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We propose diverse upper bounds for the solution matrix of the continuous algebraic Riccati matrix equation (CARE) by building
the equivalent form of the CARE and using some matrix inequalities and linear algebraic techniques. Finally, numerical example is
given to demonstrate the effectiveness of the obtained results in this work as compared with some existing results in the literature.
These new bounds are less restrictive and provide more efficient results in some cases.

1. Introduction

In many areas of optimal control [1–3], robust control [1],
robust stability [4], filter design [5], stability theory and anal-
ysis [6–8], control design [9] in control theory [10, 11] includ-
ing optimization stability theory, and transient performance
performance nonlinear systems [12], the algebraic Riccati and
Lyapunov matrix equations play an important role.

For example, consider the following linear system such
that 𝐴 ∈ R𝑛×𝑛, 𝐵 ∈ R𝑛×𝑚, 𝑥

0
∈ R𝑛 [13]:

�̇� (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) ,

𝑥 (0) = 𝑥
0
,

(1)

with the state feedback control

𝑢 (𝑡) = −𝐾𝑥 (𝑡) , 𝐾 = 𝐵
𝑇

𝑃, (2)

and the performance index

𝐽 = ∫

∞

0

(𝑥
𝑇

𝑄𝑥 + 𝑢
𝑇

𝑢) 𝑑𝑡, (3)

where 𝑅 = 𝐵𝐵
𝑇

∈ R𝑛×𝑛, 𝑄 ∈ R𝑛×𝑛 is positive semidefinite
matrix, and 𝑃 is the positive semidefinite solution to the con-
tinuous algebraic Riccati matrix equation (CARE)

𝐴𝑃 + 𝑃𝐴
𝑇

− 𝑃𝑅𝑃 + 𝑄 = 0. (4)

When 𝐵 = 0 and 𝐴 is stable matrix, the CARE (4) becomes
the continuous algebraic Lyapunov matrix equation (CALE)

𝐴
𝑇

𝑃 + 𝑃𝐴 = −𝑄. (5)

It is assumed that the pair (𝐴, 𝑅1/2) is stabilizable. Then
the CARE (4) has a unique symmetric positive semidefinite
stabilizing solution if the pair (𝐴, 𝑄1/2) is observable.

The problem of estimating solution bounds for the
algebraic Riccati and Lyapunov matrix equations has widely
been considered in the recent years, since these equations are
widely used in many fields of control system analysis and
design. A number of works have reported numerical algo-
rithms to get the exact solution of the mentioned equations
[7]. However, we should note that the analytical solution of
these equations has some complications and computational
burdens, specially, when the dimensions of the systemmatri-
ces increase. Thus, for some applications such as stability
analysis [8], it is the only preferred solutionmatrix bounds for
the exact solution that can be obtained without hard and
complicated burdens. Moreover, as mentioned in [12], in
practice, the solution matrix bounds can also be used as
approximations of the exact solution or initial guesses in the
numerical algorithms for the exact solution [10].

The existing results obtained during 1974–1994 have been
summarized by Kwon et al. [14] only including all eigenvalue
bounds such as the extreme eigenvalues, the summation,
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the trace, majorization inequalities, the product, and the
determinant. Unfortunately, by this time, the upper matrix
bounds for the solution of the CARE (4) have not been
proposed in the literature. However, Lee in [15] has proposed
upper and lower matrix bounds for the CARE (4) and hence-
forthmany reports have been presented for the upper [16–20]
and lower [18, 19, 21] bounds for the solution of the CARE (4).
As matrix bounds include all eigenvalue bounds [14, 22, 23]
particularly the minimum and maximum eigenvalues, trace
[10, 24, 25], determinant [14], and norm [26] bounds, it is
seen that they are the most general and useful.Therefore, this
paper presents upper matrix bounds for the solution of the
CARE (4) by utilizing various matrix identities and matrix
inequalities.

LetR𝑛×𝑚 be the set of 𝑛×𝑚 realmatrices. In this paper, we
denote the eigenvalues of an 𝑛×𝑛 real matrix by 𝜆

𝑖
(𝑋); if𝑋 ∈

R𝑛×𝑛 is a symmetric matrix, then its eigenvalues are arranged
in the nonincreasing order 𝜆

1
(𝑋) ≥ 𝜆

2
(𝑋) ≥ ⋅ ⋅ ⋅ ≥ 𝜆

𝑛
(𝑋).

For 𝑋 ∈ R𝑛×𝑚, suppose that the singular values of 𝑋 are
ordered in nonincreasing form; that is, 𝑠

1
(𝑋) ≥ 𝑠

2
(𝑋) ≥ ⋅ ⋅ ⋅ ≥

𝑠
𝑛
(𝑋). Also, let tr(𝑋), 𝑋𝑇, 𝑋−1, and det(𝑋) denote the trace,

transpose, inverse, determinant, respectively. Additionally,
the spectral condition number of any matrix 𝑋 is defined by
𝜅
2
(𝑋) = 𝑠

1
(𝑋)𝑠
1
(𝑋
−1

). Write 𝑋 ≥ (>)0, if 𝑋 is a positive
semidefinite (positive definite) matrix. For the symmetric
matrices of the same size 𝑋 and 𝑌, if 𝑋 − 𝑌 is positive
semidefinite, we write 𝑋 ≥ 𝑌 or 𝑌 ≤ 𝑋. Then, Weyl’s mono-
tonicity principle means that 𝑌 ≤ 𝑋 leads to 𝜆

𝑖
(𝑌) ≤ 𝜆

𝑖
(𝑋),

𝑖 = 1, 2, . . . , 𝑛. The identity matrix in R𝑛×𝑛 is shown by 𝐼.
The following lemmas are used to prove the main result

of this paper.

Lemma 1 (see [27, 28]). Let 𝑋 ∈ R𝑛×𝑛 be symmetric matrix.
Then the following inequality holds:

𝜆
𝑛
(𝑋) 𝐼 ≤ 𝑋 ≤ 𝜆

1
(𝑋) 𝐼. (6)

Lemma 2 (see [27, 28]). For any matrix 𝐴 ∈ R𝑛×𝑚 and any
positive semidefinite matrices 𝑋,𝑌 ∈ R𝑛×𝑛 such that 𝑋 ≥ 𝑌 >

(≥)0, it holds that 𝐴𝑇𝑋𝐴 ≥ 𝐴
𝑇

𝑌𝐴, with strict inequality if 𝑋
and 𝑌 are positive definite and 𝐴 is of full rank.

Lemma 3 (see [27, 28]). For any symmetric matrices 𝑋,𝑌 ∈

R𝑛×𝑛, the following inequality holds:

𝜆
𝑖+𝑗−1

(𝑋 + 𝑌) ≤ 𝜆
𝑗
(𝑋) + 𝜆

𝑖
(𝑌) ,

𝑖 + 𝑗 ≤ 𝑛 + 1, 1 ≤ 𝑖, 𝑗 ≤ 𝑛.

(7)

Lemma 4 (see [28]). Let 𝑋,𝑌 ∈ R𝑛×𝑛, for 𝑖 = 1, 2, . . . , 𝑛, one
has

𝑠
𝑖
(𝑋 + 𝑌) ≤ 𝑠

𝑖
(𝑋) + 𝑠

1
(𝑌) . (8)

Lemma 5 (see [28]). Let 𝑋 ∈ R𝑚×𝑛, 𝑌 ∈ R𝑛×𝑚, for 𝑖 =
1, 2, . . . , 𝑛, one has

𝑠
𝑖
(𝑋𝑌) ≤ 𝑠

𝑖
(𝑋) 𝑠
1
(𝑌) . (9)

Lemma 6 (see [29]). Let 𝑋 ∈ R𝑛×𝑛, for 𝑖 = 1, 2, . . . , 𝑛, then



𝜆
𝑖
(
𝐴 + 𝐴

𝑇

2
)



≤ 𝑠
𝑖
(𝐴) . (10)

Lemma 7 (see [30]). The following matrix inequality:

(
𝑊 𝑆

𝑆
𝑇

𝑉
) > 0, (11)

where𝑊 = 𝑊
𝑇 and 𝑉 = 𝑉𝑇, is equivalent to either

𝑉 > 0, 𝑊 − 𝑆𝑉
−1

𝑆
𝑇

> 0, (12)

or

𝑊 > 0, 𝑉 − 𝑆
𝑇

𝑊
−1

𝑆 > 0. (13)

Lemma 8 (see [17]). The positive semidefinite solution 𝑃 of
the CARE (4) has the following upper bound on its maximal
eigenvalue:

𝜆
1
(𝑃) ≤ 𝜆

1
(𝐷
𝑇

𝐷)

𝜆
1
[(𝑄 + 𝐾

𝑇

𝐾)𝐷
𝑇

𝐷]

𝜆
𝑛
(𝑍𝐷𝑇𝐷)

≡ 𝜂, (14)

where𝐾 is anymatrix stabilizing𝐴+𝐵𝐾 (i.e.,Re(𝜆
𝑖
(𝐴+𝐵𝐾)) <

0 for all 𝑖) and the nonsingular matrix 𝐷 and positive definite
matrix 𝑍 are chosen to yield the LMI

(𝐴 + 𝐵𝐾)
𝑇

𝐷
𝑇

𝐷 + 𝐷
𝑇

𝐷 (𝐴 + 𝐵𝐾) ≤ −𝑍. (15)

This eigenvalue upper bound (14) is always calculated if there
exists a unique positive semidefinite solution of the CARE (4).

2. Main Results

Zhang and Liu in [19] obtained the lower and upper bounds
for the solution of the CARE (4) which improve the results
in [21]. Also, Lee in [18] proposed upper and lower bounds
for the solution of the CARE (4) by considering a different
approach. In this section,wewill present diverse uppermatrix
bounds for the solutionmatrix of the CARE (4) in the light of
the reported results in [18, 19], by utilizing the above lemmas
and generating some matrix identities.

Theorem 9. Assume that 𝑄 is symmetric positive definite and
there exists a unique symmetric positive semidefinite solution𝑃
to the CARE (4). Then 𝑃 satisfies the following inequality:

𝑃 ≤ {
1

1 − 𝜆
1
(𝐼 − 𝜀𝑅)

× {𝑀 + 2𝜑
1
𝜀𝜆
1
(𝐼 − 𝜀𝑅) 𝑠

1
[𝐴(𝐼 − 𝜀𝑅)

−1

] 𝐼} }

1/2

≡ 𝑃
𝑢1
(𝜀, 𝐴, 𝑄, 𝑅) ,

(16)
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where the positive semidefinite matrix𝑀
1
and the positive con-

stant 𝛿 are defined by

𝑀 = 𝜀𝑄 − 𝜀
2

𝐴(𝐼 − 𝜀𝑅)
−1

𝐴
𝑇

+ 𝜀
2

𝜆
1
(𝐼 − 𝜀𝑅)𝐴(𝐼 − 𝜀𝑅)

−2

𝐴
𝑇

,

𝛿 =

𝜀𝜆
1
(𝐼 − 𝜀𝑅) 𝑠

1
[𝐴(𝐼 − 𝜀𝑅)

−1

]

1 − 𝜆
1
(𝐼 − 𝜀𝑅)

,

(17)

where 𝜀 is any positive constant such that

0 < 𝜀 <

𝑅 + 𝐴

𝑇

𝑄
−1

𝐴


−1

, (18)

and positive constant 𝜑
1
is defined by

𝜑
1
≡

1

1 − 𝜆
1
(𝐼 − 𝜀𝑅)

× {{[1 − 𝜆
1
(𝐼 − 𝜀𝑅)] 𝜆

1
(𝑀) + 𝛿

2

}
1/2

+ 𝛿} .

(19)

Proof. By adding and subtracting (1/𝜀)𝑃𝑃 + 𝐴((1/𝜀)(𝐼 −

𝑅))
−1

𝐴
𝑇 from (4), one gets

[𝑃 + 𝐴(
1

𝜀
𝐼 − 𝑅)

−1

] (
1

𝜀
𝐼 − 𝑅) [𝑃 + 𝐴(

1

𝜀
𝐼 − 𝑅)

−1

]

𝑇

−
1

𝜀
𝑃𝑃 − 𝐴(

1

𝜀
𝐼 − 𝑅)

−1

𝐴
𝑇

+ 𝑄 = 0,

(20)

therefore,

[𝑃 + 𝐴(
1

𝜀
𝐼 − 𝑅)

−1

] (
1

𝜀
𝐼 − 𝑅) [𝑃 + 𝐴(

1

𝜀
𝐼 − 𝑅)

−1

]

𝑇

=
1

𝜀
𝑃𝑃 + 𝐴(

1

𝜀
𝐼 − 𝑅)

−1

𝐴
𝑇

− 𝑄.

(21)

Applying Lemmas 1 and 2 to (21) gives

1

𝜀
𝑃𝑃 + 𝐴(

1

𝜀
𝐼 − 𝑅)

−1

𝐴
𝑇

− 𝑄

= [𝑃 + 𝐴(
1

𝜀
𝐼 − 𝑅)

−1

] (
1

𝜀
𝐼 − 𝑅)

× [𝑃 + 𝐴(
1

𝜀
𝐼 − 𝑅)

−1

]

𝑇

≤ 𝜆
1
(
1

𝜀
𝐼 − 𝑅) [𝑃 + 𝐴(

1

𝜀
𝐼 − 𝑅)

−1

]

× [𝑃 + 𝐴(
1

𝜀
𝐼 − 𝑅)

−1

]

𝑇

≤ 𝜆
1
(
1

𝜀
𝐼 − 𝑅) [𝑃

2

+ 𝐴(
1

𝜀
𝐼 − 𝑅)

−2

𝐴
𝑇

+𝑃(
1

𝜀
𝐼 − 𝑅)

−1

𝐴
𝑇

+ 𝐴(
1

𝜀
𝐼 − 𝑅)

−1

𝑃] .

(22)

For the part 𝑃((1/𝜀)𝐼 − 𝑅)−1𝐴𝑇 + 𝐴((1/𝜀)𝐼 − 𝑅)−1𝑃 of (22),
applying Lemmas 1, 6, and 5, respectively, shows that

𝑃(
1

𝜀
𝐼 − 𝑅)

−1

𝐴
𝑇

+ 𝐴(
1

𝜀
𝐼 − 𝑅)

−1

𝑃

≤ 𝜆
1
(𝑃(

1

𝜀
𝐼 − 𝑅)

−1

𝐴
𝑇

+ 𝐴(
1

𝜀
𝐼 − 𝑅)

−1

𝑃) 𝐼

≤



𝜆
1
(𝑃(

1

𝜀
𝐼 − 𝑅)

−1

𝐴
𝑇

+ 𝐴(
1

𝜀
𝐼 − 𝑅)

−1

𝑃) 𝐼



≤ 2𝑠
1
(𝑃(

1

𝜀
𝐼 − 𝑅)

−1

𝐴
𝑇

) 𝐼

≤ 2𝜆
1
(𝑃) 𝑠
1
(𝐴(

1

𝜀
𝐼 − 𝑅)

−1

) 𝐼.

(23)

Thus, in light of the fact (23), (22) becomes

1

𝜀
𝑃𝑃 + 𝐴(

1

𝜀
𝐼 − 𝑅)

−1

𝐴
𝑇

− 𝑄

≤ 𝜆
1
(
1

𝜀
𝐼 − 𝑅) [𝑃

2

+ 𝐴(
1

𝜀
𝐼 − 𝑅)

−2

𝐴
𝑇

+ 2𝜆
1
(𝑃) 𝑠
1
(𝐴(

1

𝜀
𝐼 − 𝑅)

−1

) 𝐼] .

(24)

If 𝑄 > 0 and 𝜀 satisfies (18), then

𝐼 − 𝜀𝑅 − 𝜀𝐴
𝑇

𝑄
−1

𝐴 > 0, 𝜀𝑄 > 0. (25)

By the application of the Schur complement formula of
Lemma 7 to (25), we can say that the above inequalities are
satisfied if and only if

(
𝜀𝑄 𝜀𝐴

𝜀𝐴
𝑇

𝐼 − 𝜀𝑅
) > 0, (26)

which means that

𝜀𝑄 − 𝜀
2

𝐴 (𝐼 − 𝜀𝑅)𝐴
𝑇

> 0, 𝐼 − 𝜀𝑅 > 0. (27)

Therefore, we say that (24) is equivalent to

𝑃
2

≤ 𝜆
1
(𝐼 − 𝜀𝑅) [𝑃

2

+ 𝐴(
1

𝜀
𝐼 − 𝑅)

−2

𝐴
𝑇

+2𝜆
1
(𝑃) 𝑠
1
(𝐴(

1

𝜀
𝐼 − 𝑅)

−1

) 𝐼]

+ 𝜀𝑄 − 𝜀
2

𝐴(𝐼 − 𝜀𝑅)
−1

𝐴
𝑇

.

(28)

Since 1 − 𝜆
1
(𝐼 − 𝜀𝑅) > 0, (28) can be rewritten as

𝑃
2

≤
1

1 − 𝜆
1
(𝐼 − 𝜀𝑅)

× {𝜀𝑄 − 𝜀
2

𝐴(𝐼 − 𝜀𝑅)
−1

𝐴
𝑇

+ 𝜀
2

𝜆
1
(𝐼 − 𝜀𝑅)𝐴(𝐼 − 𝜀𝑅)

−2

𝐴
𝑇

+2𝜆
1
(𝑃) 𝜀𝜆

1
(𝐼 − 𝜀𝑅) 𝑠

1
[𝐴(𝐼 − 𝜀𝑅)

−1

] 𝐼} .

(29)
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Utilizing the relations in Lemmas 1 and 3, (29) becomes

𝜆
1
(𝑃
2

)

≤
1

1 − 𝜆
1
(𝐼 − 𝜀𝑅)

𝜆
1

× {[𝜀𝑄 − 𝜀
2

𝐴(𝐼 − 𝜀𝑅)
−1

𝐴
𝑇

+𝜀
2

𝜆
1
(𝐼 − 𝜀𝑅)𝐴(𝐼 − 𝜀𝑅)

−2

𝐴
𝑇

]

+2𝜆
1
(𝑃) 𝜀𝜆

1
(𝐼 − 𝜀𝑅) 𝑠

1
[𝐴(𝐼 − 𝜀𝑅)

−1

]}

≤
1

1 − 𝜆
1
(𝐼 − 𝜀𝑅)

× {𝜆
1
[𝜀𝑄 − 𝜀

2

𝐴(𝐼 − 𝜀𝑅)
−1

𝐴
𝑇

+𝜀
2

𝜆
1
(𝐼 − 𝜀𝑅)𝐴(𝐼 − 𝜀𝑅)

−2

𝐴
𝑇

]

+2𝜆
1
(𝑃) 𝜀𝜆

1
(𝐼 − 𝜀𝑅) 𝑠

1
[𝐴(𝐼 − 𝜀𝑅)

−1

]} .

(30)

Solving (30) according to 𝜆
1
(𝑃) gives

𝜆
1
(𝑃) ≤

{

{

{

1

1 − 𝜆
1
(𝐼 − 𝜀𝑅)

𝜆
1

× [𝜀𝑄 − 𝜀
2

𝐴(𝐼 − 𝜀𝑅)
−1

𝐴
𝑇

+𝜀
2

𝜆
1
(𝐼 − 𝜀𝑅)𝐴(𝐼 − 𝜀𝑅)

−2

𝐴
𝑇

]

+[

𝜀𝜆
1
(𝐼 − 𝜀𝑅) 𝑠

1
[𝐴(𝐼 − 𝜀𝑅)

−1

]

1 − 𝜆
1
(𝐼 − 𝜀𝑅)

]

2

}

}

}

1/2

+

𝜀𝜆
1
(𝐼 − 𝜀𝑅) 𝑠

1
[𝐴(𝐼 − 𝜀𝑅)

−1

]

1 − 𝜆
1
(𝐼 − 𝜀𝑅)

≡ 𝜑
1
.

(31)

Substituting (31) into (29) results in the upper bound

𝑃 ≤ {
1

1 − 𝜆
1
(𝐼 − 𝜀𝑅)

× {𝜀𝑄 − 𝜀
2

𝐴(𝐼 − 𝜀𝑅)
−1

𝐴
𝑇

+ 𝜀
2

𝜆
1
(𝐼 − 𝜀𝑅)𝐴(𝐼 − 𝜀𝑅)

−2

𝐴
𝑇

+2𝜑
1
𝜀𝜆
1
(𝐼 − 𝜀𝑅) 𝑠

1
[𝐴(𝐼 − 𝜀𝑅)

−1

] 𝐼} }

1/2

.

(32)

This completes the proof.

Remark 10. The inequality (3.5) in [19] is clearly as follows:

𝑃
2

≤ 𝜆
1
(𝐼 − 𝜀𝑅) {𝜆

2

1
(𝑃) + 2𝜆

1
(𝑃) 𝜀𝑠

1
[𝐴(𝐼 − 𝜀𝑅)

−1

]

+ 𝜀
2

𝑠
2

1
[𝐴(𝐼 − 𝜀𝑅)

−1

]}

+ 𝜀𝑄 − 𝜀
2

𝐴(𝐼 − 𝜀𝑅)
−1

𝐴
𝑇

.

(33)

Thus, when the inequality (28) is considered, from the facts

𝑃
2

≤ 𝜆
2

1
(𝑃) ,

[𝐴(𝐼 − 𝜀𝑅)
−1

] [𝐴(𝐼 − 𝜀𝑅)
−1

]
𝑇

≤ 𝑠
2

1
[𝐴(𝐼 − 𝜀𝑅)

−1

] ,

(34)

it is seen that the upper bound inTheorem 9 is always sharper
than the result given byTheorem 3.1 in [19].

Remark 11. It is well known that most of the studies in the
literature have focused to derive the bounds for themaximum
andminimum eigenvalues, the trace, and the determinant for
the solution of the CARE (4); however, the matrix solution
bounds are quite restriction. Among the mentioned bounds,
the matrix solution bounds are the most useful and efficient
because other bounds that are dependent on eigenvalue can
be derived directly from matrix solution bounds via mono-
tonicity.

By using Theorem 9, we can derive the following result
immediately.

Corollary 12. Assume that 𝑄 is symmetric positive definite
and there exists a unique symmetric positive semidefinite solu-
tion 𝑃 to the CARE (4). Then 𝑃 satisfies the following upper
eigenvalue bounds:

𝜆
𝑖
(𝑃) ≤ min

𝜀

𝜆
𝑖
(𝑃
𝑢1
(𝜀, 𝐴, 𝑄, 𝑅)) = 𝑃

1

𝑢1

≤ 𝜆
𝑖
(𝑃
𝑢1
(𝜀, 𝐴, 𝑄, 𝑅)) ,

tr (𝑃) ≤
𝑛

∑

𝑖=1

𝑃
1

𝑢1
≤ min
𝜀

tr (𝑃
𝑢1
(𝜀, 𝐴, 𝑄, 𝑅))

≤ tr (𝑃
𝑢1
(𝜀, 𝐴, 𝑄, 𝑅)) ,

det (𝑃) ≤
𝑛

∏

𝑖=1

𝑃
1

𝑢1
≤ min
𝜀

det (𝑃
𝑢1
(𝜀, 𝐴, 𝑄, 𝑅))

≤ det (𝑃
𝑢1
(𝜀, 𝐴, 𝑄, 𝑅)) ,

(35)

where 𝜀 satisfies (18) and 𝑃
𝑢1

is defined by (16).

By establishing the more general form than the matrix
identity used inTheorem 9 for the CARE (4), one gets the fol-
lowing upper bounds.

Theorem 13. Let𝑋 be any symmetric positive definite matrix.
Then the unique symmetric positive semidefinite solution 𝑃 to
the CARE (4) has the following upper bound

𝑃 ≤ 𝑀
−1/2

1
{𝑀
1/2

1
[𝑄 − 𝑋

1
+ 𝜆
1
(𝑋
−1

1
)

× [𝜂𝑠
1
(𝐴) + 𝜆

1
(𝑋
1
)]
2

𝐼]

× 𝑀
1/2

1
}
1/2

𝑀
−1/2

1

≡ 𝑃
𝑢2
(𝜂, 𝑋
1
, 𝐴, 𝑄, 𝑅) ,

(36)

where the positive definite matrix𝑋
1
is chosen so that

𝑀
1
≡ 𝐴
𝑇

𝑋
−1

1
𝐴 + 𝑅 > 0, (37)

and 𝜂 is defined by (14).
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Proof. By adding and subtracting 𝑋
1
+ 𝑃𝐴
𝑇

𝑋
−1

1
𝐴𝑃 to the

CARE (4), we can get

(𝑃𝐴
𝑇

+ 𝑋
1
)𝑋
−1

1
(𝑃𝐴
𝑇

+ 𝑋
1
)
𝑇

− 𝑃𝑅𝑃

+ 𝑄 − 𝑋
1
− 𝑃𝐴
𝑇

𝑋
−1

1
𝐴𝑃 = 0

(38)

which is equivalent to

0 < 𝑃 (𝑅 + 𝐴
𝑇

𝑋
−1

1
𝐴)𝑃

= 𝑄 − 𝑋
1
+ (𝑃𝐴

𝑇

+ 𝑋
1
)𝑋
−1

1
(𝑃𝐴
𝑇

+ 𝑋
1
)
𝑇

.

(39)

Introducing Lemmas 1, 2, 4, 5, and 8, respectively, to (39) gives

0 < 𝑃 (𝑅 + 𝐴
𝑇

𝑋
−1

1
𝐴)𝑃

= 𝑄 − 𝑋
1
+ (𝑃𝐴

𝑇

+ 𝑋
1
)𝑋
−1

1
(𝑃𝐴
𝑇

+ 𝑋
1
)
𝑇

≤ 𝑄 − 𝑋
1
+ 𝜆
1
(𝑋
−1

1
) [(𝑃𝐴

𝑇

+ 𝑋
1
) (𝑃𝐴

𝑇

+ 𝑋
1
)
𝑇

]

≤ 𝑄 − 𝑋
1
+ 𝜆
1
(𝑋
−1

1
) [𝑠
2

1
(𝑃𝐴
𝑇

+ 𝑋
1
)] 𝐼

≤ 𝑄 − 𝑋
1
+ 𝜆
1
(𝑋
−1

1
) [𝑠
1
(𝑃𝐴
𝑇

) + 𝜆
1
(𝑋
1
)]
2

𝐼

≤ 𝑄 − 𝑋
1
+ 𝜆
1
(𝑋
−1

1
) [𝜆
1
(𝑃) 𝑠
1
(𝐴) + 𝜆

1
(𝑋
1
)]
2

𝐼

≤ 𝑄 − 𝑋
1
+ 𝜆
1
(𝑋
−1

1
) [𝜂𝑠
1
(𝐴) + 𝜆

1
(𝑋
1
)]
2

𝐼.

(40)

By the definition (37) of𝑀
1
and pre- and postmultiplying𝑀

1

to (40) yields

(𝑀
1/2

1
𝑃𝑀
1/2

1
)
2

= 𝑀
1/2

1
𝑃𝑀
1
𝑃𝑀
1/2

1

≤ 𝑀
1/2

1
[𝑄 − 𝑋

1
+ 𝜆
1
(𝑋
−1

1
) [𝜂𝑠
1
(𝐴) + 𝜆

1
(𝑋
1
)]
2

𝐼]𝑀
1/2

1
.

(41)
Solving this inequality for 𝑃 shows the upper bound (36).

This builds the proof.

Remark 14. Note that for the upper bound (36), the matrices
𝑅 and 𝑄 don not have to be nonsingular. This means that the
upper bound proposed by Theorem 13 can always be com-
puted without any condition for positive definite matrix 𝑋

1

which arbitrarily is selected.

FromTheorem 13, we have the following corollaries.

Corollary 15. Thepositive semidefinite solution𝑃 to the CARE
(4) has

𝑃 ≤ {
1

𝜆
𝑛
(𝑀
1
)
[𝑄 − 𝑋

1

+𝜆
1
(𝑋
−1

1
) [𝜂𝑠
1
(𝐴) + 𝜆

1
(𝑋
1
)]
2

𝐼] }

1/2

≡ 𝑃
1

𝑢2
,

(42)
where 𝜂 and𝑀

1
for the positive definite matrix𝑋

1
are defined

by (14) and (37), respectively.

Proof. Applying Lemma 1 to the right side of (41) and solving
it with regard to 𝑃 give the upper bound 𝑃1

𝑢2
.

Corollary 16. The solution 𝑃 to the CARE (4) satisfies the fol-
lowing upper eigenvalue bounds:

𝜆
𝑖
(𝑃) ≤ min𝜆

𝑖
(𝑃
𝑢2
(𝜂, 𝑋
1
, 𝐴, 𝑄, 𝑅)) = 𝑃

∗

𝑢2

≤ 𝜆
𝑖
(𝑃
𝑢2
(𝜂, 𝑋
1
, 𝐴, 𝑄, 𝑅)) ,

tr (𝑃) ≤
𝑛

∑

𝑖=1

𝑃
∗

𝑢2
≤ min tr (Pu2 (𝜂,X1,A,Q,R))

≤ tr (𝑃
𝑢2
(𝜂, 𝑋
1
, 𝐴, 𝑄, 𝑅)) ,

det (𝑃) ≤
𝑛

∏

𝑖=1

𝑃
∗

𝑢2
≤ min det (Pu2 (𝜂,X1,A,Q,R))

≤ det (𝑃
𝑢2
(𝜂, 𝑋
1
, 𝐴, 𝑄, 𝑅)) ,

(43)

where 𝜂 is defined by (14) and the positive matrix𝑋
1
is selected

so as to satisfy the definition (37), respectively.

Theorem 17. Let 𝑃 be the positive semidefinite solution of the
CARE (4). Then 𝑃 has the upper bound

𝑃 ≤ 𝑀
−1/2

2
{𝑀
1/2

2
[𝑄 − 𝑋

2
+ 𝜆
1
(𝑋
−1

2
)𝑋
2

2

+2𝜅
2
(𝑋
2
) 𝑠
1
(𝐴) 𝜑
2
𝐼]𝑀
1/2

2
}
1/2

𝑀
−1/2

2

≡ 𝑃
𝑢3
(𝜑
2
, 𝑋
2
, 𝐴, 𝑄, 𝑅) ,

(44)

where the positive definite matrix𝑋
2
is chosen so that

𝑀
2
≡ 𝑅 − 𝐴

𝑇

[𝜆
1
(𝑋
−1

2
) 𝐼 − 𝑋

−1

2
]𝐴 > 0, (45)

and 𝜑
2
is defined by

𝜑
2
≡ {

1

𝜆
𝑛
(𝑀
2
)
𝜆
1
[𝑄 − 𝑋

2
+ 𝜆
1
(𝑋
−1

2
)𝑋
2

2
]

+
𝜅
2

2
(𝑋
2
) 𝑠
2

1
(𝐴)

𝜆2
𝑛
(𝑀
2
)

}

1/2

+
𝜅
2
(𝑋
2
) 𝑠
1
(𝐴)

𝜆
𝑛
(𝑀
2
)

.

(46)

Proof. By the use of the equality (39), from Lemmas 1 and 2,
we can write
𝑃 (𝑅 + 𝐴

𝑇

𝑋
−1

2
𝐴)𝑃

= 𝑄 − 𝑋
2
+ (𝑃𝐴

𝑇

+ 𝑋
2
)𝑋
−1

2
(𝑃𝐴
𝑇

+ 𝑋
2
)
𝑇

≤ 𝑄 − 𝑋
2
+ 𝜆
1
(𝑋
−1

2
) [𝑃𝐴
𝑇

𝐴𝑃 + 𝑃𝐴
𝑇

𝑋
2
+ 𝑋
2
𝐴𝑃 + 𝑋

2

2
] .

(47)

Having applied Lemmas 1, 6, and 5, respectively, to the part of
𝑃𝐴
𝑇

𝑋
2
+𝑋
2
𝐴𝑃 in (47), since the following inequalities hold:

𝑃𝐴
𝑇

𝑋
2
+ 𝑋
2
𝐴𝑃 ≤ 𝜆

1
(𝑃𝐴
𝑇

𝑋
2
+ 𝑋
2
𝐴𝑃) 𝐼

≤

𝜆
1
(𝑃𝐴
𝑇

𝑋
2
+ 𝑋
2
𝐴𝑃)


𝐼 ≤ 2𝑠

1
(𝑃𝐴
𝑇

𝑋
2
)

≤ 2𝜆
1
(𝑃) 𝑠
1
(𝐴) 𝜆
1
(𝑋
2
) 𝐼

(48)
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via the definition of𝑀
2
from (47), we arrive at

𝑃 [𝑅 − 𝐴
𝑇

(𝜆
1
(𝑋
−1

2
) 𝐼 − 𝑋

−1

2
)𝐴] 𝑃

= 𝑃𝑀
2
𝑃 ≤ 𝑄 − 𝑋

2
+ 𝜆
1
(𝑋
−1

2
)𝑋
2

2

+ 2𝜅
2
(𝑋
2
) 𝑠
1
(𝐴) 𝜆
1
(𝑃) 𝐼.

(49)

Applying Lemmas 1 and 3 to (49), we have

𝑃
2

≤
1

𝜆
𝑛
(𝑀
2
)
[𝑄 − 𝑋

2
+ 𝜆
1
(𝑋
−1

2
)𝑋
2

2
]

+ 2
𝜅
2
(𝑋
2
) 𝑠
1
(𝐴)

𝜆
𝑛
(𝑀
2
)

𝜆
1
(𝑃) 𝐼

≤
1

𝜆
𝑛
(𝑀
2
)
𝜆
1
[𝑄 − 𝑋

2
+ 𝜆
1
(𝑋
−1

2
)𝑋
2

2
] 𝐼

+ 2
𝜅
2
(𝑋
2
) 𝑠
1
(𝐴)

𝜆
𝑛
(𝑀
2
)

𝜆
1
(𝑃) 𝐼.

(50)

Then,

𝜆
1
(𝑃
2

) ≤
1

𝜆
𝑛
(𝑀
2
)
𝜆
1
[𝑄 − 𝑋

2
+ 𝜆
1
(𝑋
−1

2
)𝑋
2

2
]

+ 2
𝜅
2
(𝑋
2
) 𝑠
1
(𝐴)

𝜆
𝑛
(𝑀
2
)

𝜆
1
(𝑃) .

(51)

Solving (51) with respect to 𝜆
1
(𝑃) gives

𝜆
1
(𝑃) ≤ {

1

𝜆
𝑛
(𝑀
2
)
𝜆
1
[𝑄 − 𝑋

2
+ 𝜆
1
(𝑋
−1

2
)𝑋
2

2
]

+
𝜅
2

2
(𝑋
2
) 𝑠
2

1
(𝐴)

𝜆2
𝑛
(𝑀
2
)

}

1/2

+
𝜅
2
(𝑋
2
) 𝑠
1
(𝐴)

𝜆
𝑛
(𝑀
2
)

≡ 𝜑
2
.

(52)

Substituting 𝜑
2
into (49), we get

𝑃𝑀
2
𝑃 ≤ 𝑄 − 𝑋

2
+ 𝜆
1
(𝑋
−1

2
)𝑋
2

2
+ 2𝜅
2
(𝑋
2
) 𝑠
1
(𝐴) 𝜑
2
𝐼. (53)

Pre- and postmultiplying𝑀1/2
2

to (53) leads to

(𝑀
1/2

2
𝑃𝑀
1/2

2
)
2

≤ 𝑀
1/2

2
[𝑄 − 𝑋

2
+ 𝜆
1
(𝑋
−1

2
)𝑋
2

2

+2𝜅
2
(𝑋
2
) 𝑠
1
(𝐴) 𝜑
2
𝐼]𝑀
1/2

2
.

(54)

Therefore, by the nonsingularity of 𝑀
2
, the upper matrix

bound (44) is directly obtained by solving (54) with respect
to 𝑃.

The proof is finished.

According to Theorem 17, we can propose the following
corollaries.

Corollary 18. Thepositive semidefinite solution𝑃 to theCARE
(4) satisfies

𝑃 ≤ {
1

𝜆
𝑛
(𝑀
2
)
[𝑄 − 𝑋

2
+ 𝜆
1
(𝑋
−1

2
)𝑋
2

2

+2𝜅
2
(𝑋
2
) 𝑠
1
(𝐴) 𝜑
2
𝐼] }

1/2

≡ 𝑃
1

𝑢3
,

(55)

where the positive definitematrices𝑋
2
, and𝑀

2
and the positive

constant 𝜑
2
are defined by (45) and (46), respectively.

Proof. Substituting 𝜑
2
into (50), having solved (50) regard to

𝑃, we obtain the upper bound (55).

Corollary 19. Thepositive semidefinite solution𝑃 to theCARE
(4) has the following eigenvalue upper bounds:

𝜆
𝑖
(𝑃) ≤ min 𝜆

𝑖
(𝑃
𝑢3
(𝜑
2
, 𝑋
2
, 𝐴, 𝑄, 𝑅)) = 𝑃

∗

𝑢3

≤ 𝜆
𝑖
(𝑃
𝑢3
(𝜑
2
, 𝑋
2
, 𝐴, 𝑄, 𝑅))

tr (𝑃) ≤
𝑛

∑

𝑖=1

𝑃
∗

𝑢3
≤ min tr (𝑃

𝑢3
(𝜑
2
, 𝑋
2
, 𝐴, 𝑄, 𝑅))

≤ tr (𝑃
𝑢3
(𝜑
2
, 𝑋
2
, 𝐴, 𝑄, 𝑅))

det (𝑃) ≤
𝑛

∏

𝑖=1

𝑃
∗

𝑢3
≤ min det (𝑃

𝑢3
(𝜑
2
, 𝑋
2
, 𝐴, 𝑄, 𝑅))

≤ det (𝑃
𝑢3
(𝜑
2
, 𝑋
2
, 𝐴, 𝑄, 𝑅)) ,

(56)

where the positive definite matrices𝑋
2
and𝑀

2
and the positive

constant 𝜑
2
are defined by (45) and (46), respectively.

As considered a diverse matrix identity, in the case that
thematrix𝑅 is nonsingular, we can derive the following alter-
native upper bounds for the solution of the CARE (4).

Theorem 20. If the positive definite matrix 𝑃 is a unique solu-
tion matrix of the CARE (4), then

𝑃 ≤ {
1

𝜆
𝑛
(𝑀
3
)
[𝑄 − 𝐴

𝑇

𝑋
3
𝐴 + 𝜆

1
(𝑋
−1

3
)

×[𝜂 + 𝑠
1
(𝐴
𝑇

𝑋
3
)]
2

𝐼] }

1/2

≡ 𝑃
𝑢4
(𝜂, 𝑋
3
, 𝐴, 𝑄, 𝑅) ,

(57)

where 𝑋
3
is a positive constant matrix such that 𝑀

3
≡ 𝑅 +

𝑋
−1

3
> 0 and 𝜂 is defined by (14).

Proof. When the term 𝑃𝑋
−1

3
𝑃 + 𝐴

𝑇

𝑋
3
𝐴 is added and sub-

tracted from the CARE (4), we can write

(𝑃 + 𝐴
𝑇

𝑋
3
)𝑋
−1

3
(𝑃 + 𝐴

𝑇

𝑋
3
)
𝑇

− 𝑃𝑅𝑃 + 𝑄 − 𝐴
𝑇

𝑋
3
𝐴 − 𝑃𝑋

−1

3
𝑃 = 0

(58)



Journal of Applied Mathematics 7

which is equivalent to

0 < 𝑃 (𝑅 + 𝑋
−1

3
) 𝑃

= 𝑄 − 𝐴
𝑇

𝑋
3
𝐴 + (𝑃 + 𝐴

𝑇

𝑋
3
)𝑋
−1

3
(𝑃 + 𝐴

𝑇

𝑋
3
)
𝑇

.

(59)

By the use of Lemmas 1, 2, 4, and 8 for the right side of the
above equation, respectively, we obtain

0 < 𝑃 (𝑅 + 𝑋
−1

3
) 𝑃

≤ 𝑄 − 𝐴
𝑇

𝑋
3
𝐴 + 𝜆

1
(𝑋
−1

3
) (𝑃 + 𝐴

𝑇

𝑋
3
) (𝑃 + 𝐴

𝑇

𝑋
3
)
𝑇

≤ 𝑄 − 𝐴
𝑇

𝑋
3
𝐴 + 𝜆

1
(𝑋
−1

3
) 𝑠
2

1
(𝑃 + 𝐴

𝑇

𝑋
3
) 𝐼

≤ 𝑄 − 𝐴
𝑇

𝑋
3
𝐴 + 𝜆

1
(𝑋
−1

3
) [𝜆
1
(𝑃) + 𝑠

1
(𝐴
𝑇

𝑋
3
)]
2

𝐼

≤ 𝑄 − 𝐴
𝑇

𝑋
3
𝐴 + 𝜆

1
(𝑋
−1

3
) [𝜂 + 𝑠

1
(𝐴
𝑇

𝑋
3
)]
2

𝐼

(60)

and by the application of Lemma 1 to the term 𝑃(𝑅 + 𝑋
−1

3
)𝑃

of (60), we can write

𝑃
2

≤
1

𝜆
𝑛
(𝑅 + 𝑋

−1

3
)

× [𝑄 − 𝐴
𝑇

𝑋
3
𝐴 + 𝜆

1
(𝑋
−1

3
) [𝜂 + 𝑠

1
(𝐴
𝑇

𝑋
3
)]
2

𝐼] .

(61)

Therefore, if the above inequality is solved with respect to 𝑃,
we arrive at the upper bound 𝑃

𝑢4
.

Thus, the proof is established.

Theorem 21. Let 𝑃 be the positive semidefinite solution of the
CARE (4). Then

𝑃 ≤ {
1

𝜆
𝑛
(𝑀
4
)
[𝑄 − 𝐴

𝑇

𝑋
4
𝐴 + 𝜆

1
(𝑋
−1

4
)𝐴
𝑇

𝑋
2

4
𝐴

+2𝑠
1
(𝐴) 𝜅
2
(𝑋
4
) 𝜑
3
𝐼] }

1/2

≡ 𝑃
𝑢5
(𝜑
3
, 𝑋
4
, 𝐴, 𝑄, 𝑅) ,

(62)

where the positive definite matrix 𝑋
4
is selected such that

𝑀
4
≡ 𝑅 − [𝜆

1
(𝑋
−1

4
) 𝐼 − 𝑋

−1

4
] > 0 (63)

and the nonnegative constant 𝜑
3
is defined by

𝜑
3
≡ {

1

𝜆
𝑛
(𝑀
4
)
𝜆
1
[𝑄 − 𝐴

𝑇

𝑋
4
𝐴 + 𝜆

1
(𝑋
−1

4
)𝐴
𝑇

𝑋
2

4
𝐴]

+
𝜅
2

2
(𝑋
4
) 𝑠
2

1
(𝐴)

𝜆2
𝑛
(𝑀
4
)

}

1/2

+
𝜅
2
(𝑋
4
) 𝑠
1
(𝐴)

𝜆
𝑛
(𝑀
4
)

.

(64)

Proof. Consider (58). From Lemma 1, we can easily write

0 < 𝑃 (𝑅 + 𝑋
−1

4
) 𝑃

≤ 𝑄 − 𝐴
𝑇

𝑋
4
𝐴 + 𝜆

1
(𝑋
−1

4
) (𝑃 + 𝐴

𝑇

𝑋
4
) (𝑃 + 𝐴

𝑇

𝑋
4
)
𝑇

(65)

and then via the inequality obtained by using Lemmas 1, 6,
and 5, respectively,

𝑃𝑋
4
𝐴 + 𝐴

𝑇

𝑋
4
𝑃 ≤ 2𝜆

1
(𝑃) 𝑠
1
(𝐴) 𝜆
1
(𝑋
4
) (66)

and the definition (63) of𝑀
4
, from (65), we have

0 < 𝑃 [𝑅 − (𝜆
1
(𝑋
−1

4
) 𝐼 − 𝑋

−1

4
)] 𝑃 = 𝑃𝑀

4
𝑃

≤ 𝑄 − 𝐴
𝑇

𝑋
4
𝐴 + 𝜆

1
(𝑋
−1

4
)𝐴
𝑇

𝑋
2

4
𝐴

+ 2𝑠
1
(𝐴) 𝜅
2
(𝑋
4
) 𝜆
1
(𝑃) 𝐼.

(67)

By the use of Lemmas 1 and 2, it is obtained that

𝑃
2

≤
1

𝜆
𝑛
(𝑀
4
)

× [𝑄 − 𝐴
𝑇

𝑋
4
𝐴 + 𝜆

1
(𝑋
−1

4
)𝐴
𝑇

𝑋
2

4
𝐴

+2𝑠
1
(𝐴) 𝜅
2
(𝑋
4
) 𝜆
1
(𝑃) 𝐼]

(68)

and thus applying Lemma 3 to (68) yields

𝜆
1
(𝑃
2

) ≤
1

𝜆
𝑛
(𝑀
4
)

× {𝜆
1
[𝑄 − 𝐴

𝑇

𝑋
4
𝐴 + 𝜆

1
(𝑋
−1

4
)𝐴
𝑇

𝑋
2

4
𝐴]

+2𝑠
1
(𝐴) 𝜅
2
(𝑋
4
) 𝜆
1
(𝑃) } .

(69)

As solving (69) according to𝜆
1
(𝑃), one can reach the nonneg-

ative constant 𝜑
3
is defined by (64). If it is substituted 𝜑

3
into

(68), then

𝑃
2

≤
1

𝜆
𝑛
(𝑀
4
)
[𝑄 − 𝐴

𝑇

𝑋
4
𝐴 + 𝜆

1
(𝑋
−1

4
)𝐴
𝑇

𝑋
2

4
𝐴

+2𝑠
1
(𝐴) 𝜅
2
(𝑋
4
) 𝜑
3
𝐼] .

(70)

Thus, solving the inequality (70) derives the upper bound (62)
for the solution 𝑃 of the CARE (4).

This concludes the proof of the theorem.

Corollary 22. The solution 𝑃 to the CARE (4) has the fol-
lowing eigenvalue bounds for 𝑗 = 4, 5:

𝜆
𝑖
(𝑃) ≤ min𝜆

𝑖
(𝑃
𝑢𝑗
) = 𝑃
∗

𝑢𝑗
≤ 𝜆
𝑖
(𝑃
𝑢𝑗
) ,

tr (𝑃) ≤
𝑛

∑

𝑖=1

𝑃
∗

𝑢𝑗
≤ min tr (𝑃

𝑢𝑗
) ≤ tr (𝑃

𝑢𝑗
) ,

det (𝑃) ≤
𝑛

∏

𝑖=1

𝑃
∗

𝑢𝑗
≤ min det (𝑃

𝑢𝑗
) ≤ det (𝑃

𝑢𝑗
) .

(71)

Remark 23. Chen and Lee in [16] indicated in it is hard or
impossible to determine the best matrix bound among the
parallel results. Since we find that it is difficult to compare the
tightness of our results to the parallel result in [18], we will
only make the comparisons on an example.
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3. Numerical Example

In this section, we will give a numerical example to demon-
strate the effectiveness of the proposed results of this paper.

Example 1. Consider the CARE (4) with

𝐴 = (
−1 0

1 0
) , 𝑄 = (

1 0

0 8
) , 𝑅 = (

9 4

4 16
) . (72)

Choose 𝜀 = 0.002, then using (16) shows the following upper
matrix bound:

𝑃 ≤ (
0.8232 −0.0001

−0.0001 1.2853
) ≡ 𝑃

𝑢1
,

tr (𝑃
𝑢1
) = 2.1085, det (𝑃

𝑢1
) = 1.0580.

(73)

The upper bound (55) gives

𝑃 ≤ (
0.8173 0.0068

0.0068 1.2815
) ≡ 𝑃

1

𝑢3
,

tr (𝑃1
𝑢3
) = 2.0988,

det (𝑃1
𝑢3
) = 1.0473,

(74)

with𝑋
2
= (
10 0.1

0.1 10
), and the upper bound (62) gives

𝑃 ≤ (
0.8070 0

0 1.2750
) ≡ 𝑃

𝑢5
,

tr (𝑃
𝑢5
) = 2.082,

det (𝑃
𝑢5
) = 1.0289,

(75)

with𝑋
4
= (
10 0.1

0.1 10
).

Using Theorem 3.1 of [19], we obtain the following upper
matrix bound:

𝑃 ≤ (
1.2328 0.0002

0.0002 1.2884
) ≡ 𝑃

𝑢[19]
,

tr (𝑃
𝑢[19]

) = 2.5212,

det (𝑃
𝑢[19]

) = 1.5883.

(76)

The bounds (18) and (23) proposed in [18] are

𝑃 ≤ (
1.7135 0

0 1.0627
) ≡ 𝑃

𝑢1[18]
,

tr (𝑃
𝑢1[18]

) = 2.7762,

det (𝑃
𝑢1[18]

) = 1.8209,

𝑃 ≤ (
1.2527 0.0050

0.0050 1.6025
) ≡ 𝑃

𝑢2[18]
,

tr (𝑃
𝑢2[18]

) = 2.8552,

det (𝑃
𝑢2[18]

) = 2.0074,

(77)

for 𝑅
1
= 𝑋
4
.

By a simple computation, we have

𝑃
𝑢5
≤ 𝑃
1

𝑢3
≤ 𝑃
𝑢[19]

≤ 𝑃
𝑢2[18]

,

𝑃
𝑢5
≤ 𝑃
𝑢1
≤ 𝑃
[19]
,

tr (𝑃
𝑢5
) ≤ tr (𝑃1

𝑢3
) ≤ tr (𝑃

𝑢1
) ≤ tr (𝑃

𝑢[19]
) ,

≤ tr (𝑃
𝑢1[18]

) ≤ tr (𝑃
𝑢2[18]

) ,

det (𝑃
𝑢5
) ≤ det (𝑃1

𝑢3
) ≤ det (𝑃

𝑢1
) ≤ det (𝑃

𝑢[19]
) ,

≤ det (𝑃
𝑢1[18]

) ≤ det (𝑃
𝑢2[18]

)

(78)

which means that our upper bounds give more precise solu-
tion estimates than the results given by Theorem 3.1 in [19]
andTheorems 2 and 3 in [18] for this case.

4. Conclusion

In this paper, new upper matrix bounds for the solution of
the CARE are improved by using some linear algebraic tech-
niques andmatrix inequalities. A numerical example is given
to show that the solution upper bounds presented in this
paper are sharper than some results in the literature.
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