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The tolerance handling in analogue fault diagnosis is a challenging problem. Although lots of methods are effective for fault
diagnosis, it is hard to apply them to the case with tolerance influence. In this paper, a robust statistics-based approach is introduced
for tolerance-influencing fault diagnosis. The advantage of this proposed method is that it can accurately locate the data fusion
among fault states. In addition, the results in analogue benchmark (e.g., linear voltage divider circuit) indicate that it is effective in
fault diagnosis in accordance with given fault diagnostic requirements (e.g., fault diagnosis error, fault detection rate).

1. Introduction

The tolerance is one of the most common problems in the
production of analogue circuits [1, 2]. It often introduces a
variable parameter range aroundnominal value for the circuit
components, which lead to the variation of circuit response
from one circuit board to another. It is also a challenging
problem in the fault diagnosis so that some widely used fault
diagnosis methods (e.g., the traditional ICT technique in [3])
fail.Therefore, there is still an urgent need to find an accurate
but simple method handling tolerance.

In the past, some scientists often accept an unauthenti-
cated assumption of nominal distribution to circuit response
(voltage, current, and other fault signatures) according to
the statement in [4]. However, such statistical distribution
assumption has not been proved ever, which weaken the
theoretical basis of corresponding methods. Besides, it might
lead to inaccurate fault diagnosis according to Figure 1(a).
Other scientists got around the mathematical analysis of
tolerance influence. Instead, an intellectual algorithm (e.g.,
Support Vector Machine (SVM) is often used for tolerance-
influencing diagnosis [5–8]. The weakness of this thinking
includes 2 aspects: (1) that how the fault diagnosis should be
trusted cannot be evaluated when different training samples
introduce different data-fusion estimation (Figure 1(b)); (2)

the characteristic vector used for fault classification is often
too complex to construct.

To solve these questions as above, this paper presents a
robust statistics-based method for the fault diagnosis. The
robustness means the statistical fault modelling is established
according to the strong support of theories.Thus, the capabil-
ities of fault diagnosis for an analogue circuit can be estimated
in a trustable manner. Furthermore, there are at least 2 more
advantages: (1) the corresponding fault signature is simple to
calculate in the process of circuit diagnosis [9, 10]; (2) the fault
diagnosis error limit can be found to benefit us in the fault
diagnosis with given requirement (e.g., the fault diagnosis
error, fault detection rate).

The rest of paper is organized as follows. At first, in the last
part of this section, all of critical problems in fault diagnosis,
including the fault detection, identification, and diagnosis
error control, are integrated in the working flow of circuit
diagnosis as shown in Figure 2. Then, Section 2 establishes
the bases of statistical analysis in linear analogue-circuit
involved in fault diagnosis: (1) the assessment of fault diagno-
sis abilities for a designed analogue circuit with a given toler-
ance; (2) the estimation of fault diagnosis error limit; (3) test-
nodes selection and design reducing the test measurement
with specific diagnostic requirements. Section 3 tests the
effectiveness of theories of Section 2 in some representative
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Figure 1: (a) The inaccurate distribution 𝐹
1
(in the middle position) might lead to the conclusion that the circuit is faulty when the fault

signature value of 𝑃
𝑥
locates in the fault-free range (𝐹

0
). Here, the accurate distribution of a fault state 𝐹

1
is on the left side. (b)The traditional

intellectual method depending on known samples investigation, leads to different estimated range of fault signature 𝑃 for the same fault 𝐹
1
.

Moreover, there is no possibility to simply tell us which estimation is trustworthy.
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Figure 2: A scheme on the fault diagnosis with tolerance handling: in the diagnostic design of an analogue circuit, the fault diagnosis error
limit control assures that the fault diagnosis can be successful with specific requirements. Actually the fault detection or identification is
accomplished with the measurement on the optimum test-nodes set, in order to reduce the data fusion for a best diagnostics.
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Figure 3: A representative linear-analogue circuit under test (CUT)
in practice.

linear circuits. In Section 4, we draw the corresponding com-
ments and conclusions.

2. Method of Handling Tolerance in
Fault Diagnosis

2.1. Fundamental Theory to Understand Tolerance Influence.
Without loss of generality, assume that the circuit under
test (CUT) in Figure 3 has accessible internal test nodes 𝑖, 𝑘
and external independent current stimuli 𝐼

𝑠
and 𝐼
𝑡
. Then in

the tolerance-free condition, its nodal voltage can be given
according to Lemma 1.

Lemma 1. A linear circuit in Figure 3 has the accessible inte-
rnal test nodes (e.g., 𝑖, 𝑘) with two given current stimuli 𝐼

𝑠
and

𝐼
𝑡
; then its nodal voltage can be solved as

𝑉 = (𝐷 − 𝐴)
−1
𝑆, (1)

where thematrix𝐷 is a diagonalmatrix, inwhich the 𝑖th diago-
nal element is the sum of conductivities in the neighbourhood of
node 𝑖, while matrix 𝐴 is adjacent matrix in which the element
is nonzero if there are connections on the corresponding node-
pair.

Proof. At first, suppose that there is a vertex ℓ with nodal
voltage 𝑉

ℓ
, which is measured to a convenient point (e.g., the

common ground), then Kirchhoffs’ law of current states that
the total current flowing into or out of this vertex 𝑖 is zero,
which implies that

𝑛

∑
𝑚=1

𝐴
ℓ,𝑚
𝑉
ℓ,𝑚

= 𝐼
𝑠
𝛿
ℓ,𝑠
− 𝐼
𝑡
𝛿
ℓ,𝑡
, (2)

where 𝑉
ℓ,𝑚

= 𝑉
ℓ
− 𝑉
𝑚
.

Equation (2) is expressed in amatrix form𝑉 = (𝐷−𝐴)
−1
𝑆,

where thematrix𝐷 is a diagonalmatrix, whose ℓth element is
sum of conductivities in the neighbourhood of node ℓ, while
matrix 𝐴 is adjacent matrix in which the element is nonzero
if there are connections on the node pairs. Furthermore, the
element of 𝑆 on a test node 𝑖 is established in one of 3 cases:
(1) 𝑆
ℓ
= 0, if ℓ ̸= 𝑠 and ℓ ̸= 𝑡; (2) 𝑆

ℓ
= 𝐼
𝑠
, if ℓ = 𝑠 and ℓ ̸= 𝑡;

(3) 𝑆
ℓ
= −𝐼
𝑡
, if ℓ = 𝑡 and ℓ ̸= 𝑠.

Lemma 1 indicates that if we set 𝐴 = (𝐷 − 𝐴) ∈ c𝑛𝑥𝑛,
then 𝐴𝑉 = 𝑆 is an equation solving the nodal voltage V in a
tolerance-free circuit.

When the linear-analogue circuits are designed with tole-
rance, the tolerance influence can bemodelled as disturbance
on 𝑆, 𝑉, and 𝐴; thenTheorem 2 is established.

Theorem 2. Suppose that a matrix of Δ𝐴 ∈ c𝑛𝑥𝑛 represents
the influence of tolerance on the matrix𝐴, an analogue circuit
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Figure 4: The linear analogue circuit network with fault on
component𝑋

𝑘
and its equivalent circuit.

designed with tolerance can be expressed by a linear equation
(𝐴 + Δ

𝐴
)(𝑉 + Δ

𝑉
) = 𝑆 + Δ

𝑆
; therefore, (1) Δ

𝑉
= −(𝐸 +

𝐴−1Δ
𝐴
)𝑉 and (2) Δ

𝑉
is a vector, in which each element

follows Gaussian distribution if the element of Δ
𝐴
 ∈ c𝑛𝑥𝑛

follows the normal distribution.

Proof. (1) In accordance with Lemma 1, Δ
𝑆
= Kronecker 𝛿

and Δ
𝑆
= 0 if the independent current sources (𝐼

𝑠
and 𝐼
𝑡
)

are fixed. Then, (𝐴 + Δ
𝐴
)(𝑉 + Δ

𝑉
) = 𝑆 + Δ

𝑆
= 𝑆 = 𝐴𝑉;

thus, Δ
𝑉
= −(𝐸 + 𝐴−1Δ

𝐴
)𝑉, where 𝐸 is a unit matrix.

(2) It is obvious that the element in matrix Δ
𝑉
can be

linearly expressed by the elements of matrix Δ
𝐴
 ; then it

follows Gaussian Distribution if the element of Δ
𝐴
 follows

a normal distribution.

In accordance with theTheorem 2, a nodal voltage is a
normal random variable with the influence of tolerance, on
the condition that a fault-free component in the circuit is
considered as normal production [11, 12]. Furthermore, in
general case, the value of Δ

𝑉
= Δ𝑉
𝑎
+ 𝑖Δ𝑉
𝑏
is complex, where

its real part is Δ𝑉
𝑎
while its imaginary part is Δ𝑉

𝑏
. Thus,

the variable 𝑌 = (Δ𝑉
𝑎
, Δ𝑉
𝑏
) conforms to bivariate normal

distribution.

2.2. Fault Statistic Model for Fault Diagnosis. Given a linear
CUT network composed of an independent voltage source
𝜇
𝑜
and 𝑛 components, the parameters of all nonfaulty

components are their nominal values. However, there are 𝑘
potential faults in this circuit and the fault state set is given
as 𝐹 = {𝐹

0
, 𝐹
1
, 𝐹
2
, . . . , 𝐹

𝑘
}, in which 𝐹

0
is the fault-free state

while others show that the corresponding 𝑘th component is
faulty.

Furthermore, the test-nodes set (accessible nodes to volt-
age measurement) is set as 𝑇 = {𝑇

1
, 𝑇
2
, . . . , 𝑇

𝑚
}. Meanwhile,

the normal distribution solution is held for the nodal voltage
in any fault state, although the corresponding means and
variances should be different.

Based on the substitution theorem in [13], a fault com-
ponent 𝑋

𝑘
in Figure 4(a) can be replaced by an independent

voltage source 𝜇
𝑘
as in Figure 4(b).

With the superposition theorem, a nodal voltage is the
algebraic sumof the following two components: the first com-
ponent is caused by 𝜇

𝑜
while the 𝜇

𝑘
is assumed to be short; the

second component is led by 𝜇
𝑘
when the 𝜇

𝑜
is short.Thus, the

total voltages are:

𝑉
1𝑘
= 𝑎
10
𝜇
0
+ 𝑎
1𝑘
𝜇
𝑘
,

𝑉
2𝑘
= 𝑎
20
𝜇
0
+ 𝑎
2𝑘
𝜇
𝑘
.

(3)

Here, 𝑎
10
(𝑎
20
) is the transmission factor between voltage

source𝜇
𝑜
and the voltage𝑉

1𝑘
on test node𝑇

1
(𝑇
2
), and 𝑎

1𝑘
(𝑎
2𝑘
)

is the transmission factor between 𝜇
𝑘
and the voltage 𝑉

2𝑘
on

test node 𝑇
1
(𝑇
2
).

If the parameter of𝑋
𝑘
is fault-free, then we get

𝑉
10
= 𝑆
𝑘

12
𝑉
20
+ 𝜇
𝑥
. (4)

Eliminating 𝜇
𝑘
in (3), we get

𝑉
1𝑘
= 𝑎
10
𝜇
0
+
𝑎
1𝑘

𝑎
2𝑘

(𝑉
2𝑘
− 𝑎
20
𝜇
0
) . (5)

Setting 𝑆𝑘
12
= 𝑎
1𝑘
/𝑎
2𝑘
and 𝜇
𝑥
= 𝑎
10
𝜇
0
−𝑎
1𝑘
𝑎
20
𝜇
0
/𝑎
2𝑘
, there

is a fault slope value (FSV) shown in (6), which is deduced
from (3), (4), and (5):

𝑆
𝑘

12
=
𝑉
1𝑘
− 𝑉
10

𝑉
2𝑘
− 𝑉
20

. (6)

The FSV was proposed in [14, 15] to solve the soft faults
problem in linear tolerance-free circuit. The reasons that the
fault slope value (FSV) is chosen for fault diagnosis as follows:
(1) Considering that the hard fault (open or short circuit) is
a special case with very large or small component resistance
in analogue circuit, fault slope value (FSV) can be a general
fault signature to all fault patterns in accordance with the
theoretical derivation; (2) the calculation of FSV is from the
simple voltage measurement and it is not time-consuming in
practice. In this paper, its statistical feature can be obtained
according to Theorem 3, when the value of 𝑉

1𝑘
− 𝑉
10

and
𝑉
1𝑘
−𝑉
10
follows normal distribution according toTheorem 2.

Theorem 3. Fault slope value (FSV) is a random variable T
that follows the nominal ratio distribution (the ratio of two
normal random variables) according to Theorem 2 and its
definition in (6). Such nominal ratio distribution can be esta-
blished as 𝐹(𝑡) = 𝐿(𝑑1, 𝑑2; 𝑑3) + 𝐿(−𝑑1, −𝑑2; 𝑑3) based on
[16], where L(p,q;p) is the standard bivariate normal integral
shown as follows:

𝐿 (𝑝, 𝑞; 𝑝) =
∫
∞

𝑝
∫
∞

𝑞
−(𝑥 − 𝑦𝜌)

2

/2 (1 − 𝜌2) 𝑑𝑥 𝑑𝑦

2𝜋√1 − 𝜌2
, (7)

where 𝑑
1
, 𝑑
2
, and 𝑑

3
are shown as follows:

𝑑
1
=

𝜇
𝑥
− 𝑡𝜇
𝑦

√𝜎𝑥𝑥𝜎𝑦𝑦𝑏 (𝑡)
, 𝑑

2
=

−𝜇
𝑦

√𝜎𝑦𝑦
,

𝑑
3
=

𝑡𝜎
𝑦𝑦
− 𝜎
𝑥𝑦

√𝜎𝑥𝑥𝜎𝑦𝑦𝑏 (𝑡)
.

(8)
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Figure 5: (a) Circuit fault (𝐹
𝑖
or 𝐹
𝑚
) can de determined if the corresponding variation of nodal voltage is found in the range of 𝑃

1
, or in the

range of 𝑃
2
. Furthermore, due to the data fusion between 𝐹

0
and 𝐹

𝑖
, the fault diagnosis error of 𝐹

𝑖
is no more than 100(2𝛼)% if and only if

100(1 − 𝛼)% upper confidence limit of 𝐹
𝑖
is 𝑇
𝑟𝑖
while 100(1 − 𝛼)% lower confidence limit of 𝐹

𝑚
is 𝑇
𝑟𝑚
. (b)The data fusion caused by the worst

tolerance in a circuit.

Furthermore,

𝑏 (𝑡) = √
𝑡2

𝜎
𝑥𝑥

+
1

𝜎
𝑥𝑦

−
2𝑡𝜎
𝑥𝑦

𝜎
𝑥𝑥
𝜎
𝑦𝑦

. (9)

In practice, there exist lots of numerical algorithms for
estimation of the ratio of two normal random variables. For
instance, the computation in [17] could reduce a maximum
error to 2 × 10

−7, which guarantees the accurate FSV value
estimation. In particular, when 𝜇

𝑦
> 0, (𝜎

𝑦𝑦
)/(𝜇
𝑦
)
2 is small

enough, the cumulative distribution function (CDF) for FSV
is further simplified to

𝑃 (𝑇 ≤ 𝑡) = 𝑃(
𝑋

𝑌
≤ 𝑡)

= 𝑃(
𝑋

𝑌
≤ 𝑡, 𝑌 > 0) + 𝑃(

𝑋

𝑌
≤ 𝑡, 𝑌 < 0)

≈ 𝑃 (𝑋 ≤ 𝑡𝑌) = Φ (−𝜇 (𝜃, 𝑡)) ,

(10)

𝜇 (𝜃, 𝑡) =
𝜇
𝑥
− 𝜇
𝑦
𝑡

√𝜎
𝑥𝑥
− 2𝜎
𝑥𝑦
𝑡 + 𝑡2𝜎

𝑦𝑦

, (11)

where Φ(∙) is the CDF of a standard normal distribution.
The derivation (𝜇

𝑦
< 0) can be developed in a similar

way; then the estimated FSV can be located in according to
its upper and lower tolerance limits of a standard normal
distribution: if upper confidence limit 100(1 − 𝛼)% for 𝑢(𝜃, 𝑡)
is set at 𝑈(𝜗, 𝑡), then −𝑈(𝜗, 𝑡) is the lower confidence limit
100(1 − 𝛼)% for Φ(−𝑢(𝜃, 𝑡)), so that the value of 𝑡 can be
obtained through Φ(−𝑈(𝜗, 𝑡)) = 𝛽. Here, −𝑈(𝜗, 𝑡) = 𝑧

𝛽
and

𝑧
𝛽
= Φ−1(𝛽).

2.3. Fault Diagnosis Based on Normal Ratio Distribution

2.3.1. Fault Diagnosis with Fault Diagnosis Error Requirement.
In a circuit under test (CUT), the estimated range of FSV is
represented in Table 1. Here, the fault-states set is 𝐹 = {𝐹

𝑘
},

𝑘 = 1, 2, . . . 𝑛, and n is the number of fault states in analogue-
circuit. The test-nodes set is 𝑇 = {𝑇

𝑚
}, 𝑚 = 1, 2, . . . , 𝑝,

with which a test-nodes pair (𝑇
𝑖
− 𝑇
𝑚
) is represented by 𝑇

𝑖𝑚
.

Furthermore, the estimated parametric range of FSV for fault
state 𝑘 on the test-nodes pair 𝑇

𝑖𝑚
is 𝑆𝑘
𝑖𝑚

= (𝑆𝐿𝑘
𝑖𝑚
, 𝑆𝑈𝑘
𝑖𝑚
), where

𝑆𝐿𝑘
𝑖𝑚
= min{𝑆𝑘

𝑖𝑚
} and 𝑆𝑈𝑘

𝑖𝑚
= max{𝑆𝑘

𝑖𝑚
}.

Table 1: Range of FSV for all fault states on the test-node pairs.

𝑇
1,2

𝑇
1,3

. . . 𝑇
𝑚,𝑘

. . .

𝐹
0

(𝑆𝐿0
12
, 𝑆𝑈0
12
) (𝑆𝐿0

13
, 𝑆𝑈0
13
) . . . (𝑆𝐿0

𝑖𝑚
, 𝑆𝑈0
𝑖𝑚
) . . .

𝐹
1

(𝑆
𝐿1

12
, 𝑆
𝑈1

12
) (𝑆

𝐿1

13
, 𝑆
𝑈1

13𝑠
) . . . (𝑆

𝐿1

𝑖𝑚
, 𝑆
𝑈1

𝑖𝑚
) . . .

𝐹
2

(𝑆𝐿2
12
, 𝑆𝑈2
12
) (𝑆𝐿2

13
, 𝑆𝑈2
13
) . . . (𝑆𝐿2

𝑖𝑚
, 𝑆𝑈2
𝑖𝑚
) . . .

...
...

...
...

...
...

𝐹
𝑛

(𝑆𝐿𝑛
12
, 𝑆𝑈𝑛
12
) (𝑆𝐿𝑛

13
, 𝑆𝑈𝑛
13
) . . . (𝑆𝐿𝑛

𝑖𝑚
, 𝑆𝑈𝑛
𝑖𝑚
) . . .

Thedetermination of 𝑆𝐿𝑘
𝑖𝑚
= min{𝑆𝑘

𝑖𝑚
} and 𝑆𝑈𝑘

𝑖𝑚
= max{𝑆𝑘

𝑖𝑚
}

is related to the fault diagnosis error determined by normal
ratio distribution through Theorem 4. In this theorem, the
fault diagnosis error limit is calculated through the data
fusion probability among different circuit fault states.

Theorem 4. A fault can be located with a fault diagnosis
error <100(2𝛼)%, if and only if there exists at least one test-
node pair, on which the corresponding values of SFV can be
distinguished from all other fault/fault-free states with the
100(1 − 𝛼)% confidence limit configuration in Figure 5.

Proof. Without loss of generality, in Figure 5(a), on the
condition that 100(1 − 𝛼)% upper confidence limit is 𝑇

𝑟𝑖
for

fault state 𝐹
𝑖
and 100(1 − 𝛼)% lower confidence limit is 𝑇

𝑟𝑚

for 𝐹
𝑚
, 𝑚 ̸= 𝑖, it is obvious that the integration of CDFs in

Figure 5 is less than the CDFs integration between threshold
𝑇
𝑟𝑖
and 𝑇

𝑟𝑚
, meaning that the fault diagnosis error of 𝐹

𝑖
is

<100(2𝛼)%.
Once the required fault diagnosis error is satisfied with

a given tolerance, such tolerance is less than the tolerance
limit value, which is defined as Tormax (the worst component
tolerance) in Definition 5.

Definition 5. Given a fault diagnosis error 100(2𝛼)% require-
ment, the worst component tolerance surely leads to the
data fusion pattern in Figure 5(b), where the 100(1 − 𝛼)%
confidence limit of FSV estimation is set at 𝑇

𝑟𝑖
, 𝑇
𝑟𝑚

for each
fault state.

According to Definition 5 and Theorem 4, it is assured
that the fault diagnosis error requirement can be satisfied if
the actual tolerance is less than the tolerance limit Tormax.
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Then based on the corresponding value of FSV in Table 1,
the fault diagnosis on a set of parametric fault is categorized
into fault detection and isolation: (1) a fault can be detected if
there is at least one test-node pair, on which the correspond-
ing value of FSV owns no parametric overlaps with the fault-
free state. (2)Meanwhile, a fault can be isolated meaning that
this fault state can be distinguished from all other fault states
because of no intersection of FSVs.

To be convenient in the following statement, we define

𝜒det (𝐹𝑘) = {
1 𝑆𝑘 ∩ 𝑆0 = ⊘

0 𝑆𝑘 ∩ 𝑆0 ̸= ⊘,
(12)

where 1 ≤ 𝑘 ≤ 𝑛;

𝜒iso (𝐹𝑘,𝑚) = {
1 𝑆𝑘 ∩ 𝑆𝑚 = ⊘

0 𝑆𝑘 ∩ 𝑆𝑚 ̸= ⊘,
(13)

where 1 ≤ 𝑘 ≤ 𝑛, 1 ≤ 𝑚 ≤ 𝑛, 𝑘 ̸=𝑚.
Then the result of fault diagnosis is measured through

fault detection rate (FDR), fault isolation rate (FIR) as follows.

(1) Fault detection rate (FDR): the ratio of fault states that
can be detected in a given fault states set:

FDR =
∑
𝑛

𝑘=1
𝜒 (𝐹
𝑘
)

𝑛
, (14)

where the number of fault states is 𝑛.
(2) Fault isolation rate (FIR): the ratio of fault states pair

can be isolated based on a given fault states pair set:

FIR =
∑
𝑛

𝑘,𝑚=1
𝜒 (𝐹
𝑘,𝑚
)

𝑁
, (15)

where the maximum number of isolated fault states
pair is𝑁 = 𝑛(𝑛 − 1)/2.

2.3.2. Fault Parameter Identification Based on Normal Ratio
Distribution. The basic idea of statistics approach in fault
diagnosis can also help us identify fault parameter. In this
paper, the fault parameter identification needs the determi-
nation of the diagnostic fault parameter border, which decide
how small the alteration of component parameter could be
distinguished from fault-free state. As for the diagnostic fault
parameter border, Theorems 6 and 7 are proposed.

Theorem 6. In the single fault case, there is a parameter range
∈ [𝑏,∞) or [0, 𝑐) in which all the fault states involved in these
altered parameters can be detected. Here, 𝑎 is the nominal value
of the component, and 𝑏 > 𝑎 > 𝑐 and 𝑏 or 𝑐 is called as the
diagnostic fault parameter border.

Proof. In the single fault case, the variation in corresponding
element of Δ

𝐴
causes a monotonous variation to the mean

of random variable in matrix 𝑉 according to the linear
expression Δ𝑉 = −(𝐸 + 𝐴−1Δ

𝐴
)𝑉. Thus, once a parameter

𝑏 or 𝑐 (𝑏 > 𝑎 > 𝑐) causes the altered distribution in fault
state 𝐹

𝑖
can be separated in a long enough distance from the

distribution in the fault-free state 𝐹
0
. Then, the fault states

related to fault parameter ∈ [𝑏,∞) or (0, 𝑐] can all be detected
through the measurement of Δ𝑉 or the corresponding value
of SFV on a test-node pair; that is, the diagnostic fault border
is 𝑏(𝑐).

Theorem 7. Assume that there are potential 𝑘-fault compo-
nents in a linear-analogue circuit, there is definitely a para-
meter range set, in which all fault states caused by these altered
parameters can be diagnosed in accordance with the FSV value.

Proof. Assume that 𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑘
is the nominal value of the

component, and 𝑏
𝑖
> 𝑎
𝑖
> 𝑐
𝑖
and 𝑏
𝑖
or 𝑐
𝑖
is the diagnostic fault

parameter border shown in Theorem 6. It is not hard to find
that Theorem 7 is correct when 𝑘 = 1 (k is the number of
fault component).Then whenTheorem 7 is established when
𝑘 = 𝑚, if one more fault occurs, there exists a parameter
𝑏
𝑚+1

or 𝑐
𝑚+1

causing the altered distribution in fault state𝐹
𝑚+1

which can be distinguishable from the distribution in the
fault state 𝐹

𝑚
. The corresponding diagnostic parameter range

from 𝐹
𝑚+1

to 𝐹
𝑚−𝑘

is ∈ [0, 𝑐
(𝑚+1)−(𝑚−𝑘)

)⋃[𝑏
𝑚+1−(𝑚−𝑘)

,∞), 𝑘 =
0, 1, . . . , 𝑚. Then, the diagnostic parameter range set for fault
state 𝐹

𝑚+1
is (𝑏1
𝑚
, 𝑏2
𝑚
)⋃(𝑐
1

m, 𝑐
2

𝑚
). Hence, as for all fault states, it

is given as ∩𝑚
𝑘=0

([0, 𝑐
(𝑚+1)−(𝑚−𝑘)

)⋃[𝑏
𝑚+1−(𝑚−𝑘)

,∞)).

Furthermore, Theorem 8 gives the determination of fault
diagnostic resolution, which means that the minimum com-
ponent parameter variation that can lead to distinguishable
response for fault identification.

Theorem 8. Assume that the value of 𝑎 is the nominal value of
a component in the linear-analogue circuit, and the diagnostic
fault parameter border is 𝑏 and 𝑐. Then, the value of |𝑏 − 𝑎|

(or |𝑎 − 𝑐|) is almost an effective fault diagnosis resolution,
with which a pair of faults corresponding to the component
parameter 𝐵

1
≥ 𝑏 (or 𝐶

1
≤ 𝑐) can be distinguished from each

other as long as |𝐵
1
− 𝐶
1
| > |𝑏 − 𝑎| (or |𝑎 − 𝑐|).Then these two

faults parameters 𝐵
1
, 𝐶
1
can be identified according to the FSV

values.

Proof. According to the linear expression of Δ𝑉 = −(𝐸 +

𝐴−1Δ
𝐴
)𝑉, and the assumption that altered component

parameter Δ
𝐴
is continuous andmonotonous, then the value

of FSV is continuous and monotonous. Thus, if a fault state
with fault parameter 𝑏 or 𝑐 can be distinguished from the
fault-free state,the value of 𝑏 − 𝑎 is the fault resolution for
the fault identification based on FSV values, and it indicate
that the parametric alteration on the same component can be
distinguished with at least b-a parametric distance.

2.3.3. Test-Nodes Set Selection Based on FSV Range. The opti-
mum test-nodes set selection is also a critical problem in
fault diagnosis that can be solved on the basis of the result
of accurate statistics. Here, according to the statistical result,
a bipartite decision network including fault states nodes and
accessible test-nodes pair vertices is established, in which
the connections from a test-nodes pair node 𝑇

𝑖,𝑗
to a fault

state pair node 𝐹
𝑘,𝑚

represent a success of fault isolation or
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detection (there are no intersection of interval estimation of
FSVs between 𝐹

𝑘
and 𝐹

𝑚
).

A simple example of bipartite decision network is shown
in its matrix form of (12); there are 4 potential test-nodes pair
vertices 𝑇

1,2
, 𝑇
1,3
, 𝑇
1,4
, and 𝑇

1,5
while 4 fault pair vertices 𝐹

0,1
,

𝐹
1,2
, 𝐹
1,3
, and 𝐹

2,3
are given in corresponding rows. The first

element in the matrix is 1 means the connections exist from
𝑇
1,2

to𝐹
0,1
.Thus, the fault state𝐹

1
can be distinguishable from

fault-free state 𝐹
0
:

𝑁 =

(
(
(
(

(

𝑇
1,2

𝑇
1,3

𝑇
1,4

𝑇
1,5

𝐹
0,1
, 1, 1, 1, 1,

⋅ ⋅ ⋅ , ⋅ ⋅ ⋅ , ⋅ ⋅ ⋅ , ⋅ ⋅ ⋅ , ⋅ ⋅ ⋅ ,

𝐹
1,2
, 0, 1, 1, 1,

𝐹
1,3
, 0, 1, 0, 0,

⋅ ⋅ ⋅ , ⋅ ⋅ ⋅ , ⋅ ⋅ ⋅ , ⋅ ⋅ ⋅ , ⋅ ⋅ ⋅ ,

𝐹
2,3
, 1, 1, 1, 0,

⋅ ⋅ ⋅ , ⋅ ⋅ ⋅ , ⋅ ⋅ ⋅ , ⋅ ⋅ ⋅ , ⋅ ⋅ ⋅ ,

)
)
)
)

)

. (16)

Once the bipartite decision network is established, the
proposed process of test-nodes selection is as follows.

(1) The target test-nodes set 𝑇
𝑜
is initialized to a null set.

(2) The degree 𝐷 of all test-node pair vertexes are cal-
culated, and then the most likely selected test node
corresponding to the test-node vertex with the largest
value of𝐷 is selected.

(3) All the connections from the selected test-node pair
vertexes to the fault states pair vertexes should be
eliminated. Then, the corresponding fault states pair
is set be diagnosed.

(4) If there are fault state pairs having not been diagnosed,
update the values of degree 𝐷 and select more test-
nodes in the next round.

(5) The algorithm ends up with the condition that there
are no connections in the bipartite network.

3. Computational Examples

In this section, there are two examples to validate the
proposed fault diagnosis based on the accurate statistical
analysis of FSV. At first, the simulations are implemented
with PSPICE and R language programming on the respective
software platform (Orcad 10.5 and RStudio) to determinate
the proper test-nodes set for fault diagnosis. Both of them are
executed with a given requirement of FIR ≥ 90%, FDR ≥

90%. Furthermore, we test the corresponding result of fault
diagnosis in actual circuit.

Since the hard faults (catastrophic ones) can be thought
of as a case of soft faults and the single fault in circuit is the
most probable occurrence, the discussions in these examples
focus on the case of single soft fault.

The first example is shown in Figure 6. This example is
used to demonstrate the critical results of proposed method
for fault diagnosis based on statistical analysis, and the soft
faults are set according to the same fault states of [14]: the
parameter of faulty resistance drifts toward 8K, varyingmore
than 30% of its nominal value. Thus, there exist 10 soft faults

Table 2: The FSV range estimated through the proposed normal
ratio distribution for the circuit in Figure 6.

𝑇
1,3

𝑇
1,4

𝑇
1,5

𝐹
0

— — —
𝐹
1

(3.97, 4.12) (7.89, 8.38) (15.7, 16.8)
𝐹
2

(−1.99, −1.78) (−3.96, −3.48) (−7.89, −7.04)
𝐹
3

(−0.49, −0.42) (−0.98, −0.82) (−1.96, −1.61)
𝐹
4

(0.24, 0.25) (−0.25, −0.22) (−0.48, −0.42)
𝐹
5

(0.24, 0.25) (0.12, 0.13) (−0.13, −0.12)
𝐹
6

(3.97, 4.14) (7.89, 8.40) (15.7, 16.8)
𝐹
7

(0.93, 1.10) (1.84, 2.01) (3.63, 3.99)
𝐹
8

(0.24, 0.25) (0.46, 0.49) (0.93, 0.99)
𝐹
9

(0.23, 0.25) (0.11, 0.13) (0.23, 0.25)
𝐹
10

(0.24, 0.25) (0.12, 0.13) (0.05, 0.06)

Table 3: The selected test-nodes pair according to the maximum
value of𝐷.

𝑇
1,2

𝑇
1,3

𝑇
1,4

𝑇
1,5

𝑇
𝑜

𝐷
47 51 53 55 𝑇

1,5

0 0 0 0 ⊘

𝑇
𝑜
= {𝑇
1
, 𝑇
5
} FIR = 98% FDR = 100%

with a fault states set description 𝐹 = {𝐹
𝑘
}, 𝑘 = 1, 2, . . . , 10,

while test-nodes set 𝑇 = {𝑇
1
, . . . , 𝑇

2
, . . . , 𝑇

5
} is shown in the

Figure 6. Moreover, the requirement of the fault detection
rate (FDR) and fault isolation rate (FIR) is set ≥90%, and the
expected fault detection (isolation) error is set less than 10%.

Based on Theorem 4, if the expected fault detection
(isolation) error is set less than 10%, the interval estimation
of FSV is given with a 95% confidence limit requirement
in Theorem 3. The corresponding result is shown in Table 2.
Then if we use (12)-(13), it is not hard to find the value of
𝜒det(𝐹𝑘) = 1, 𝑘 = 1, 2, . . . , 10. Thus, the value of FDR in (14) is
100%. However, 𝜒det(𝐹1,6) = 0. Then, the fault isolation rate
(FIR) is 98%. Eventually, the requirement of FIR, FDR is also
satisfied.

These fault isolation or detection result can be coded into
a bipartite network. To be convenient, it can be expressed as a
matrix shown in (17).Then, with the calculation and updating
of test-nodes pair vertex degree in Table 3, it is simple to select
the test-nodes set {𝑇

1
, 𝑇
5
} to meet the requirement of fault

diagnosis:

𝑁 =

(
(
(
(
(
(
(
(
(
(

(

𝑇
1,3
, 𝑇
1,4
, 𝑇
1,5

𝐹
0,1

1 1, 1

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝐹
0,10

1 1, 1

𝐹
1,2

1 1, 1

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝐹
1,10

1 1, 1

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝐹
8,9

0 1, 1

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝐹
9,10

0 0, 1

)
)
)
)
)
)
)
)
)
)

)

. (17)
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Figure 6: (a) The linear analogue circuit with test nodes 𝑇
1
− 𝑇
5
. (b) A circuit under test used to calculate the FSV value for fault diagnosis.

Table 4: The estimated FSV range through the normal distribution (NDS) or proposed statistics-based method (NQS) for fault state 𝐹
6
.

1% 5% 10% 15%

𝑇
1,2

NQS (1.99, 2.02) (1.98, 2.10) (1.96, 2.23) (1.97, 2.14)
NDS (1.99, 2.00) (1.98, 1.99) (1.96, 1.98) (1.97, 1.98)

𝑇
1,3

NQS (3.99, 4.02) (3.97, 4.14) (3.95, 4.28) (3.99, 4.52)
NDS (3.99, 3.99) (3.97, 3.98) (3.94, 3.98) (3.95, 4.05)

𝑇
1,4

NQS (7.98, 8.07) (7.89, 8.40) (7.79, 8.89) (8.06, 9.71)
NDS (7.98, 7.98) (7.89, 7.94) (7.88, 8.04) (8.60, 8.88)

𝑇
1,5

NQS (15.9, 16.2) (15.7, 16.8) (15.4, 17.9) (16.2, 22.3)
NDS (15.9, 15.9) (15.4, 15.9) (14.2, 16.8) (16.8, 21.0)

MMFR 66.7% 91.7% 92.5% 94.1%

In this paper, the simulation of the circuit in Figure 6 also
points out that how the method which is dependent on the
assumed normal distribution brings deviation of estimated
FSV, compared with the proposed method result. In fact,
in Table 4, the inaccurate estimation of FSV from assumed
normal distribution (NDS) leads to some loss of FSV range in
all possible given tolerancewhen comparedwith that inNQS-
based estimation (proposed method). For instance, when the
tolerance is 5%, and the corresponding FSV calculated from
voltage measurement (on the test-nodes of 𝑇

1
, 𝑇
3
) is larger

than 4.00 (4.00 > 3.98), the corresponding fault states 𝐹
6
are

undiagnosed case in the point of view of NDS. Furthermore,
the difference of FSV range can be found in all common
tolerance, and it deteriorates with increasing tolerance value.
For example, when the tolerance is 10%, the estimated range
of FSV based on NQS for fault state 𝐹

6
is (15.4, 17.9), while

the estimation of FSV based on NDS is (14.2, 16.8). Then, an
index namely missed faults rate (MFR) is given by (17.9 −
16.8)/(17.9 − 15.4) + (15.4 − 14.2)/(16.8 − 14.2) = 0.90 for
measuring the influence of deviation of estimated FSV on the
fault diagnosis. Finally, the value of max missed faults rate
(MMFR) for each tolerance (column) is listed on the bottom
of Table 4.

Up to now, the simulation-based illustrations in the linear
circuits of Figure 6(a) have shown the critical result of fault
diagnosis in Table 3. After that, we test the effectiveness of
solution of Table 3 in an actual measurement. In this test,
an investigated fault is set as the fault value of 8 K, while
all other fault-free components are randomly selected from
a set of actual components set with tolerance of 5%. The
corresponding circuit diagnosis result is shown in Table 5.

According to Table 5, these results of the statistics-
based method are preserved in the actual diagnosis: (1) the

Table 5: The fault diagnosis in the actual circuit of Figure 6.

𝑇
1

𝑇
5

𝑇
1,5

Diagnosis?
𝐹
0

5.92V 0.38V — —
𝐹
1

1 4.00V 0.26V 16.7 N
𝐹
2

6.95V 0.25V −7.69 Y
𝐹
3

6.20V 0.24V −2.00 Y
𝐹
4

5.99V 0.24V −0.5 Y
𝐹
5

5.94V 0.25V −0.12 Y
𝐹
6

1 5.48V 0.35V 14.7 N
𝐹
7

6.05V 0.41 V 3.45 Y
𝐹
8

5.96V 0.41 V 0.8 Y
𝐹
9

5.93V 0.41 V 0.2 Y
𝐹
10

5.94V 0.64V 0.06 Y
1The fault state 𝐹

1
is ambiguous to 𝐹

6
.

optimum test-nodes set for fault diagnosis is 𝑇
1,5

according
to both the simulation result in Table 2 and the actual
test of circuit diagnosis in Table 5; (2) the required fault
detection/isolation rate is satisfied (≥90%) in both the sim-
ulation and practical measurements; (3) the fault state 𝐹

1
is

ambiguous to. 𝐹
6
with the fault signature of FSV according to

Table 2, and this solution is observed in the actual circuit test.
The proposed fault diagnosis method is also effective in

the analogue circuit composed of linear amplifiers. In this
case, the tolerance is 10%. And the nominal components
values of 𝑅

𝑘
are 10 K and 𝐶

1
= 10 nF, 𝐶

2
= 20 nF, 𝐶

3
= 20 nF,

𝐶
4
= 10 nF. Investigated fault states include 𝐹

1
, 𝐹
2
, . . . , 𝐹

6
:

𝑅
2
= 20K, 𝑅

4
= 20K, 𝑅

8
= 20K and 𝐶

2
= 10 nF, 𝐶

3
= 10 nF,

𝐶
4
= 20 nF.
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Table 6: The FSV range estimated through normal quantile distribution in the circuit of Figure 7.

𝑇
1,2

𝑇
1,3

𝑇
1,4

𝑇
1,5

𝑇
1,6

Diagnosis?
𝐹
0

— — — — —
𝐹
1

(0.64, 0.86) (0.72, 1.06) (0.74, 1.11) (0.71, 1.34) (0.76, 1.46) Y
𝐹
2

(−0.84, −0.56) (−0.90, −0.54) (−0.93, −0.61) (−1.37, −0.55) (−1.33, −0.74) Y
𝐹
3

(−0.47, −0.16) (−1.03, −0.23) (−0.10, −0.24) (0.20, 0.95) (0.26, 1.06) Y
𝐹
4

(0.14, 0.60) (1.63, 4.00) (1.68, 4.31) (1.61, 4.32) (2.12, 4.95) Y
𝐹
5

(−1.59, −0.25) (−1.61, −0.37) (−2.76, −1.87) (−3.55, −2.06) (−4.08, −2.06) Y
𝐹
6

(−3.03, −1.39) (−3.81, −1.58) (−0.79, −0.58) (−1.17, −0.49) (2.99, 4.67) Y

R1

R2

R3

R4

R5

R6 R7

R8

R9

R10 R11

R12

R13C1

C2 C3

C4

T1 T2 T3

T4

T5

T6

−
+

Vo

(a) (b)
Figure 7: (a)The test nodes in this circuit are 𝑇

1
−𝑇
6
, which are set at the output of amplifiers from left to right. (b)The fault diagnosis in an

actual circuit.

Table 7: Fault diagnosis result in the actual circuit of Figure 7.

𝑇
1

𝑇
5

𝑇
6

𝑇
1,5

𝑇
1,6

Diagnosis?
𝐹
0

0.55V 0.43V 0.46V — —
𝐹
1

0.72V 0.57V 0.61 V 1.21 1.13 Y
𝐹
2

0.74V 0.29V 0.31 V −1.36 −1.13 Y
𝐹
3

0.50V 0.26V 0.28V 0.29 0.28 Y
𝐹
4

0.61 V 0.50V 0.76V 2.00 4.66 Y
𝐹
5

0.42V 0.49V 0.52V −2.16 −2.16 Y
𝐹
6

0.41 V 0.55V 0.42V −1.17 3.50 Y

With the proposed statistics-based method, the estima-
tions of FSVvalue have been shown inTable 6. Clearly, it gives
us these solutions for fault diagnosis: (1) the test-nodes set is
𝑇
1
, 𝑇
5
or 𝑇
1
, 𝑇
6
; (2) and the fault detection rate (FDR) can be

100%, while the fault isolation rate is (FIR) 100%. All of these
solutions will be testified in a tolerance-influenced actual
circuit. Here, such circuit is constructed in Figure 7(b), where
the external stimulus is a sin-wave with 1 kHz frequency
and 1.0 V amplitude value. Therefore, in a practical test, the
corresponding FSV values from the measurements on test-
nodes pair (𝑇

1,5
or 𝑇
1,6
) are shown in Table 7, based on

the voltage measurement on 𝑇
1
, 𝑇
5
, 𝑇
6
. The corresponding

fault diagnosis result tell us the following: (1) the proposed
spastics approach can give us the correct and effective test-
nodes selection for fault diagnosis; (2) it determines what
the final fault diagnosis result (fault isolation/detection) is
in the tolerance consideration, which benefit us in the fault
diagnosis result prediction for an actual circuit test with a
required fault detection rate/fault isolation rate.

4. Conclusion

This paper builds a statistics-based viewpoint in order to
solve the tolerance problem in accordance with given fault
diagnostic requirements. Based on this point of view, the
relationship between tolerance limit and fault diagnosis error
limit can be discovered in this paper. And in the process
of fault diagnosis, the accurate statistical feature discussion
let us know more accurate response varying range, which
assure that themeasurement reduction (test-nodes selection)
and fault parameter identification can avoid incorrectness in
fault diagnosis applications. As a matter of fact, all of these
advantages have been analysed and tested in the experiment
of linear-circuit benchmarks.

This is an acute view to handle the tolerance problem
in analogue circuit diagnostic design and fault diagnosis.
Furthermore, it can be generalized in the following cases.
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(1) Although the hard fault is not the main focus in this
paper, the proposed method could be generalized to hard
fault case. (2)The discussion of accurate analysis on the SFV
can be used in the nonlinear circuit cases, as long as the
linearwise segments modelling can be established. In this
case, because the operating point change is a polyline in the
nodal voltage plane, the SFVnear the operating point can also
be considered the effective feature for the fault diagnosis. All
of these discussions should be carried in further research.

Acknowledgments

First and foremost, one of the authors would like to show my
sincere thanks to these colleagues in my lab, such as Wei-
min Xian, Jin-Yu Zhou, and Wei Li, who give me sound
pieces of advice in amendments of words and pictures as
well as corresponding data. Then he shall extend his thanks
to Vice Professor Long for all his kindness, which has also
helped him to develop the fundamental academic compe-
tence in the programming of R code and Spice simulation.
At last, this work was supported in part by the National
Natural Science Foundation of China under Grants nos.
61071029, 60934002, 61271035, and 61201009, and byMinistry
Level Pre-Research Foundation of China under Grant no.
9140A17060411DZ0205.

References

[1] T. Y. Hong and H. Y. Yi Gang, “A new fault dictionary method
for fault diagnosis of analogue circuits,”Microelectronics, vol. 31,
pp. 252–254, 2001.

[2] Z. Czaja and R. Zielonko, “Fault diagnosis in electronic circuits
based on bilinear transformation in 3-D and 4-D spaces,” IEEE
Transactions on Instrumentation and Measurement, vol. 52, no.
1, pp. 97–102, 2003.

[3] P. M. Lin and Y. S. Elcherif, “Analogue circuits fault dictionary.
New approaches and implementation,” International Journal of
Circuit Theory and Applications, vol. 13, no. 2, pp. 149–172, 1985.

[4] J. Huanca and R. Spence, “New statistical algorithm for fault
location in toleranced analogue circuits,” IEE Proceedings G, vol.
130, no. 6, pp. 243–251, 1983.

[5] D. Grzechca and J. Rutkowski, “Fault diagnosis in analog elec-
tronic circuits: the SVMapproach,”Metrology andMeasurement
Systems, vol. 4, pp. 583–589, 2009.

[6] R. Sałat and S. Osowski, “Support Vector Machine for soft fault
location in electrical circuits,” Journal of Intelligent and Fuzzy
Systems, vol. 22, no. 1, pp. 21–31, 2011.

[7] F. Aminian, “Fault diagnosis of nonlinear analog circuits using
neural networks with wavelet and fourier transforms as prepro-
cessors,” Journal of Electronic Testing, vol. 17, no. 6, pp. 471–481,
2001.

[8] B. Long, S. Tian, andH.Wang, “Diagnostics of filtered analogue
circuits with tolerance based on LS-SVM using frequency
features,” Journal of Electronic Testing, vol. 28, pp. 291–300, 2012.

[9] W. Peng and Y. Shiyuan, “A soft fault dictionary method for
analogue circuit diagnosis based on slope fault mode,” IEEE
Transactions on Automatic Control, vol. 22, pp. 1–23, 2006.

[10] L. Zhou, Y. Shi, J. Tang, and Y. Li, “Soft fault diagnosis in
analogue circuit based on fuzzy and direction vector,”Metrology
and Measurement Systems, vol. 16, pp. 61–75, 2009.

[11] K. C. Varghese, J. HywelWilliams, and D. R. Towill, “Simplified
ATPG and analog fault location via a clustering and separability
technique,” IEEE Transactions on Circuits and Systems, vol. 26,
no. 7, pp. 496–505, 1979.

[12] S. Freeman, “Optimum fault isolation by statistical inference,”
IEEE Transactions on Circuits and Systems, vol. 26, no. 7, pp.
505–512, 1979.

[13] W. H. Hayt Jr., J. E. Kemmerly, and S. M. Durbin, Engineering
Circuit Analysis,McGraw-Hill, NewYork,NY,USA, 7th edition,
2007.

[14] C. Yang, S. Tian, B. Long, and F. Chen, “Methods of handling the
tolerance and test-point selection problem for analog-circuit
fault diagnosis,” IEEE Transactions on Instrumentation and
Measurement, vol. 60, no. 1, pp. 176–185, 2011.

[15] W. Peng and Y. Shiyuan, “Circuit tests based on the linear rela-
tionships between changes in node voltages,” Journal of Tsi-
nghua University, vol. 47, pp. 1245–1248, 2007 (Chinese).

[16] D. V. Hinkley, “On the ratio of two correlated normal random
variables,” Biometrika, vol. 56, pp. 635–639, 1969.

[17] Z. Drezner and G. O. Wesolowsky, “On the computation of
the bivariate normal integral,” Journal of Statistical Computation
and Simulation, vol. 35, no. 1-2, pp. 101–107, 1990.


