = 𝑉

1
, 𝐹(4, 0) = 𝑃𝑃, 𝐹(5, 0) = 1;

𝐹(6, 0) = 1, and 𝐹(7, 0) = 𝑒𝑛𝑑; see Figure 2(c).
Note that SYSV can produce all the final configurations in

𝐹 on 𝑆V, where 𝐹 corresponds to the vertices subset covering
all the edges.

The tiles that are possible to attach to 𝑆V can produce a
final configuration 𝐹 that corresponds to the subset covering
all the edges.

(1) 𝐹 and 𝑆V should agree at the first line with the
corresponding binding domains.

(2) Note that 𝑏𝑑
𝑁
(𝐹(0, 0)) = 𝑉

1
𝑉
2
, and the only tile with

𝑏𝑑
𝑆
(𝑡) = 𝑉

1
𝑉
2
might attach here. There are two types

of tiles such that 𝑏𝑑
𝑆
(𝑡) = 𝑉

1
𝑉
2
, so only these types of

tiles can attach above. Furthermore, 𝑏𝑑
𝑁
(𝐹(0, 1)) =

𝑉
1
or 𝑉
2
, which indicates that the subset of vertices

contains 𝑉
1
or 𝑉
2
(in this case, it is 𝑉

1
).

(3) It is easy to check that 𝑏𝑑
𝑁
(𝐹(1, 0)) = 𝑉

2
𝑉
3
, so

𝐹(1, 1) = 𝑉
2
or 𝑉
3
(in this case, the contained vertex

is 𝑉
3
).

(4) It is easy to check that b𝑑
𝑁
(𝐹(2, 0)) = 𝑉

1
𝑉
3
, so

𝐹(2, 1) = 𝑉
1
or 𝑉
3
(in this case, the contained vertex

is 𝑉
1
).

(5) It is easy to check that 𝑏𝑑
𝑁
(𝐹(3, 0)) = 𝑉

1
𝑉
4
, so

𝐹(3, 1) = 𝑉
1
or 𝑉
3
(in this case, the contained vertex

is 𝑉
1
).

(6) The tiles 𝑏𝑑
𝑁
(𝐹(4, 0)) = 𝑃𝑃 and 𝑏𝑑

𝑆
(𝑡) = 𝑃𝑃

can attach here, where the tile {𝑃𝑃, 𝑅𝑅} is attached
indicating the boundary of subset is constitutes.

(7) , (8) The same as (6), it can be easily obtained that
𝑏𝑑
𝑆
(𝐹(5, 0)) = 1, 𝑏𝑑

𝑆
(𝐹(6, 0)) = 1, so the tile {1, 𝑅𝑅}

is attached here.
(9) We have 𝑏𝑑

𝑆
(𝐹(7, 0)) = 𝑒𝑛𝑑, and the only tile with

𝑏𝑑
𝑆
(𝑡) = 𝑒𝑛𝑑 may attach here, which show the

boundary of the final configuration 𝐹.

It is worth pointing out that nomore tiles may attach to 𝐹
and one of subsets which satisfied the requests of the problem
is {𝑉
1
, 𝑉
3
, 𝑉
1
, 𝑉
1
}.Therefore, for all choices of subsets covering

all edges, there exists a final configuration 𝐹 produced by
SYSV on 𝑆V that constitutes a vertex subset. For different final
configurations 𝐹 produced by SYSV on 𝑆V will constitute
some random vertex subsets covering all edges.

Lemma 1 (subsets assembly time lemma). The assembly time
of the final configuration 𝐹 that constitutes vertex subset is
Θ(𝑛
𝐸
).

Proof. For each tile in 𝐹 to attach, a tile in a specific location
can have attached before (either to the north or to the
east). Hence, there is no parallelism in the assembly, and the
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assembly time equals the total number of tiles that attached,
which is Θ(𝑛

𝐸
).

3.2. Type Calculation. After the tile system have nondeter-
ministically assembled the representation of one vertices
subset, we add tiles to implement the vertex type calculation.
The meaning of tiles in 𝑇

𝑡
is given in Figure 3.

Each tile𝑉
𝑖
∈ 𝑇
𝑡
is used to check the presentation of vertex

𝑉i whether it is in the constituted vertices subset: if so, then
output is 1, otherwise output is 0. The tile system SYS

𝑡
can

check the types of the vertices in the constituted subset. The
example of the function of SYS

𝑡
is shown in Figure 4, where

the constituted subset is {𝑉
1
, 𝑉
3
, 𝑉
1
, 𝑉
1
}. There are four gray

tiles which check the vertex 𝑉
𝑖
whether it is present in the

subset, and the brown tiles complete the checking.The orange
tiles are used to output the result: if the vertex is in the subset,
the output is 𝑥 = 1, otherwise 𝑥 = 0.

Theorem 2. Let Σ
𝑡
= {𝑉
𝑖
, 𝑖1, 𝑖0, 0, 𝑃𝑃, 𝑅𝑅, 𝑒𝑒, 𝑖𝑥, 𝑥 | 𝑖 ∈

{1, 2, . . . , 𝑛}, 𝑥 ∈ {0, 1}}, 𝜏V = 2, and 𝑔divisor = (𝜎, 𝜎) = 1 for
𝜎 ∈ Σ

𝑡
, 𝑇
𝑡
a set of tiles, 𝑆

𝑡
the final configuration produced

by SYSV on 𝑆V that constitutes the subset of vertices, 𝐹V unique

final configuration (by which one can get the computing result),
𝑆
𝑡
the configuration such that

∀𝑥, 𝑦 ∈ 𝑇
𝑡
, 𝐹V (𝑥, 𝑦) ̸= 𝑒𝑚𝑝𝑡𝑦 ⇒ 𝑆

𝑡
(𝑥, 𝑦) = 𝐹V (𝑥, 𝑦) ,

(2)

and SYS
𝑡
= ⟨𝑇
𝑡
, 𝑔
𝑡
, 𝜏
𝑡
⟩.

Proof. Let 𝑆𝑢𝑏 be the constituted subset and 𝑉
𝑖
any vertex in

the graph with 𝑖 ∈ {1, 2, . . . , 𝑛}. If 𝑉
𝑖
∈ 𝑆𝑢𝑏, then 𝑥

𝑖
= 1,

otherwise 𝑥
𝑖
= 0. The tile system SYS

𝑡
computes the final

configuration 𝐹V produced by SYSV, and SYS
𝑡
will produce a

unique final configuration 𝐹
𝑡
on 𝑆
𝑡
. The orange tiles (similar

to those in Figure 4) can output the checking result and
cooperate with other tiles. Therefore, the tile system SYS

𝑡
is

able to check the type of the tiles and output the result during
the self-assembly progress.

Corollary 3 (checking assembly time). The assembly time for
SYS
𝑡
starting from one seed that encodes vertices and edges is

Θ(𝑛
𝑉
+ 𝑛
𝐸
).

Proof. The tiles in 𝐹
𝑡
will attach in a strict order; that is,

only the corner position may be attached to one certain
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Figure 5: The meaning of tiles in 𝑇
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type of tiles. So the tiles in the diagonal positions perform
the processes of computing in parallel. With the parallelism,
the resulting configuration is the 𝑛

𝑉
× 𝑛
𝐸
rectangle, and the

assembly time is 𝑛
𝑉
+ 𝑛
𝐸
steps.

3.3. Checking the Number of Vertices in the Subset. With the
two tile subsystems described above (one generates a random
vertices subset, and the other one checks whether the vertex
type is contained in the subset or not), we design one more
tile subsystem to compute the number of vertices in the subset
and to determine whether the number of vertices is less than
𝐾 or not. The meaning of tiles in 𝑇

𝑘
is shown in Figure 5,

where the dark-green tiles with variables 𝑖, 𝑗, 𝑚, 𝑛, and 𝑦 are
used to finish the vertex types counting in the subset; the
light-blue tiles are used to check whether the number of
vertex types in the subset is less than 𝐾 or not; the red tiles
with “NO” or “OK” serve as the mark to show the result of
the problem, and the blue tiles will terminate the checking
and mark the final configuration 𝐹 produced.

Theorem 4. Let Σ
𝑘

= {0, 1, 00, 01, 10, 11, ok, no, end, 𝑅𝑅},
𝑔
𝑘
(𝜎, 𝜎) = 1 for all 𝜎 ∈ Σ

𝑘
, 𝜏
𝑘
= 1, 𝑇

𝑘
a set of tiles of the

form shown in Figure 5, 𝑆
𝑘
the final configuration produced by

the tile system SYS
𝑡
on 𝑆
𝑡
that outputs each vertex present in the

subset or not, 𝐹
𝑘
the unique final configuration (by which one

can get the computing result), 𝑆
𝑘
the configuration such that

∀𝑥, 𝑦 ∈ 𝑇
𝑡
, 𝐹V (𝑥, 𝑦) ̸= 𝑒𝑚𝑝𝑡𝑦 ⇒ 𝑆

𝑘
(𝑥, 𝑦) = 𝐹V (𝑥, 𝑦) ,

(3)

and SYS
𝑘
= ⟨𝑇
𝑘
, 𝑔
𝑘
, 𝜏
𝑘
⟩. It holds that SYS

𝑘
produces a unique

final configuration 𝐹
𝑘
, and the number of vertex types in the

subset is less than𝐾 if and only if 𝐹
𝑘
(𝑛
𝐸
+ (𝑛
𝑉
−𝐾+1, 1 + 𝑛

𝑉
+

1)) = 𝑂𝐾.

Proof. If the “OK” tile is ever to attach, then it should attach
in position (𝑛

𝐸
+ (𝑛
𝑉
− 𝐾) + 1, 1 + 𝑛

𝑉
+ 1). Since the sum

of the 𝑔 values of the binding domains is exactly 2, it can
only match its neighbors on all sides with nonnull binding
domains to attach at temperature 2. Furthermore, the tile with
a south binding domain “end” and a west binding domain
“ok,” matching the assembly’s north binding domain and the
east binding domain, is the “OK” tile, so it can attach only
when the light-blue tiles “ok” have attached in position from
(𝑛
𝐸
+1, 1+𝑛

𝑉
+1) to (𝑛

𝐸
+ (𝑛
𝑉
−𝐾), 1+𝑛

𝑉
+1). Once there is

one position attaching “no,” then the end position will attach
“NO” tile.

Let us consider the unique final configuration𝐹
𝑘
.The “ok”

tile can attach at position (𝑛
𝐸
+1, 1+𝑛

𝑉
+1), and at west of the

tile there is an east binding domain “ok.” Therefore, the tiles
at positions (𝑛

𝐸
+𝑖, 1+𝑛

𝑉
+1)with 𝑖 = 1, 2, . . . (𝑛

𝑉
−𝐾) should

have the output of east binding domain “ok.” It indicates that
at least (𝑛

𝑉
− 𝐾) vertices are not in the constituted subset. If

the binding domain “no” occurs, it means that the number of
vertex types in the constituted subset is more than 𝐾. In this
case, the “No” tile will attach at position (𝑛

𝐸
+(𝑛
𝑉
−𝐾)+1, 1+

𝑛
𝑉
+ 1). For the produced subset, an “OK” tile can attach at

position (𝑛
𝐸
+ (𝑛
𝑉
−𝐾) + 1, 1 + 𝑛

𝑉
+ 1) to 𝐹

𝑘
if and only if the

number of vertex types in the constituted subset is not more
than𝐾.

Following the example given above, the final configura-
tion 𝐹

𝑘
produced by the tile system SYS

𝑘
is shown in Figure 6.

Corollary 5 (calculating assembly time). The assembly time
of the final configuration 𝐹 produced by SYS

𝑘
on 𝑆
𝑘
that draws

the conclusion of the number of vertex types in the subset
whether more than 𝐾 or not is Θ((𝑛

𝑉
− 𝐾) + 𝑛

𝑉
).

3.4. Solving Vertex Cover Problem Using DNA Tile Assembly
System. Till now, we have defined three tile subsystems that
perform the necessary pieces of solving the vertex cover
problem. We now combine them into one single system
SYSVC and argue that SYSVC is a tile system solving the vertex
cover problem.

If a tile system is the combination of three distinct tile
subsystems, the behavior of the combined systems contains
the behaviors of the subsystems. Although the tiles from
different subsystems can interfere with each other, according
to the design of the subsystems SYSV, SYS𝑡, and SYS

𝑘
, they

can work together without interfering. For the most part,
each subsystem uses a disjoint set of binding domains,
sharing binding domains only when tiles from the different
subsystems are designed to interact. As a result, the tiles from
each subsystem have a particular set of positions where they
can attach. Specifically, tiles from 𝑇V can only attach in row 1,
tiles from 𝑇

𝑡
can only attach in the rectangle defined by the

same color rectangle, and tiles from 𝑇
𝑘
can only attach in the

same color rectangle too. Therefore, the tiles from different
subsystems do not interfere with each other; see Figure 7. As
explained above, we can easily obtain the following theorem.

Theorem 6 (vertex cover theorem). Let ΣVC = ΣV ∪ Σ𝑡 ∪ Σ𝑘,
𝑇VC = 𝑇V ∪ 𝑇𝑡 ∪ 𝑇𝑘; 𝑔VC agrees with 𝑔V, 𝑔𝑡, and 𝑔𝑘 on their
respective domains, and 𝜏VC = 2. It holds that the system
SYSVC = ⟨𝑇

𝐶
, 𝑔
𝐶
, 𝜏
𝐶
⟩ is a tile system solving the vertex cover

problem.

Proof. Consider a directed graph 𝛾 = (𝑉, 𝐸) with 𝑛 vertices
denoted by𝑉

1
, 𝑉
2
, . . . , 𝑉

𝑛
, and a positive integer𝐾 ≤ 𝑐𝑎𝑟𝑑(𝑉).

The number of vertices is denoted by 𝑛
𝑉
, and the number of

edges is 𝑛
𝐸
. We assume that 0 ≤ 𝑎 < 𝑛

𝐸
, 𝑆VC(𝑎, 0) = 𝑉𝑖𝑉𝑗, for

all (𝑉
𝑖
, 𝑉
𝑗
) ∈ 𝐸; 1 ≤ 𝑖, 𝑗 ≤ 𝑛

𝑉
, 𝑆VC(𝑛𝐸, 0) = 𝑃𝑃, 1 ≤ 𝑏 < 𝑛𝑉−𝐾,

𝑆VC(𝑛𝐸 + 𝑏, 0) = 1, and 𝑆VC(𝑛𝐸 + (𝑛𝑉 − 𝐾) + 1, 0) = 𝑒𝑛𝑑.
For all edges in the graph, tiles from 𝑇

𝐶
will attach to 𝑆

𝐶

as follows: the tiles from 𝑇V nondeterministically attach to
constitute one vertex subset covering all edges in row 1, as
described in Section 3.1. According to Theorem 2, the tiles
from 𝑇

𝑡
attach, in the gray rectangle denoted in Figure 7, to

check which vertex is obtained in the subset and output the
results. Finally, tiles from 𝑇

𝑘
attach, in dark-green rectangle

denoted in the Figure 7, such that, by Theorem 4, the “OK”
tile attaches only when at least (𝑛

𝑉
− 𝐾) vertices are not

present in the constituted subset; that is, the vertex number
of the subset is no more than 𝐾. Therefore, SYSVC can
nondeterministically and identifiably solve the vertex cover
problem.

Corollary 7 (vertex cover assembly time). The assembly time
for 𝑆VC to produce a final configuration 𝐹 that draws the
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conclusion of the number of vertex types in the subset whether
more than 𝐾 or not is Θ(2𝑛

𝑉
+ 𝑛
𝐸
− 𝐾).

4. Conclusion

In this work, the vertex cover problem is considered to
be solved by tile assembly system. Function package is a
common technique usually used in programming by general
digital computers. Herein, we have “packaged” the proposed
three tile subsystems in tile self-assembly model: SYSV, SYS𝑡,
and SYS

𝑘
, and combine them together to form SYSVC with

such functions of generating subsets, computing functions,
and checking results. For future work, it is still possible to
decrease the number of tile types used in the tile systems.
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