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A good idea of finding the exact solutions of the nonlinear evolution equations is introduced.The idea is that the exact solutions of
the elliptic-like equations are derived using the simplest equationmethod and themodified simplest equationmethod, and then the
exact solutions of a class of nonlinear evolution equations which can be converted to the elliptic-like equation using travelling wave
reduction are obtained. For example, the perturbed nonlinear Schrödinger’s equation (NLSE), the Klein-Gordon-Zakharov (KGZ)
system, the generalized Davey-Stewartson (GDS) equations, the Davey-Stewartson (DS) equations, and the generalized Zakharov
(GZ) equations are investigated and the exact solutions are presented using this method.

1. Introduction

Nonlinear phenomena exist in all areas of science and engi-
neering, such as fluid mechanics, plasma physics, optical
fibers, biology, solid state physics, chemical kinematics, and
chemical physics. It is well known thatmany nonlinear partial
differential equations (NLPDEs) are widely used to describe
these complex physical phenomena. The exact solution of a
differential equation gives information about the construc-
tion of complex physical phenomena. Therefore, seeking
exact solutions of NLPDEs has long been one of the central
themes of perpetual interest in mathematics and physics.
With the development of symbolic computation packages,
like Maple and Mathematica, many powerful methods for
finding exact solutions have been proposed, such as the
homogeneous balance method [1, 2], the auxiliary equation
method [3], the sine-cosine method [4], the Jacobi elliptic
function method [5], the exp-function method [6], the tanh-
function method [7, 8], the Darboux transformation [9, 10],
and the (𝐺/𝐺)-expansion method [11, 12].

The simplest equation method is a very powerful math-
ematical technique for finding exact solutions of nonlinear
ordinary differential equations. It has been developed by
Kudryashov [13, 14] and used successfully by many authors
for finding exact solutions of ODEs in mathematical physics
[15–19].

In this paper, we first apply the simplest equation method
and the modified simplest equation method to derive the
exact solutions of the elliptic-like equation, and then the exact
solutions of a class of nonlinear evolution equations which
can be converted to the elliptic-like equation using travelling
wave reduction are obtained.

2. Description of Methods

2.1. The Simplest Equation Method

Step 1. Suppose that we have a nonlinear partial differential
equation (PDE) for 𝑢(𝑥, 𝑡) in the form

𝑁(𝑢, 𝑢
𝑡
, 𝑢
𝑥
, 𝑢
𝑡𝑡
, 𝑢
𝑥𝑡
, 𝑢
𝑥𝑥
, . . .) = 0, (1)

where𝑁 is a polynomial in its arguments.

Step 2. By taking 𝑢(𝑥, 𝑡) = 𝑢(𝜉), 𝜉 = 𝑥 − 𝑐𝑡, we look
for traveling wave solutions of (1) and transform it to the
ordinary differential equation (ODE)

𝑁(𝑢, −𝑐𝑢

, 𝑢

, 𝑐
2
𝑢

, −𝑐𝑢

, 𝑢

, . . .) = 0. (2)
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Step 3. Suppose the solution 𝑢 of (2) can be expressed as a
finite series in the form

𝑢 =

𝑛

∑
𝑖=0

𝐴
𝑖
(𝐻 (𝜉))

𝑖

, (3)

where 𝐻(𝜉) satisfies the Bernoulli or Riccati equation, 𝑛
is a positive integer that can be determined by balancing
procedure, and 𝐴

𝑖
(𝑖 = 0, 1, 2, . . . , 𝑛) are parameters to be

determined.
The Bernoulli equation we consider in this paper is

𝐻


(𝜉) = 𝑎𝐻 (𝜉) + 𝑏𝐻
2

(𝜉) , (4)

where 𝑎 and 𝑏 are constants. Its solutions can be written as

𝐻(𝜉) =
−𝑎𝐶
1

𝑏 (𝐶
1
+ cosh (𝑎 (𝜉 + 𝜉

0
)) − sinh (𝑎 (𝜉 + 𝜉

0
)))

,

𝐻 (𝜉) =
−𝑎 (cosh (𝑎 (𝜉 + 𝜉

0
)) + sinh (𝑎 (𝜉 + 𝜉

0
)))

𝑏 (𝐶
2
+ cosh (𝑎 (𝜉 + 𝜉

0
)) + sinh (𝑎 (𝜉 + 𝜉

0
)))

,

(5)

where 𝐶
1
, 𝐶
2
, and 𝜉

0
are constants.

For the Riccati equation

𝐻


(𝜉) = 𝑎𝐻
2

(𝜉) + 𝑏𝐻 (𝜉) + 𝑠, (6)

where 𝑎, 𝑏, and 𝑠 are constants, we will use the solutions

𝐻(𝜉) = −
𝑏

2𝑎
−
𝜃

2𝑎
tanh [𝜃

2
(𝜉 + 𝜉

0
)] ,

𝐻 (𝜉) = −
𝑏

2𝑎
−
𝜃

2𝑎
tanh(𝜃

2
𝜉)

+
sech (𝜃𝜉/2)

𝐶 cosh (𝜃𝜉/2) − (2𝑎/𝜃) sinh (𝜃𝜉/2)
,

(7)

where 𝜃2 = 𝑏2 − 4𝑎𝑠.

Step 4. Substituting (3) into (2) with (4) (or (6)), then the
left hand side of (2) is converted into a polynomial in 𝐻(𝜉);
equating each coefficient of the polynomial to zero yields
a set of algebraic equations for 𝐴

𝑖
, 𝑎, 𝑏 (𝑖 = 0, 1, 2, . . . , 𝑛).

Solving the algebraic equations by symbolic computation, we
can determine those parameters explicitly.

Step 5. Assuming that the constants 𝐴
𝑖
, 𝑎, 𝑏 (𝑖 = 0, 1, 2, . . . ,

𝑛) can be obtained in Step 4 and substituting the results into
(3), then we obtain the exact traveling wave solutions for (1).

2.2. TheModified Simplest Equation Method. In the modified
version, one makes an ansatz for the solution 𝑢(𝜉) as

𝑢 =

𝑛

∑
𝑖=0

𝑎
𝑖
(
𝜓 (𝜉)

𝜓 (𝜉)
)

𝑖

, (8)

where 𝑎
𝑖
(𝑖 = 0, 1, 2, . . . , 𝑛) are arbitrary constants to be

determined, such that 𝑎
𝑛
̸= 0 and 𝜓(𝜉) is an unspecified

function to be determined afterward.

Substitute (8) into (2) and then we account the function
𝜓(𝜉). As a result of this substitution, we get a polynomial of
𝜓
(𝜉)/𝜓(𝜉) and its derivatives. In this polynomial, we equate

the coefficients of the same power of𝜓−𝑗(𝜉) to zero, where 𝑗 ≥
0. This procedure yields a system of equations which can be
solved to find 𝑎

𝑖
(𝑖 = 0, 1, 2, . . . , 𝑛), 𝜓(𝜉), and 𝜓(𝜉). Then the

substitution of the values of 𝑎
𝑖
(𝑖 = 0, 1, 2, . . . , 𝑛), 𝜓(𝜉), and

𝜓

(𝜉) into (8) completes the determination of exact solutions

of (1).

3. Solutions of the Elliptic-Like Equation

Now, let us choose the following elliptic-like equation

𝐴𝜙


(𝜉) + 𝐵𝜙 (𝜉) + 𝐶𝜙
3

(𝜉) = 0, (9)

where 𝐴, 𝐵, and 𝐶 are arbitrary constants. Equation (9) is
one of the most important auxiliary equations, because many
nonlinear evolution equations can be converted to (9) using
the travelling wave reduction.

3.1. Using Simplest Equation Method

3.1.1. Solutions of (9) Using the Bernoulli Equation as the
Simplest Equation. Considering the homogeneous balance
between 𝜙

(𝜉), and 𝜙3(𝜉) we get 𝑛 = 1, so the solution of
(9) is the form

𝜙 (𝜉) = 𝐴
0
+ 𝐴
1
𝐻(𝜉) . (10)

Substituting (10) into (9) andmaking use of the Bernoulli
equation (4) and then equating the coefficients of the func-
tions𝐻𝑖(𝜉) to zero, we obtain an algebraic systemof equations
in terms of 𝐴

𝑖
(𝑖 = 0, 1), 𝑎, and 𝑏. Solving this system of

algebraic equations, with the aid of Maple, we obtain

𝐴
0
= ±𝑖√

𝐵

𝐶
, 𝐴

1
= ±𝑖√

2𝐴

𝐶
, 𝑎 = √

2𝐵

𝐴
,

𝐴
0
= ±𝑖√

𝐵

𝐶
, 𝐴

1
= ∓𝑖√

2𝐴

𝐶
, 𝑎 = −√

2𝐵

𝐴
.

(11)

Therefore, using solutions (5) of (4) and ansatz (10), we
obtain the following exact solution of (9):

𝜙
1
(𝜉) = ± 𝑖√

𝐵

𝐶
(1 − (2𝐶

1
)

× (𝐶
1
+ cosh(√2𝐵

𝐴
(𝜉 + 𝜉

0
))

− sinh(√2𝐵

𝐴
(𝜉 + 𝜉

0
)))

−1

) ,
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𝜙
2
(𝜉) = ± 𝑖√

𝐵

𝐶
(1− (2𝐶

1
)

× (𝐶
1
+ cosh(√2𝐵

𝐴
(𝜉 + 𝜉

0
))

+ sinh(√2𝐵

𝐴
(𝜉 + 𝜉

0
)))

−1

) ,

𝜙
3
(𝜉) = ± 𝑖√

𝐵

𝐶
(1− (2(cosh(√2𝐵

𝐴
(𝜉 + 𝜉

0
))

+ sinh(√2𝐵

𝐴
(𝜉 + 𝜉

0
))))

× (𝐶
2
+ cosh(√2𝐵

𝐴
(𝜉 + 𝜉

0
))

+ sinh(√2𝐵

𝐴
(𝜉 + 𝜉

0
)))

−1

) ,

𝜙
4
(𝜉) = ± 𝑖√

𝐵

𝐶
(1− (2(cosh(√2𝐵

𝐴
(𝜉 + 𝜉

0
))

− sinh(√2𝐵

𝐴
(𝜉 + 𝜉

0
))))

× (𝐶
2
+ cosh(√2𝐵

𝐴
(𝜉 + 𝜉

0
))

− sinh(√2𝐵

𝐴
(𝜉 + 𝜉

0
)))

−1

) .

(12)

3.1.2. Solutions of (9) Using Riccati Equation as the Simplest
Equation. Suppose the solutions of (9) are the form

𝜙 (𝜉) = 𝐵
0
+ 𝐵
1
𝐻(𝜉) . (13)

Substituting (13) into (9) and making use of the Riccati
equation (6) and then equating the coefficients of the func-
tions𝐻𝑖(𝜉) to zero, we obtain an algebraic systemof equations
in terms of 𝐵

𝑖
(𝑖 = 0, 1), 𝑎, 𝑏, and 𝑠. Solving this system of

algebraic equations, with the aid of Maple, one possible set of
values of 𝐵

𝑖
(𝑖 = 0, 1), 𝑎, 𝑏, and 𝑠 is

𝐵
0
= ±𝑖√

𝐴

2𝐶
𝑏, 𝐵

1
= ±𝑖√

2𝐴

𝐶
𝑎, 𝑠 =

𝐴𝑏
2 − 2𝐵

4𝐴𝑎
.

(14)

Therefore, using solutions (7) of (6) and ansatz (13), we
obtain the following exact solution of (9):

𝜙
5
(𝜉) = ∓𝑖√

𝐵

𝐶
tanh(√ 𝐵

2𝐴
(𝜉 + 𝜉

0
)) ,

𝜙
6
(𝜉) = ∓ 𝑖√

𝐵

2𝐶
((𝐶√

2𝐵

𝐴
sinh(√ 𝐵

2𝐴
𝜉)

−2𝑎 cosh(√ 𝐵

2𝐴
𝜉))

× (𝐶√
𝐵

𝐴
cosh(√ 𝐵

2𝐴
𝜉)

−𝑎√2 sinh(√ 𝐵

2𝐴
𝜉))

−1

) .

(15)

3.2. Using Modified Simplest Equation Method. Suppose the
solution of (9) is the form

𝜙 (𝜉) = 𝑎
0
+ 𝑎
1
(
𝜓 (𝜉)

𝜓 (𝜉)
) , (16)

where 𝑎
0
and 𝑎

1
are constants, such that 𝑎

1
̸= 0, and 𝜙(𝜉)

is an unspecified function to be determined. It is simple to
calculate that

𝜙

= 𝑎
1
(
𝜓

𝜓
− (

𝜓

𝜓
)

2

) ,

𝜙

= 𝑎
1
(
𝜓

𝜓
) − 3𝑎

1
(
𝜓𝜓

𝜓2
) + 2𝑎

1
(
𝜓

𝜓
)

3

,

𝜙
3
= 𝑎
3

1
(
𝜓

𝜓
)

3

+ 3𝑎
2

1
𝑎
0
(
𝜓

𝜓
)

2

+ 3𝑎
1
𝑎
2

0
(
𝜓

𝜓
) + 𝑎
3

0
.

(17)

Substituting the values of 𝜙, 𝜙, and 𝜙3 into (9) and
equating the coefficients of 𝜓0, 𝜓−1, 𝜓−2, and 𝜓−3 to zero
yield

𝜓
0
: 𝐶𝑎
3

0
+ 𝐵𝑎
0
= 0, (18)

𝜓
−1
: (3𝐶𝑎

2

0
+ 𝐵)𝜓


+ 𝐴𝜓

= 0, (19)

𝜓
−2
: −3𝐴𝜓


+ 3𝐶𝑎

0
𝑎
1
𝜓

= 0, (20)

𝜓
−3
: (𝐶𝑎
3

1
+ 2𝐴𝑎

1
) (𝜓

)
3

= 0. (21)

Solving (18), we obtain

𝑎
0
= 0, 𝑎

0
= ±𝑖√

𝐵

𝐶
. (22)

And solving (21), we obtain

𝑎
1
= ±𝑖√

2𝐴

𝐶
, since 𝑎

1
̸= 0. (23)
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Case 1. When 𝑎
0
= 0, we obtain trivial solution; therefore, the

case is rejected.

Case 2. When 𝑎
0
= ±𝑖√𝐵/𝐶 and 𝑎

1
= ±𝑖√2𝐴/𝐶, (19) and

(20) yield

𝜓

𝜓
+ √

2𝐵

𝐴
= 0. (24)

Integrating (24) with respect to 𝜉, we obtain

𝜓

= 𝐶
1
exp(−√2𝐵

𝐴
𝜉) . (25)

Using (25), from (20), we obtain

𝜓

= −√

𝐴

2𝐵
𝐶
1
exp(−√2𝐵

𝐴
𝜉) . (26)

Upon integration, we obtain

𝜓 =
𝐴𝐶
1

2𝐵
exp(−√2𝐵

𝐴
𝜉) + 𝐶

2
, (27)

where 𝐶
1
and 𝐶

2
are constants of integration. Therefore, the

exact solution of (9) is

𝜙
7
(𝜉) = ±𝑖√

𝐵

𝐶
(1 −

2𝐴𝐶
1
exp (−√(2𝐵/𝐴)𝜉)

𝐴𝐶
1
exp (−√(2𝐵/𝐴)𝜉) + 2𝐵𝐶

2

) .

(28)

From (28), we obtain the exact solution of (9) which is

𝜙
8
(𝜉) = ± 𝑖√

𝐵

𝐶
(1 − (2𝐴𝐶

1
(cosh(√ 𝐵

2𝐴
𝜉)

− sinh(√ 𝐵

2𝐴
𝜉)))

× ((2𝐵𝐶
2
+ 𝐴𝐶
1
) cosh(√ 𝐵

2𝐴
𝜉)

+ (2𝐵𝐶
2
− 𝐴𝐶
1
) sinh(√ 𝐵

2𝐴
𝜉))

−1

).

(29)

We can arbitrarily choose the parameters 𝐶
1
and 𝐶

2
.

Therefore, if we set 𝐶
1
= 2𝐵𝐶

2
/𝐴, (29) reduces to

𝜙
9
(𝜉) = ±𝑖√

𝐵

𝐶
tanh(√ 𝐵

2𝐴
𝜉) . (30)

Again setting 𝐶
1
= −(2𝐵𝐶

2
/𝐴), (29) reduces to,

𝜙
10
(𝜉) = ±𝑖√

𝐵

𝐶
coth(√ 𝐵

2𝐴
𝜉) . (31)

Using hyperbolic function identities, from (30) and (31),
we obtain the following periodic solutions

𝜙
11
(𝜉) = ±√

𝐵

𝐶
tan(√−𝐵

2𝐴
𝜉) ,

𝜙
12
(𝜉) = ±√

𝐵

𝐶
cot(√−𝐵

2𝐴
𝜉) .

(32)

4. Exact Solutions of Some Class of NLPDEs

4.1.The PerturbedNonlinear Schrödinger’s Equation (NLSE) in
the Form [20]. Using

𝑖𝑢
𝑡
+ 𝑢
𝑥𝑥
+ 𝛼𝑢|𝑢|

2

+ 𝑖 [𝛾
1
𝑢
𝑥𝑥𝑥

+ 𝛾
2
|𝑢|
2
𝑢
𝑥
+ 𝛾
3
𝑢(|𝑢|
2
)
𝑥
] = 0,

(33)

where 𝛾
1
is the third order dispersion, 𝛾

2
is the nonlinear

dispersion, while 𝛾
3
is also a version of nonlinear dispersion.

We assume that (33) has exact solution in the form

𝑢 (𝑥, 𝑡) = 𝜙 (𝜉) exp (𝑖 (𝜆𝑥 − 𝜔𝑡)) , 𝜉 = 𝑘 (𝑥 − 𝑐𝑡) , (34)

where 𝜆, 𝜔, 𝑘, and 𝑐 are arbitrary constant to be determined.
Substituting (34) into (33), removing the common factor
exp(𝑖(𝜆𝑥 − 𝜔𝑡)), we have

𝑖 (𝛾
1
𝑘
3
𝜙

− 𝑘 (𝑐 − 2𝜆 + 3𝛾

1
𝜆
2
) 𝜙

+ 𝑘 (𝛾

2
+ 2𝛾
3
) 𝜙
2
𝜙

)

+𝑘2 (1 − 3𝛾
1
𝜆) 𝜙 + (𝜔 − 𝜆

2
+ 𝛾
1
𝜆
3
) 𝜙

+ (𝛼 − 𝛾
2
𝜆) 𝜙
3
= 0,

(35)

where 𝛾
𝑖
(𝑖 = 1, 2, and 3), 𝛼, and 𝑘 are positive constants and

the prime means differentiation with respect to 𝜉. Then we
have two equations as follows

𝛾
1
𝑘
2
𝜙

− (𝑐 − 2𝜆 + 3𝛾

1
𝜆
2
) 𝜙

+ (𝛾
2
+ 2𝛾
3
) 𝜙
2
𝜙

= 0,

(36)

𝑘
2
(1 − 3𝛾

1
𝜆) 𝜙

+ (𝜔 − 𝜆

2
+ 𝛾
1
𝜆
3
) 𝜙 + (𝛼 − 𝛾

2
𝜆) 𝜙
3
= 0.

(37)

Integrating (36) with respect to 𝜉 once and setting the
integration constant to be zero, then we have

𝛾
1
𝑘
2
𝜙

+ (2𝜆 − 𝑐 − 3𝛾

1
𝜆
2
) 𝜙 + (

1

3
𝛾
2
+
2

3
𝛾
3
)𝜙
3
= 0.

(38)

As (37) and (38) have the same solutions, we have the
following equation:

𝛾
1

1 − 3𝛾
1
𝜆
=
2𝜆 − 𝑐 − 3𝛾

1
𝜆2

𝜔 − 𝜆2 + 𝛾
1
𝜆3

=
𝐶

𝛼 − 𝛾
2
𝜆
, (39)

where 𝐶 = (1/3)𝛾
2
+ (2/3)𝛾

3
.

From (39), we can obtain

𝜔 =
(𝛼 − 𝛾

2
𝜆) (2𝜆 − 𝑐 − 3𝛾

1
𝜆2)

𝐶
+ 𝜆
2
− 𝛾
1
𝜆
3
,

𝜆 =
𝐶 − 𝛼𝜆

1

3𝐶𝛾
1
− 𝛾
1
𝛾
2

.

(40)
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Based on the conclusion just mentioned, we only solve
(38) or (37), instead of both (37) and (38), provided that (37)
and (36) are replaced by (40), respectively, we get

𝐴𝜙


(𝜉) + 𝐵𝜙 (𝜉) + 𝐶𝜙
3

(𝜉) = 0. (41)

Equation (41) is identical to (9) and𝐴, 𝐵, and𝐶 are defin-
ed by

𝐴 = 𝛾
1
𝑘
2
, 𝐵 = 2𝜆 − 𝑐 − 3𝛾

1
𝜆
2
, 𝐶 =

1

3
𝛾
2
+
2

3
𝛾
3
.

(42)

Then, solutions of (33) are defined as follows:

𝑢 (𝑥, 𝑡) = 𝜙 (𝜉) exp (𝑖 (𝜆𝑥 − 𝜔𝑡)) , 𝜉 = 𝑘 (𝑥 − 𝑐𝑡) ,

𝜔 =
(𝛼 − 𝛾

2
𝜆) (2𝜆 − 𝑐 − 3𝛾

1
𝜆2)

𝐶
+ 𝜆
2
− 𝛾
1
𝜆
3
,

𝜆 =
𝐶 − 𝛼𝜆

1

3𝐶𝛾
1
− 𝛾
1
𝛾
2

,

(43)

where 𝜙(𝜉), appearing in these solutions, is given by relations
(12), (15), and (28)–(32). 𝐴, 𝐵, and 𝐶 are defined by (42).

4.2. The Klein-Gordon-Zakharov (KGZ) System [21].
Consider

𝐸
𝑡𝑡
− 𝐸
𝑥𝑥
+ 𝐸 − 𝛼𝑁𝐸 − 𝛽|𝐸|

2
𝐸 = 0,

𝑁
𝑡𝑡
− 𝑁
𝑥𝑥
= 𝛾(|𝐸|

2
)
𝑥𝑥
,

(44)

wherein the complex valued unknown function 𝐸 = 𝐸(𝑥, 𝑡)

denotes the fast time scale component of electric field raised
by electrons, and the real valued unknown function 𝑁 =

𝑁(𝑥, 𝑡) represents the deviation of ion density. 𝛼, 𝛽 and 𝛾 are
some real parameters.

We assume that

𝐸 (𝑥, 𝑡) = 𝜙 (𝜉) exp (𝑖 (𝑘𝑥 + 𝜔𝑡)) , 𝑁 = 𝑁 (𝜉) ,

𝜉 = 𝜔𝑥 + 𝑘𝑡.
(45)

Substituting (45) into (44), we have

−𝛼𝑁𝜙 − 𝛽𝜙
3
+ (𝑘
2
− 𝜔
2
+ 1) 𝜙 + (𝑘

2
− 𝜔
2
) 𝜙

= 0, (46)

(𝑘
2
− 𝜔
2
)𝑁

− 𝛾𝜔
2
(2𝜙
2

+ 2𝜙𝜙

) = 0. (47)

Integrating (47) with respect to 𝜉 twice and setting the
integration constant to be zero, then we have

𝑁 =
𝛾𝜔2

𝑘2 − 𝜔2
𝜙
2
. (48)

Substituting (48) into (46), we have

𝐴𝜙


(𝜉) + 𝐵𝜙 (𝜉) + 𝐶𝜙
3

(𝜉) = 0. (49)

Equation (49) is identical to (9) and 𝐴, 𝐵, and 𝐶 are
defined by

𝐴 = 𝑘
2
− 𝜔
2
, 𝐵 = 𝑘

2
− 𝜔
2
+ 1,

𝐶 = −(𝛽 +
𝛼𝛾𝜔2

𝑘2 − 𝜔2
) .

(50)

Then, solutions of the Klein-Gordon-Zakharov (KGZ)
system are defined as follows:

𝐸 (𝑥, 𝑡) = 𝜙 (𝜉) exp (𝑖 (𝑘𝑥 + 𝜔𝑡)) , 𝑁 =
𝛾𝜔2

𝑘2 − 𝜔2
𝜙
2
,

𝜉 = 𝜔𝑥 + 𝑘𝑡,

(51)

where 𝜙(𝜉) appearing in these solutions is given by relations
(12), (15), and (28)–(32). 𝐴, 𝐵, and 𝐶 are defined by (50).

4.3. A Class of Nonlinear Partial Differential Equations
(NPDEs). We consider a class of NLPDEs with constant
coefficients [22]

𝑖𝑢
𝑡
+ 𝜇 (𝑢

𝑥𝑥
+ 𝐷
1
𝑢
𝑦𝑦
) + 𝐸
1
|𝑢|
2
𝑢 + 𝐴

1
𝑢𝑛 = 0,

𝐷
2
𝑛
𝑡𝑡
+ (𝑛
𝑥𝑥
− 𝐸
2
𝑢
𝑦𝑦
) + 𝐴

2
(|𝑢|
2
)
𝑥𝑥
= 0,

(52)

where 𝜇,𝐷
𝑖
, 𝐸
𝑖
, and 𝐴

𝑖
(𝑖 = 1, 2) are real constants and

𝜇 ̸= 0, 𝐷
1
̸= 0, 𝐴
1
̸= 0, and 𝐴

2
̸= 0. Equations (52) are a class of

physically important equations. In fact, if one takes

𝜇 =
1

2
𝜅
2
, 𝐷

1
= 2𝜇, 𝐸

1
= 𝛼, 𝐴

1
= −1,

𝐷
2
= 0, 𝐸

2
= 𝐷
1
, 𝐴

2
= −2𝛼, 𝜅

2
= ±1,

(53)

then (52) represent the Davey-Stewartson (DS) equations
[23]

𝑖𝑢
𝑡
+
1

2
𝜅
2
(𝑢
𝑥𝑥
+ 𝜅
2
𝑢
𝑦𝑦
) + 𝛼|𝑢|

2
𝑢 − 𝑢𝑛 = 0,

𝑛
𝑥𝑥
− 𝜅
2
𝑛
𝑦𝑦
− 2𝛼(|𝑢|

2
)
𝑥𝑥
= 0.

(54)

If one takes

𝑛 = 𝑛 (𝑥, 𝑡) , that is, 𝑛
𝑦
= 0, 𝜇 = 1,

𝐷
1
= 0, 𝐸

1
= −2𝜆,

𝐸
2
= −1, 𝐴

2
= −1, 𝐴

1
= 2,

(55)

then (52) become generalized Zakharov (GZ) equations [24]

𝑖𝑢
𝑡
+ 𝑢
𝑥𝑥
− 2𝜆|𝑢|

2
𝑢 + 2𝑢𝑛 = 0,

𝑛
𝑡𝑡
− 𝑛
𝑥𝑥
+ (|𝑢|

2
)
𝑥𝑥
= 0.

(56)

Since 𝑢 is a complex function, we assume that

𝑢 (𝑥, 𝑡) = 𝜙 (𝜉) exp (𝑖 (𝑘𝑥 + 𝑙𝑦 − Ω𝑡)) ,

𝑛 = 𝑛 (𝜉) 𝜉 = 𝑝𝑥 + 𝑞𝑦 − 𝜔𝑡,
(57)
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where both 𝜙(𝜉) and 𝑛(𝜉) are real functions and 𝑘, 𝑙, 𝑝,

𝑞, Ω, and𝜔 are constants to be determined later. Substituting
(57) into (52), we have the following ODE for 𝜙(𝜉) and 𝑛(𝜉):

𝐸
1
𝜙
3
+ (Ω − 𝜇 (𝑘

2
+ 𝐷
1
𝑙
2
) + 𝐴

1
𝑛) 𝜙 + 𝜇 (𝐷

1
𝑞
2
+ 𝑝
2
) 𝜙


+ 𝑖 (2𝜇 (𝑝𝑘 + 𝐷
1
𝑞𝑙) − 𝜔) 𝜙


= 0,

(58)

(𝐷
2
𝜔
2
+ 𝑝
2
− 𝐸
2
𝑞
2
) 𝑛

+ 𝐴
2
𝑝
2
(2𝜙
2

+ 2𝜙𝜙

) = 0. (59)

If we set

𝜔 = 2𝜇 (𝑝𝑘 + 𝐷
1
𝑞𝑙) , (60)

then (58) reduces to

𝐸
1
𝜙
3
+ (Ω − 𝜇 (𝑘

2
+ 𝐷
1
𝑙
2
) + 𝐴

1
𝑛) 𝜙

+ 𝜇 (𝐷
1
𝑞
2
+ 𝑝
2
) 𝜙

= 0.

(61)

Integrating (59) twice to 𝜉, we get

𝑛 =
𝐷

𝐷
2
𝜔2 + 𝑝2 − 𝐸

2
𝑞2

−
𝐴
2
𝑝2

𝐷
2
𝜔2 + 𝑝2 − 𝐸

2
𝑞2
𝜙
2
, (62)

where𝐷 is the integrating constant and Substituting (62) into
(61) yields

𝐴𝜙

+ 𝐵𝜙 + 𝐶𝜙

3
= 0. (63)

Equation (63) is identical to (9) and 𝐴, 𝐵, and 𝐶 are
defined by

𝐴 = 𝜇 (𝐷
1
𝑞
2
+ 𝑝
2
) ,

𝐵 = Ω − 𝜇 (𝑘
2
+ 𝐷
1
𝑙
2
) +

𝐴
1
𝐷

𝐷
2
𝜔2 + 𝑝2 − 𝐸

2
𝑞2
,

𝐶 = 𝐸
1
−

𝐴
1
𝐴
2
𝑝
2

𝐷
2
𝜔2 + 𝑝2 − 𝐸

2
𝑞2
.

(64)

Then, solutions of (52) are defined as follows:

𝑢 (𝑥, 𝑦, 𝑡) = 𝜙 (𝜉) exp (𝑖 (𝑘𝑥 + 𝑙𝑦 − Ω𝑡)) ,

𝜉 = 𝑝𝑥 + 𝑞𝑦 − 𝜔𝑡, 𝜔 = 2𝜇 (𝑝𝑘 + 𝐷
1
𝑞𝑙) ,

𝑛 (𝑥, 𝑦, 𝑡) =
𝐷

𝐷
2
𝜔2 + 𝑝2 − 𝐸

2
𝑞2

−
𝐴
2
𝑝2

𝐷
2
𝜔2 + 𝑝2 − 𝐸

2
𝑞2
𝜙
2
,

(65)

where 𝜙(𝜉) appearing in these solutions is given by relations
(12), (15), and (28)–(32) and 𝐴, 𝐵, and 𝐶 are defined by (64).

We may obtain from (54) that

𝜔 = 𝜅
2
(𝑝𝑘 + 𝜅

2
𝑞𝑙) ,

𝑢 (𝑥, 𝑦, 𝑡) = 𝜙 (𝜉) exp (𝑖 (𝑘𝑥 + 𝑙𝑦 − Ω𝑡)) ,

𝑛 (𝑥, 𝑦, 𝑡) =
𝐷

𝜔2 − 𝜅2𝑞2
+

2𝛼𝑝2

𝜔2 − 𝜅2𝑞2
𝜙
2
,

(66)

where𝐷 is the integrating constant and then (54) reduce to

𝐴𝜙

+ 𝐵𝜙 + 𝐶𝜙

3
= 0. (67)

This equation coincides also with (9), where 𝐴, 𝐵, and 𝐶
are defined as follows:

𝐴 =
1

2
𝜅
2
(𝑝
2
+ 𝜅
2
𝑞
2
) ,

𝐵 = Ω −
1

2
𝜅
2
(𝑘
2
+ 𝜅
2
𝑙
2
) −

𝐷

𝜔2 − 𝜅2𝑞2
,

𝐶 = 𝛼 −
2𝛼𝑝2

𝜔2 − 𝜅2𝑞2
,

(68)

where 𝜉 = 𝑝𝑥 + 𝑞𝑦 − 𝜔𝑡, 𝜙(𝜉) appearing in these solutions is
given by relations (12), (15), and (28)–(32) and𝐴, 𝐵, and𝐶 are
defined by (68).

We may obtain from (56) that

𝜔 = 2𝑝𝑘,

𝑢 (𝑥, 𝑡) = 𝜙 (𝜉) exp (𝑖 (𝑘𝑥 − Ω𝑡)) ,

𝑛 (𝑥, 𝑡) =
𝐷

𝑝2 − 𝜔2
+

𝑝2

𝑝2 − 𝜔2
𝜙
2
,

(69)

where𝐷 is the integrating constant and then (56) reduce to

𝐴𝜙

+ 𝐵𝜙 + 𝐶𝜙

3
= 0. (70)

This equation coincides also with (9), where 𝐴, 𝐵, and 𝐶
are defined as follows:

𝐴 = 𝑝
2
, 𝐵 = Ω − 𝑘

2
+

2𝐷

𝑝2 − 𝜔2
,

𝐶 = 2(
𝑝2

𝑝2 − 𝜔2
− 𝜆) ,

(71)

where 𝜉 = 𝑝𝑥 − 𝜔𝑡, 𝜙(𝜉) appearing in these solutions is
given by relations (12), (15), and (28)–(32) and 𝐴, 𝐵, and 𝐶
are defined by (71).

5. Conclusions

The simplest equation method is a very powerful mathemat-
ical technique for finding exact solutions of nonlinear ordi-
nary differential equations, and the elliptic-like equation is
one of the most important auxiliary equations because many
nonlinear evolution equations, such as the perturbed nonlin-
ear Schrödinger’s equation, the Klein-Gordon-Zakharov sys-
tem, the generalizedDavey-Stewartson equations, theDavey-
Stewartson equations, the generalized Zakharov equations,
the Hamilton amplitude equation, the generalized Hirota-
Satsuma coupled KdV system, and the generalized ZK-
BBM equation, can be converted to this equation using the
travelling wave reduction.

In this paper, we apply the simplest equation method and
the modified simplest equation method to derive the exact
solutions of the elliptic-like equation. The exact solutions of
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the perturbed nonlinear Schrödinger’s equation, the Klein-
Gordon-Zakharov system, the generalizedDavey-Stewartson
equations, the Davey-Stewartson equations, and the gen-
eralized Zakharov equations are derived. Comparing the
currently proposed method with other methods, such as the
(𝐺
/𝐺)-expansion method, the various extended hyperbolic

methods, and the exp-function method, we might conclude
that some exact solutions that we obtained can be inves-
tigated using these methods with the aid of the symbolic
computation software, such as Matlab, Mathematica, and
Maple to facilitate the complicated algebraic computations.
But, by means of the simplest equation method and the
modified simplest equation method the exact solutions to
these equations have been gained in this paper without using
the symbolic computation software since the computations
are simple. This study shows that the simplest equation
method and the modified simplest equation method are
muchmore simple than the othermethods and can be applied
to many other nonlinear evolution equations.
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