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The paper proposes a new nonlinear dynamic econometric model with fractional derivative. The fractional derivative is defined in
the Jumarie type. The corresponding discrete financial system is considered by removing the limit operation in Jumarie derivative’s.
We estimate the coefficients and parameters of the model by using the least squared principle. The new approach to financial system
modeling is illustrated by an application to model the behavior of Japanese national financial system which consists of interest rate,
investment, and inflation. The empirical results with different time step sizes of discretization are shown, and a comparison of the
actual data against the data estimated by empirical model is illustrated. We find that our discrete financial model can describe the
actual data that include interest rate, investment, and inflation accurately.

1. Introduction

The financial and economical systems exhibit ubiquitous
complex dynamics evidenced by large-amplitude and peri-
odic fluctuations, which have attracted much attention
recently [1-4]. However, studying the dynamics of finance
behavior and economics life is very challenging mainly
because of the fact that it is very difficult to identify the
inner relationship between different financial and economic
variables quantitatively. In the recent decade, several non-
linear models have been proposed to study periodic or
chaotic behaviors in financial and economic systems since
it is believed that finance and economics always illustrate
nonlinearity. In particular, the complex dynamics of eco-
nomic cycles using the van der Pol model is studied in [5-
7]. The advantage of employing forced van der Pol equation
to depict economic variable is that the introduction of a
forcing function enables us to model the complex inter-
dependence between an individual national economy and
the international economy in an era of globalization and
the impact of climate variations such as the annual solar
cycle on seasonable fluctuations of various markets. In [8, 9],
the problem of the existence of a finite lag between the
accrual and the payment of taxes in a framework, where this
type of lag has never been considered by the well-known

IS-LM model, is proposed. The qualitative study of the system
of functional differential equations shows that the finite lag
may give rise to a wide variety of dynamic behaviors. These
works, together with many recent papers, lead the studying
of the nonlinear dynamics of financial and economic systems
to be more attractive. Most of the studies about nonlinear
dynamics of financial and economic systems concentrate on
the periodic or chaotic behaviors in it. References [10, 11]
propose a simplified macrofinancial model which consists
of interest rate, investment demand, and inflation based
on the economic theory and analyzes the balance, stable
periodic, chaotic motion, and so forth. In [12], the complex
motion in nonlinear dynamical systems by reconsidering
the Goodwin’s nonlinear accelerator model with periodic
investment outlays is studied, and it is believed that transient
chaotic dynamics are prevalent in nonlinear economic model.
In general, since the chaotic dynamics has adverse influences
on predicting economy reasonably and effectively, more and
more related papers pay attention to analyze and control
the chaotic phenomenon of nonlinear dynamics in financial
and economic systems. However, in these above works, only
integer order differential equations are investigated. In recent
years, modeling the real-world problems by using fractional
differential equations becomes more and more popular.



Fractional differential equation means that the order of
derivative in differential equation can be noninteger and even
complex number. As an excellent methodology of modeling,
fractional calculus gained considerable development in the
recent forty years. It has been applied to many scientific
and engineering fields and verified to be a powerful tool
in modeling most physical processes with memory effect,
which cannot be described well by integer-order integral
and differential equations. For a comprehensive review of
theory and applications of fractional calculus, we refer to
[13-17]. The advantage of fractional derivative is that it has
nonlocal property. The value of current state depends on both
recent values and historical values of objective function. This
excellent property is suitable for modeling many financial
variable series, mainly because of the fact that the financial
and economic variable series always exhibit time-dependent
memory effect, such as interest rate, stock price, exchange
amount of future, and so on [18-21]. There are only a few
papers on the study of financial and economic behaviors
by using fractional derivative models. In [22], a fractional
order financial model based on the fractional Chen system
is proposed. It involves the macroeconomic variables such
as investment, interest, and price index and exhibits the
interesting dynamics behavior of them. In [23, 24], the chaos
dynamics and chaos control have been studied using sliding
mode method and feedback control method, respectively.
In [25], a delayed fractional-order financial system is pro-
posed and the complex dynamical behaviors of this system
are discussed by numerical simulations. A great variety of
interesting dynamical behaviors of such a system including
single-periodic, multiple-periodic, and chaotic motions are
shown. The effect of time delay and fractional order on the
chaotic behavior are investigated; it is verified that a proper
time delay can enhance or suppress the emergence of chaos.

In most of the recent researches, the dynamics of
fractional-order financial and economic systems has been
investigated via several mathematical methods (see [22, 25]
and references therein). However, the physical and natural
interpretations of those dynamical phenomena obtained in
numerical simulations are still not clear. We have known
that the occurrence of chaos in fractional-order financial
system depends on both parameters and fractional order,
but there is no particular study which concentrates on how
to select the proper fractional order and parameters for a
concrete group of economic data. For instance, although we
have several methods to control the chaos in the fractional-
order financial systems, we have no idea what the economic
interpretation of these procedures of controlling chaos is. In
practice, the financial and economic data are determined with
inner randomness of the real-world issues. Consequently,
there should exist a group of corresponding parameters
and fractional order, which can be used for depicting the
particular financial and economic variables. In this paper,
we propose a new nonlinear dynamical model of financial
and economic systems by econometric techniques. First of
all, we discretize the fractional derivative defined by Jumarie’s
definition and then derive the estimation of parameters in
the model based on the least squared principle. Finally, we
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will take the macroeconomic data of Japan, for an example, to
study the reasonability of the econometric model empirically.

To close this introduction, we would like to make several
remarks. First, the study of financial and economic models
which are simplified gained much interest in recent years
both from integer and fractional calculus. However, most of
them deal with the mathematical properties of the models
and reveal the dynamic behaviors in numerical simulations,
which lead those results, although very beautiful in math-
ematical point of view, to be very difficult to apply in real
finance or economic life. Second, we are not going to employ
the existing financial models but construct a new discrete
financial model for depicting the real financial and economic
data from a particular country, that is, Japan. The suitable
parameters and fractional orders are determined by consider-
ing the macroeconomic data of it. Finally, based on the novel
discrete financial model, we can analyze fitting effectiveness
of the empirical model. To the authors’ knowledge, this is
the first time that the realistic financial and economic data
of particular country are modeled by using continuous or
discrete fractional-order nonlinear dynamic financial model.
The remainder of this paper is organized as follows. In
Section 2, the mathematical preliminaries are introduced.
In Section 3, the nonlinear dynamic econometric model of
financial system with fraction-order derivative is proposed,
and the parameters of the nonlinear fractional-order financial
model are estimated by least squares principal. In Section 4,
the empirical study of macroeconomic data of Japan is shown.
Finally, the conclusions are given in Section 5.

2. Mathematical Preliminaries

In this section, we introduce some preliminaries of fractional
derivative. More properties of fractional derivatives could be
found in the books and recent papers; for example, see [14,
26, 27].

Let f(x) : R — R denote a continuous function, and let
h > 0 denote a constant discretization span. The fractional
difference of order & (¢ € R,0 < « < 1) of f(x) is defined as
follows (see [27]):

A f (x) = Z(—l)k (Z)f(x+(oc—k)h), (1)
k=0

and then its fractional derivative of order « is defined by

Df @) = im 2O @

hoc

In [27], the Jumarie’s modified fractional derivative of
order o for a continuously differentiable function u
[0, +00) — R is defined as

AW
ho—m >

where m < & < m+ 1, m = [«], [«] denotes the integer part

of the real number «. Furthermore, if 0 < « < 1, then

Af (©)
hoc

*Df‘f(t)=1“(l+oc—m)&imo

‘Dif()=T( + @) lim . (4)
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There are several definitions of fractional derivative in
[14], but in this paper we only use the Jumarie’s fractional
derivative. The advantage of applying Jumarie’s fractional
derivative is that we can select a small step size h and remove
the limit operation in (4); then, the discrete form of fractional
derivative can be represented by the classical difference of
function, multiplied by some coefficients.

For simplicity in writing, we remove the star “*” in
Jumarie’s fractional derivative. In what follows, we con-
struct our continuous and discrete financial model by using
Jumarie’s fractional derivative.

3. Model Description
and Estimation Methodology

There exist several financial models reported in recent years.
For instance, the study of investment, interest rate, and price
index by using a chaotic fractional Chen system is discussed
in [22] as

D'x, =z, + (9, - p) %,
D?z)’t =1-by, - xf, ©)
Dfz, = —x, - cz,

where x, y, and z represent the interest rate, investment,
and inflation respectively. The subscript ¢ indicates that the
variable depends on t. Parameters p, b, and ¢ are nonnegative
coeficients with economic interpretation. g¢; € (0,1] (i =
1,2,3) represent the fractional order of the derivatives. If
4, = g, = g3 = 1, (5) reduces to the integer-order Chen
system.

Instead of considering the same expressions in fractional
chaotic Chen system, we assume a more general form of the
our financial model as

q1 _
Di'x, = ¢ +ay X, + ap Yy + a3z + ay X,y
2 2
T a15Yi2 + A2 Xy T A7 X, + Arg ),

2
tapz, + Uy,

92
Dy, = 6+ ayx + Ay, + ax32, + Ay Xy,
2 2 6
T x5 Y12y + Ape2i Xy + Gpr Xy + Opg Yy (6)

2
t ay9Z, + Uy,

3
Dy z,

G+ a3 Xy + A3 Yy + A332Z; T A3y Xy Yy
2 2
T 35 Y42, + Q362X + Az7X; + A3 Y
2
+ 392} + Usy,
where u;, (i = 1,2,3) are the random errors which are

assumed to the white noise generally. x,, y,, and z, indicate
that the variables x, y, and z depend on time t.

3
Let
f (xt’ Yo 24> Al) =0 tanX T apy t a3zt aX ),
2
T a5 )12 + 01624 Xy T A17X;
2 2
T a); ta19%;,
g (xt’ Yo 24 Az) =Gt anX T apy t a2+ ayX Y,
2
+ x5 Y2y + ApeZi Xy + Ay Xy
(7)
2 2
T Y A%,
h(Xp> Yo 20> A3) = & + A3, + A3y Yy + 0332, + A3y X, Y,
2
+ A35 )12 + 362X + A37X,
2 2
T ass); ta3%;,
A= (¢a,00, ... a), i=1,2,3;
then, the model can be rewritten as
a1 _
Dy'x, = f(xt’yt’ 2 Ay) + iy,
G, _
Dy, =g (xt’yt’zt’AZ) + Uy (8)

aq —
DFz, = h(xp yp 25 As) + sy

According to (4), when 0 < « < 1, the model (8) can be
discretized as

X (tn+1) - X (tn)
(tVH-l - tn)ql

Y (tner) =y (1)
(tn+1 - tn)qz

z (tn+1) -z (tn)
(tn+1 - tn)q3

We estimate (9) based on empirical data to determine
the relationship of these variables. From the form of the
model (9), it is easy to find that there do not exist common
parameters in three equations of it. Therefore, the above three
multivariate regression equations can be estimated separately.
To state the technical procedures, we take the first equation
as an example. The estimation for the parameters in the other
two equations is similar.

Consider g, = 1; then

T(1+q)=f (% y 02, A,) +thy
F(1+a,) = g (%, 91,02, A2) + 1ty (9)

r(l + q3) = h(xtn:ytn) an’ A3) + Uzy.

X (tn+1) - X (tn)
(tn+1 - tn)

LetY; = x((t;.1)—x(t;)/(t;s1—t;),i =1,2,..., N—1; then
define the least squares (LS) function as

=f (xtn’ytn’ztn’AO) +uy.  (10)

SSR (49) = Y. (¥~ F (x(8)). y (6,260, A, ()



The LS estimator of the regression parameter A, is
obtained by minimizing the SSR(A ) with respect to A:

N-1

Ay =argmin ) (Y; - f (x(t;)),y ()2 (%) JAg). (12)
i=1

For simplicity, we denote X; = x(t;), X,; = y(t;), X5; =

2(t;), Xy = x(t)y(t;), Xs; = y(t;)2(t;), Xg; = 2(t,)x(8;), X7 =

x(t;)% Xg = y(t)% Xo; = 2(t)% i = 1,2,...,N — 1, where

N is the number of sample studied. Similar to the procedure

of estimating the multivariate regression by the method of

least squares, we can obtain the least squares estimator of the

model as

— -1
A, =(X"x) X"y, (13)
where
1 X11 X12 X19
1 X21 Xzz X29
X=1 . . . ) ) (14)

1 X(Nfl)l X(N—I)Z X(N—1)9

and Y = (Y,,Y,,..., Yy ). The superscript T indicates the
transposition of matrix and vector.

In what follows, we consider the first regression equation
and estimate the parameters (g,, A ). The corresponding least
squares estimation is subjected to

(QI,XI) = arg min SSR (q;, A,)

5 <x (tpe1) = x (£0)

= arg min I'(l+
& ,; (tnﬂ_tn)ql ( ql)

2
-f (xtn>)’t,,’ 2, Al) )

= arg min (F (@ +1) (tpe - tn)l_%)2

_ 2
X 1<x(tn+1)_x(tn) —f(x 9,2 A'))
t,> Yt <t A1 >

X
n=1 (tn+1 - tn)
(15)
where
_ a-1
I1 _ (tn+1 tn) Al. (16)
I(q,+1)
According to the evaluation result with g, = 1, the

minimum of the second product part implies that A, = A.
Hence,

arg min {T'(q, + 1) (f,,1 = ,) "},

Al = A,

q
17)

and the minimum of SSR(q,, A ) can be obtained as

A =T(@+1) (t — )™ (XTX)_IXTY, (18)

g, = arg min {F (g1 + 1) (0 - tn)l_q‘}. 19)
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TaBLE 1: Optimal fractional order g.

At 1 0.9 0.8 0.7 0.6
q; 0.4616 0.3580 0.2536 0.1483 0.0416
Note. When At < 0.5, g; < 0; thus the case of At < 0.5is not to be considered.

Equations (18)-(19) are the least squares estimation of
q, and A, in the first regression equation of system (9),
respectively. It is easy to find that the estimator of ¢, is not
related to the sample observations, and can be computed by
numerically. Using the same technique, we can deal with g,
and g5 in system (9) and obtain the optimal estimators of g,
and g;. In the next section, we will consider the dynamics
of our new model and the prediction results based on the
macroeconomic data of Japan.

4. Empirical Results of Discrete Fractional
Financial System: Evidence from Japan

In this section, we present the study of discrete financial
system based on the macroeconomic data of Japan.

4.1. Data Description. In financial model (9), the nonlinear
dynamic behaviors of interest rate, investment demand, and
inflation are studied. This work chooses six-month London
interbank offered rate (LIBOR) data to reflect interest rate
change in Japan. The total investment percent of GDP is used
to measure the investment demand. Average consumer prices
percent change rate will be used to reflect the inflation. The
annual data starts from year 1980 to 2011. The data about
LIBOR, investment percent of GDP, and average consumer
prices percent change rate are obtained from EconStats which
is organized by IMEF.

4.2. Empirical Results. The optimal fractional orders ¢;, i =
1,2,3 with different step sizes At = 1, 0.9, 0.8, 0.7, 0.6 are
performed in Table 1. We do not consider the case of At <
0.5 because of the fact that the fractional order decreases and
approaches to zero, which reduces our model to be a linear
one but not the fractional financial system.

Tables 2-4 show the results about the estimated coeffi-
cients, sum squared residuals, and P values of statistical tests
in the equations of empirical model under the situation of
different time steps of discretization. From Table 2, we can
find that the sum squared residuals are less than 5 x 107 in
the first equation of (9), and the P values of the F-statistics are
less than 5% in the estimation results of different time step
steps, which demonstrate that the estimation results based
on the empirical data are reasonable statistically. Moreover,
the time step sizes of discretization do not influence the P
values of t-test for coefficients and P value of F-statistics
for the empirical model. Finally, the structure of terms at
which corresponding coefficients estimated are significant at
5% level in the empirical equation about interest rate includes
terms y, z, yz, zx, x*, constant term, and is independent
of the variation of the time step sizes of discretization.
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TABLE 2: The first equation in (9) under the several time steps of discretization.
At
0.6 0.7 0.8 0.9 1
c -0.08301"" -0.0818"" -0.0797"" -0.0769"" -0.0736""
(0.0227) (0.0227) (0.0227) (0.0227) (0.0227)
x
y 0.3933"* 0.3876"" 0.3774*" 0.3641"" 0.3488
(0.0131) (0.0131) (0.0131) (0.0131) (0.0131)
. 4.0327** 3.9749** 3.8703"" 3.7338*" 3.5763"*
(0.0481) (0.0481) (0.0481) (0.0481) (0.0481)
xy
yz -21.8019"" -21.4897"" -20.9243"" -20.1863"" -19.3349""
(0.0128) (0.0128) (0.0128) (0.0128) (0.0128)
ox 29.9767**" 29.5474** 28.7700"** 27.7553"** 26.5846"""
(0.0010) (0.0010) (0.0010) (0.0010) (0.0010)
2 -6.1145""" -6.0269"" -5.8684™"" -5.6614""" -5.4226""
(0.0002) (0.0002) (0.0002) (0.0002) (0.0002)
%
2
SSR 4.5e -3 4.3e-3 42e-3 39e-3 3.6e -3
Prob(F) 0.0068 0.0068 0.0068 0.0068 0.0068
Note. * % #, =, and * denote statistical significance at the 1%, 5%, and 10% levels. SSR is the sum squared residuals. Prob is the P value of F-statistic.
TaBLE 3: The second equation in (9) under the several time steps of discretization.
At
0.6 0.7 0.8 0.9 1
c 0.2419** 0.2384"" 0.2321*" 0.2239"" 0.2145"*
(0.0448) (0.0448) (0.0448) (0.0448) (0.0448)
X 0.6527" 0.6434"" 0.6264"" 0.6043" 0.5789""
(0.0123) (0.0123) (0.0123) (0.0123) (0.0123)
y -2.1378"" -2.1071"" —2.0517"* -1.9793"" -1.8958""
(0.0255) (0.0255) (0.0255) (0.0255) (0.0255)
z
xy
yz -5.4639""" —5.3856""" —5.2439"*" -5.0590"*" -4.8456"""
(0.0035) (0.0035) (0.0035) (0.0035) (0.0035)
ox 10.8938"" 10.7378"" 10.4553"" 10.0865™" 9.6611""
(0.0282) (0.0282) (0.0282) (0.0282) (0.0282)
2 —4.2457"" —-4.1849"" —-4.0748"" -3.9311"" —3.7653""
(0.0197) (0.0197) (0.0197) (0.0197) (0.0197)
2 4.2928"" 4.2313"" 4.1200"" 3.9747*" 3.8070""
4 (0.0179) (0.0179) (0.0179) (0.0179) (0.0179)
2
SSR 2.0e -3 2.0e -3 1.9e -3 1.7e = 3 1.6e -3
Prob(F) (0.0179) (0.0179) (0.0179) 0.0180 0.0180

Note. # # #, x*,and * denote statistical significance at the 1%, 5%, and 10% levels. SSR is the sum squared residuals. Prob is the P value of F-statistic.
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TABLE 4: The third equation in (9) under the several time steps of discretization.
At
0.6 0.7 0.8 0.9 1
c 0.2528""" 0.2528""" 0.2426™*" 0.2341""" 0.2242™*
(0.0041) (0.0041) (0.0041) (0.0041) (0.0041)
X 0.1387*" 0.1386"" 0.1331*" 0.1284"" 0.1230""
(0.0350) (0.0350) (0.0350) (0.0350) (0.0350)
y -2.1169"** -2.1166""" -2.0317"*" -1.9601""" -1.8774"**
(0.0025) (0.0025) (0.0025) (0.0025) (0.0025)
z
xy
yz -2.8366""" -2.8361""" —2.7224""" —-2.6264""" -2.5156"""
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
zZx
x2
2 4.2750"*" 4.2743*"" 41029 3.9582""" 3.7912*"
4 (0.0017) (0.0017) (0.0017) (0.0017) (0.0017)
2
SSR 1.3e -3 1.3e-3 1.2e-3 l.le-3 1.0e -3
Prob(F) 0.0000 0.0000 0.0000 0.0000 0.0000

Note. x % #, #*, and #: denote statistical significance at the 1%, 5%, and 10% levels. SSR is the sum squared residuals. Prob is the P value of F-statistic.

The result is consistent with the fact that the estimation of
g; is not related to the sample observations in (19).

In Table 3, we observe that the sum squared residuals
are less than 2 x 107 for the empirical equation of the
second equation of (9), and the P values of the F-statistics
are 0.0068 which is less than 5%, which also demonstrate
that the estimation results about the second equation of (9)
are reasonable statistically. The result that the time step sizes
of discretization do not influence the P values can also be
found in Table 3. Moreover, the structure of terms at which
corresponding coefficients estimated are significant at 5%
level in the empirical e%uation about interest rate includes
terms X, y, yz, zx, x*, y*, constant term. Similar to the first
empirical equation, and it is not influenced by the variation
of the time step sizes of discretization.

In Table 4, we observe that the sum squared residuals
are less than 1.5 x 107 for the empirical equation of the
third equation of (9), which suggests that the accuracy of
fitness about the third empirical equation is satisfying. The
P values of the F-statistics are 0.0000 which is less than 5%,
which demonstrate that the estimation of the third equation
is reasonable in the statistical sense. Moreover, the structure
of terms at which corresponding coefficients estimated are
significant at 5% level in the empirical equation about interest
rate includes terms x, y, yz, y°, constant term. Both of
the structure of terms and P values of the coefficients are
not changing with the variation of the time step sizes of
discretization.

0.18

0.16 |
0.14 [
0.12

e
=

0.08 |

Interest rate

0.06 |
0.04
0.02 |

0 . . . . . y
1980 1985 1990 1995 2000 2005 2010 2015
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O Actual interest rate
—— Estimated interest rate

FIGURE 1: The actual interest rate versus estimated interest rate.

Figures 1-3 show the data estimated by the empirical
model in case of At = 1 and the actual data of the interest
rate, investment, and inflation, respectively. In Figure 1, we
can find that the blue line passes through the vast majority
of the circle except those in the initial years. According to
the circles and blue line which depict the estimated data
and actual data of the interest rate respectively, we find that
the empirical equation of the interest rate in the model can
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FIGURE 2: The actual investment versus estimated investment.
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FIGURE 3: The actual inflation versus estimated inflation.

describe the actual data effectively. In Figure 2, the blue line
almost passes through all of the circle notations. The property
of the figure declares that the actual investment data can be
fitted by the empirical equation accurately. In Figure 3, there
are only very few circle notations that deviate from the blue
line in the beginning and ending parts of the period. Figure 3
suggests that the empirical equation about inflation fits the
actual data ideally. Above all, Figures 1-3 suggest that the
empirical model estimated by the methodology proposed in
the paper depicts the actual data reasonably.

In order to analyze the effectiveness of the consequence
about the prediction of the empirical model, the multistep
predictions of interest rate, investment, and inflation in the
case that At = 1 are shown in Figures 4-6, respectively. From
Figure 4, we can find that the predictions are very close to
the actual interest rate from the black line which corresponds
to the four-step predictions, and then the bias of predictions
from the actual data increases with the steps of prediction
increasing, such as purple, yellow, and green line. It suggests
that the prediction about interest rate is meaningful in the
first four years, and the accuracy of predictions becomes more

0.18
0.16 .
0.14
0.12
0.1
0.08
0.06
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0.02

0 I I I I I
1980 1985 1990 1995 2000 2005 2010 2015

Year

Interest rate

O Actual data

—— Two-step predition
—— Three-step predition
—— Four-step predition

—— Five-step predition
Six-step predition
—— Seven-step predition

FIGURE 4: The predictions of interest rate based on empirical model
in the case of At = 1.
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FIGURE 5: The predictions of investment based empirical model in
the case of At = 1.

frustrating when the time steps of the prediction are more
than four time steps. In Figure 5, the bias of the prediction
about investment increases as the time steps increase, but the
prediction with a few steps still approaches the actual data,
such as the black line which is corresponding to the four-step
prediction. In Figure 6, we also can find that the accuracy of
the prediction of the inflation becomes unsatisfying in the
situations that the time step of prediction is not less than
four, but the predictions with steps being less than four are
close to the actual inflation. The above results suggest that
the four-step prediction of the empirical model estimated is
meaningful for interest rate, investment, and inflation.

5. Conclusions

In this paper we propose a new nonlinear dynamic financial
econometric model by using the Jumarie’s fractional-order
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FIGURE 6: The predictions of inflation based on empirical model in
the case of At = 1.

derivative. The corresponding discrete financial model is
generated by removing the limit operation in the Jumarie’s
derivative. The model overcomes the problems which cannot
be depicted by some simplified nonlinear financial model in
literatures, and it provides a feasible technique for describing
the actual macroeconomic data of one particular place by
nonlinear model. Our model is proved to be reasonable via
empirical analysis.

Based on the macroeconomic data of Japan, we evaluate
the parameters of the financial model. The suitable fractional
order for Japan’s data is obtained. In the empirical study, we
observe that the fractional order has an apparent influence on
the dynamics behavior of financial system. With the optimal
fractional order, our new fractional financial model can be
used to predict the dynamic behavior of financial system of
Japan in the coming years reasonably.
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