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This paper focuses on the multidirectional associative memory (MAM) neural networks with m fields which is more advanced
to realize associative memory. Based on the Brouwer fixed point theorem and Dini upper right derivative, it is confirmed that the
multidirectional associativememory neural network can have 3𝑙 equilibria and 2𝑙 equilibria of them are stable, where l is a parameter
associated with the number of neurons. Furthermore, an example is given to illustrate the effectiveness of the results.

1. Introduction

The Hopfield neural network was introduced by Hopfield in
1982, which introduced the climax of the research on the
neural networks. This network was extended to bidirectional
associative memory (BAM) neural network by Kosko in
1987 [1] and to multidirectional associative memory (MAM)
neural network by Hagiwara in 1990 [2]. They all can
realize associative memory. But by using the MAM neural
networks, one can achieve the many-to-many association
which is a very advanced function of human brain. The
many-to-many association has found wide applications in
image denoising, speech recognition, pattern recognition,
and intelligent information processing [2–6]. For example,
it was shown that today most Indians are derived from the
two-ancestor group gene by DNA analyzing [7]. If we need to
distinguish which category an Indian belongs to, then this is
a many-to-many associative problem.

In the designing of the associative memory neural net-
works to achieve associativememory, it is necessary to ensure
their stability. The stability of Hopfield neural networks
and BAM neural networks is discussed in a lot of recently
published literature works [8–12], but the researchers about
MAM neural networks are mainly focused on learning
algorithms, fault tolerance, and retrieval efficiency of MAM

neural networks [3–6]. To the best of our knowledge, the
research on the theory ofMAMneural networkswas reported
only in a few papers [13–18]. Chen et al. proved the stability
of some specific types of MAM neural networks in [13, 14].
We studied the existence and global exponential stability of
equilibrium for MAM neural networks with constant delays
or time-varying delays in [15, 16].We also obtained a sufficient
condition for the global exponential stability of the discrete-
time multidirectional associative memory neural network
with variable delays in [17].

The multistability of a neural network describes coex-
istence of multiple stable patterns such as equilibria or
periodic orbits. In recent years, the multistability issue of
neural networks is discussed in some papers [18–32]. In [18],
we discussed the existence and the exponential stability of
multiple periodic solutions for an MAM neural network.
The neural networks with a class of nondecreasing piecewise
linear activation functions with 2𝑟 corner points were inves-
tigated in [19]. It was proposed that the 𝑛-neuron dynamical
systems can have and only have (2𝑟 + 1)

𝑛 equilibria under
some conditions, of which (𝑟 + 1)

𝑛 are locally exponentially
stable and others are unstable. A class of neural networks with
Mexican-hat-type activation functions was discussed in [20].
A set of new sufficient conditions were presented to ensure
the multistability of the neural networks. The cellular neural
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networks with time-varying unbounded delays (DCNNs)
were discussed in [21]. Under some conditions, it showed
that the DCNNs can exhibit 3𝑛 equilibrium points. In [22],
Huang and Cao found that the 2𝑛-dimensional networks can
have 3

𝑛 equilibria and 2
𝑛 of them are locally exponentially

stable. In [24], with perturbation techniques and the Floquet
theory, Campbell et al. discussed the multistability and stable
asynchronous periodic oscillations for a network of three
identical neurons with multiple discrete signal transmission
delays. The possible codimension one bifurcations which
occur in the system were determined. In [25], Cheng et al.
presented the existence of 2𝑛 stationary solutions for a general
𝑛-dimensional delayed neural network with several classes of
activation functions. It was shown that a two-dimensional
neural network has 𝑛

2 isolated equilibria points which are
locally stable, where the activation function has 𝑛 segments.
Furthermore, evoked by periodic external input, 𝑛2 periodic
orbits which are locally exponentially attractive were found
[26]. Some similar results were found on 𝑛-neuron Cohen-
Grossberg neural networks (CGNNs) with time-varying
delays and a general class of activation functions [27]. In
[29, 30], the multistability and multiperiodicity issues were
discussed for competitive neural networks and high-order
competitive neural networks. In [31], the stability of multiple
equilibria of neural networks with time-varying delays and
concave-convex characteristics was studied. Some sufficient
conditions were obtained to ensure that an 𝑛-neuron neural
network with concave-convex characteristics can have a
fixed point located in the appointed region. By partition-
ing the state space, sufficient conditions were established
which ensure that 𝑛-dimensional Cohen-Grossberg neural
networks with 𝑘-level discontinuous activation functions can
have 𝑘𝑛 equilibrium points or 𝑘𝑛 periodic orbits [32].

Generally, the existence of a globally stable equilibrium
point or periodic solutions is necessary in solving opti-
mization problems, but to achieve many-to-many associative
memory by using MAM neural network, the system which
has a globally stable equilibrium point or a globally stable
periodic solution can only associate less information. So we
should study the multistability of MAM neural network in
order to make it achieve many-to-many associative memory.
It is necessary to explore the existence, stability, and conver-
gence speed of multiple equilibria or periodic solutions of
MAM neural network. Motivated by the above, in this paper,
we study the multistability issue for a delayed MAM neural
network with𝑚 fields and 𝑛𝑘 neurous in the field 𝑘 as follows:

𝑑𝑥𝑘𝑖

𝑑𝑡
= −𝑎𝑘𝑖𝑥𝑘𝑖 (𝑡)

+

𝑚

∑

𝑝=1,𝑝 ̸= 𝑘

𝑛𝑝

∑

𝑗=1

𝑤𝑝𝑗𝑘𝑖𝑓𝑝𝑗 (𝑥𝑝𝑗 (𝑡 − 𝜏𝑝𝑗𝑘𝑖)) + 𝐼𝑘𝑖,

(1)

where 𝑘 = 1, 2, . . . , 𝑚, 𝑖 = 1, 2, . . . , 𝑛𝑘, 𝑥𝑘𝑖(𝑡) denotes the
membrane voltage of the 𝑖th neuron in the field 𝑘 at time 𝑡,
𝑎𝑘𝑖 > 0 denotes the decay rate of the 𝑖th neuron in the field 𝑘,
𝑓𝑝𝑗(⋅) is the neuronal activation function of the 𝑗th neuron in
the field𝑝,𝑤𝑝𝑗𝑘𝑖 is the connectionweight from the 𝑗th neuron
in the field 𝑝 to the 𝑖th neuron in the field 𝑘, 𝐼𝑘𝑖 is the external

input of the 𝑖th neuron in the field 𝑘, and 𝜏𝑝𝑗𝑘𝑖 is the time
delay of the synapse from the 𝑗 neuron in the field 𝑝 to the 𝑖th
neuron in the field 𝑘.

Set 𝜏 = max{𝜏𝑝𝑗𝑘𝑖 | where 1 ≤ 𝑘 ≤ 𝑚, 1 ≤ 𝑝 ≤

𝑚, 𝑝 ̸= 𝑘, 1 ≤ 𝑖 ≤ 𝑛𝑘, and 1 ≤ 𝑗 ≤ 𝑛𝑝}. The initial conditions
with (1) are of the forms

𝑥𝑘𝑖 (𝑡) = 𝜙𝑘𝑖 (𝑡) , (2)

where 𝑘 = 1, 2, . . . , 𝑚, 𝑖 = 1, 2, . . . , 𝑛𝑘, and 𝜙𝑘𝑖 : [−𝜏, 0] → R

are continuous functions.
This paper is organized as follows. In the next section,

we discuss the existence of multiple equilibria by using the
Brouwer fixed point theorem. In Section 3, we analyze the
exponential stability of every equilibrium. An example is
given to illustrate the effectiveness of our results in Section 4.
Finally, conclusions are given in Section 5.

2. Existence of Multiple Equilibria

In this section, we consider the existence of multiple equi-
libria by using the Brouwer fixed point theorem. Since
the existence and stability of stationary patterns for neural
networks certainly depend on the characteristics of activation
functions, we assume the activation functions 𝑓𝑘𝑖(⋅) (1 ≤ 𝑖 ≤

𝑛𝑘, 1 ≤ 𝑘 ≤ 𝑚) satisfy the following condition:

(H1) 𝑓𝑘𝑖(⋅) are continuous, increasing and there exist
𝑀𝑘𝑖 > 0 such that |𝑓𝑘𝑖(𝑥)| ≤ 𝑀𝑘𝑖 for 1 ≤ 𝑖 ≤ 𝑛𝑘, 1 ≤

𝑘 ≤ 𝑚.

For convenience, we give some notations as follows:

𝑀 = {
𝑚, if 𝑚 is an even number,
𝑚 − 1, if 𝑚 is an odd number,

𝐼𝑀 = {1, 3, 5, . . . ,𝑀 − 1} ,

𝑙𝑖 = 𝑙𝑖+1 = min {𝑛𝑖, 𝑛𝑖+1} , for any 𝑖 ∈ 𝐼𝑀, 𝑙𝑚 = 0,

if 𝑀 ̸=𝑚,

𝑙 = ∑

𝑖∈𝐼𝑀

𝑙𝑖, 𝑛 =

𝑚

∑

𝑖=1

𝑛𝑖,

col (𝑏𝑘𝑖) = (𝑏11, . . . , 𝑏1𝑛1
, 𝑏21, . . . , 𝑏2𝑛2

, . . . , 𝑏𝑚1, . . . , 𝑏𝑚𝑛𝑚
) .

(3)

Set

𝛿𝑘𝑖 =
1

𝑎𝑘𝑖

[

[

𝑚

∑

𝑝=1,𝑝 ̸= 𝑘

𝑛𝑝

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑤𝑝𝑗𝑘𝑖

󵄨󵄨󵄨󵄨󵄨
𝑀𝑝𝑗 +

󵄨󵄨󵄨󵄨𝐼𝑘𝑖
󵄨󵄨󵄨󵄨
]

]

,

Ω = {𝑥 = col (𝑥𝑘𝑖) ∈ R
𝑛
| 𝑥𝑘𝑖 ∈ [−𝛿𝑘𝑖, 𝛿𝑘𝑖] ,

for 1 ≤ 𝑘 ≤ 𝑚, 1 ≤ 𝑖 ≤ 𝑛𝑘} .

(4)
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Figure 1: The configurations of 𝐺+
𝑘𝑖
(𝑦), 𝐺−

𝑘𝑖
(𝑦) and𝐻

−

(𝑘+1)𝑖
(𝑥),𝐻+

(𝑘+1)𝑖
(𝑥). (a) 𝑤𝑘𝑖(𝑘+1)𝑖, 𝑤(𝑘+1)𝑖𝑘𝑖 > 0. (b) 𝑤𝑘𝑖(𝑘+1)𝑖, 𝑤(𝑘+1)𝑖𝑘𝑖 < 0.

For any 𝑘 ∈ 𝐼𝑀, 1 ≤ 𝑖 ≤ 𝑙𝑘, define

𝐻
+

(𝑘+1)𝑖
(𝑥𝑘𝑖) =

1

𝑎(𝑘+1)𝑖

(𝑤𝑘𝑖(𝑘+1)𝑖𝑓𝑘𝑖 (𝑥𝑘𝑖)

−
󵄨󵄨󵄨󵄨𝑤𝑘𝑖(𝑘+1)𝑖

󵄨󵄨󵄨󵄨𝑀𝑘𝑖) + 𝛿(𝑘+1)𝑖,

𝐻
−

(𝑘+1)𝑖
(𝑥𝑘𝑖) =

1

𝑎(𝑘+1)𝑖

(𝑤𝑘𝑖(𝑘+1)𝑖𝑓𝑘𝑖 (𝑥𝑘𝑖)

+
󵄨󵄨󵄨󵄨𝑤𝑘𝑖(𝑘+1)𝑖

󵄨󵄨󵄨󵄨𝑀𝑘𝑖) − 𝛿(𝑘+1)𝑖,

𝐺
+

𝑘𝑖
(𝑥(𝑘+1)𝑖) =

1

𝑎𝑘𝑖

(𝑤(𝑘+1)𝑖𝑘𝑖𝑓(𝑘+1)𝑖 (𝑥(𝑘+1)𝑖)

−
󵄨󵄨󵄨󵄨𝑤(𝑘+1)𝑖𝑘𝑖

󵄨󵄨󵄨󵄨𝑀(𝑘+1)𝑖) + 𝛿𝑘𝑖,

𝐺
−

𝑘𝑖
(𝑥(𝑘+1)𝑖) =

1

𝑎𝑘𝑖

(𝑤(𝑘+1)𝑖𝑘𝑖𝑓(𝑘+1)𝑖 (𝑥(𝑘+1)𝑖)

+
󵄨󵄨󵄨󵄨𝑤(𝑘+1)𝑖𝑘𝑖

󵄨󵄨󵄨󵄨𝑀(𝑘+1)𝑖) − 𝛿𝑘𝑖.

(5)

We consider the second parameter condition which is
used to establish existence of multiple equilibria for systems
(1).

(H2) For any 𝑘 ∈ 𝐼𝑀, the weights 𝑤(𝑘+1)𝑖𝑘𝑖 ⋅ 𝑤𝑘𝑖(𝑘+1)𝑖 >
0, and there exist two points (𝑢1

𝑘𝑖
, 𝑢
1

(𝑘+1)𝑖
), (𝑢2
𝑘𝑖
, 𝑢
2

(𝑘+1)𝑖
),

where 𝑢1
𝑘𝑖
< 𝑢
2

𝑘𝑖
, such that

(1) if 𝑤𝑘𝑖(𝑘+1)𝑖, 𝑤(𝑘+1)𝑖𝑘𝑖 > 0, then 𝐻
+

(𝑘+1)𝑖
(𝑢
1

𝑘𝑖
) <

𝑢
1

(𝑘+1)𝑖
, 𝐺+
𝑘𝑖
(𝑢
1

(𝑘+1)𝑖
) < 𝑢

1

𝑘𝑖
, 𝐻−
(𝑘+1)𝑖

(𝑢
2

𝑘𝑖
) > 𝑢

2

(𝑘+1)𝑖
,

𝐺
−

𝑘𝑖
(𝑢
2

(𝑘+1)𝑖
) > 𝑢
2

𝑘𝑖
;

(2) if 𝑤𝑘𝑖(𝑘+1)𝑖, 𝑤(𝑘+1)𝑖𝑘𝑖 < 0, then 𝐻
−

(𝑘+1)𝑖
(𝑢
1

𝑘𝑖
) >

𝑢
1

(𝑘+1)𝑖
, 𝐺+
𝑘𝑖
(𝑢
1

(𝑘+1)𝑖
) < 𝑢

1

𝑘𝑖
, 𝐻+
(𝑘+1)𝑖

(𝑢
2

𝑘𝑖
) < 𝑢

2

(𝑘+1)𝑖
,

𝐺
−

𝑘𝑖
(𝑢
2

(𝑘+1)𝑖
) > 𝑢
2

𝑘𝑖
.

The configuration that motivates (H2) is depicted
in Figure 1. Under the above assumptions, if 𝑤𝑘𝑖(𝑘+1)𝑖,

𝑤(𝑘+1)𝑖𝑘𝑖 > 0, then there are three crossing points (𝑥1+
𝑘𝑖
, 𝑥
1+

(𝑘+1)𝑖
),

(𝑥
2−

𝑘𝑖
, 𝑥
2−

(𝑘+1)𝑖
), and (𝑥

3+

𝑘𝑖
, 𝑥
3+

(𝑘+1)𝑖
) of the curves 𝑥(𝑘+1)𝑖 =

𝐻
+

(𝑘+1)𝑖
(𝑥𝑘𝑖), 𝑥𝑘𝑖 = 𝐺

+

𝑘𝑖
(𝑥(𝑘+1)𝑖), and there are three crossing

points (𝑥
1−

𝑘𝑖
, 𝑥
1−

(𝑘+1)𝑖
), (𝑥
2+

𝑘𝑖
, 𝑥
2+

(𝑘+1)𝑖
), and (𝑥

3−

𝑘𝑖
, 𝑥
3−

(𝑘+1)𝑖
) of the

curves 𝑥(𝑘+1)𝑖 = 𝐻
−

(𝑘+1)𝑖
(𝑥𝑘𝑖), 𝑥𝑘𝑖 = 𝐺

−

𝑘𝑖
(𝑥(𝑘+1)𝑖) (see

Figure 1(a)), where

𝑥
1−

𝑘𝑖
< 𝑥
1+

𝑘𝑖
< 𝑢
1

𝑘𝑖
< 𝑥
2−

𝑘𝑖
< 𝑥
2+

𝑘𝑖
< 𝑢
2

𝑘𝑖
< 𝑥
3−

𝑘𝑖
< 𝑥
3+

𝑘𝑖
,

𝑥
1−

(𝑘+1)𝑖
< 𝑥
1+

(𝑘+1)𝑖
< 𝑢
1

(𝑘+1)𝑖
< 𝑥
2−

(𝑘+1)𝑖

< 𝑥
2+

(𝑘+1)𝑖
< 𝑢
2

(𝑘+1)𝑖
< 𝑥
3−

(𝑘+1)𝑖
< 𝑥
3+

(𝑘+1)𝑖
.

(6)

If 𝑤𝑘𝑖(𝑘+1)𝑖, 𝑤(𝑘+1)𝑖𝑘𝑖 < 0, then there are three crossing
points (𝑥

1−

𝑘𝑖
, 𝑥
1+

(𝑘+1)𝑖
), (𝑥
2+

𝑘𝑖
, 𝑥
2−

(𝑘+1)𝑖
), and (𝑥

3−

𝑘𝑖
, 𝑥
3+

(𝑘+1)𝑖
) of the

curves 𝑥(𝑘+1)𝑖 = 𝐻
+

(𝑘+1)𝑖
(𝑥𝑘𝑖), 𝑥𝑘𝑖 = 𝐺

−

𝑘𝑖
(𝑥(𝑘+1)𝑖), and

there are three crossing points (𝑥
1+

𝑘𝑖
, 𝑥
1−

(𝑘+1)𝑖
), (𝑥2−
𝑘𝑖
, 𝑥
2+

(𝑘+1)𝑖
),

and (𝑥
3+

𝑘𝑖
, 𝑥
3−

(𝑘+1)𝑖
) of the curves 𝑥(𝑘+1)𝑖 = 𝐻

−

(𝑘+1)𝑖
(𝑥𝑘𝑖), 𝑥𝑘𝑖 =

𝐺
+

𝑘𝑖
(𝑥(𝑘+1)𝑖) (see Figure 1(b)), where

𝑥
1−

𝑘𝑖
< 𝑥
1+

𝑘𝑖
< 𝑢
1

𝑘𝑖
< 𝑥
2−

𝑘𝑖
< 𝑥
2+

𝑘𝑖
< 𝑢
2

𝑘𝑖
< 𝑥
3−

𝑘𝑖
< 𝑥
3+

𝑘𝑖
,

𝑥
3−

(𝑘+1)𝑖
< 𝑥
3+

(𝑘+1)𝑖
< 𝑢
2

(𝑘+1)𝑖
< 𝑥
2−

(𝑘+1)𝑖

< 𝑥
2+

(𝑘+1)𝑖
< 𝑢
1

(𝑘+1)𝑖
< 𝑥
1−

(𝑘+1)𝑖
< 𝑥
1+

(𝑘+1)𝑖
.

(7)
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Furthermore, it is easy to confirm that 𝑥
𝑗+

𝑘𝑖
, 𝑥
𝑗−

𝑘𝑖
∈

[−𝛿𝑘𝑖, 𝛿𝑘𝑖], for any 1 ≤ 𝑘 ≤ 𝑚, 1 ≤ 𝑖 ≤ 𝑛𝑘, and 𝑗 = 1, 2, 3.

Theorem 1. Under conditions (H1) and (H2), there are at least
3
𝑙 equilibria of the multidirectional associative memory neural
network (1).

Proof. Set

Ω
𝛼
= {𝑥 = col (𝑥𝑘𝑖) ∈ Ω | (𝑥𝑘𝑖, 𝑥(𝑘+1)𝑖)

∈ Ω
𝛼𝑘𝑖

𝑘𝑖
, for 𝑘 ∈ 𝐼𝑀, 1 ≤ 𝑖 ≤ 𝑙𝑘} ,

(8)

where 𝛼 = (𝛼11, . . . , 𝛼1𝑙1
, 𝛼31, . . . , 𝛼3𝑙3

, . . . , 𝛼(𝑀−1)1, . . .,
𝛼(𝑀−1)𝑙𝑀−1

), 𝛼𝑘𝑖 = 1, 2, or 3, and

Ω
1

𝑘𝑖
= {(𝑥𝑘𝑖, 𝑥(𝑘+1)𝑖) ∈ R

2
| (𝑥𝑘𝑖, 𝑥(𝑘+1)𝑖) ∈ [𝑥

1−

𝑘𝑖
, 𝑥
1+

𝑘𝑖
]

× [𝑥
1−

(𝑘+1)𝑖
, 𝑥
1+

(𝑘+1)𝑖
]} ,

Ω
2

𝑘𝑖
= {(𝑥𝑘𝑖, 𝑥(𝑘+1)𝑖) ∈ R

2
| (𝑥𝑘𝑖, 𝑥(𝑘+1)𝑖) ∈ [𝑥

2−

𝑘𝑖
, 𝑥
2+

𝑘𝑖
]

× [𝑥
2−

(𝑘+1)𝑖
, 𝑥
2+

(𝑘+1)𝑖
]} ,

Ω
3

𝑘𝑖
= {(𝑥𝑘𝑖, 𝑥(𝑘+1)𝑖) ∈ R

2
| (𝑥𝑘𝑖, 𝑥(𝑘+1)𝑖) ∈ [𝑥

3−

𝑘𝑖
, 𝑥
3+

𝑘𝑖
]

× [𝑥
3−

(𝑘+1)𝑖
, 𝑥
3+

(𝑘+1)𝑖
]} .

(9)

Obviously, they are 3
𝑙 disjoint closed regions, and Ω

𝑗

𝑘𝑖
⊆

[−𝛿𝑘𝑖, 𝛿𝑘𝑖] × [−𝛿(𝑘+1)𝑖, 𝛿(𝑘+1)𝑖] for any 𝑘 ∈ 𝐼𝑀, 1 ≤ 𝑖 ≤ 𝑙𝑘,
𝑗 = 1, 2, 3.

For any fixed 𝛼 and a given 𝑥 = col(𝑥𝑘𝑖) ∈ Ω
𝛼, we study

this problem on the following two cases.

Case 1 (1 ≤ 𝑖 ≤ 𝑙𝑘). Consider the following equations:

− 𝑎𝑘𝑖𝑥𝑘𝑖 + 𝑤(𝑘+1)𝑖𝑘𝑖𝑓(𝑘+1)𝑖 (𝑥(𝑘+1)𝑖) − 𝑤(𝑘+1)𝑖𝑘𝑖𝑓(𝑘+1)𝑖 (𝑥(𝑘+1)𝑖)

+

𝑚

∑

𝑝=1,𝑝 ̸= 𝑘

𝑛𝑝

∑

𝑗=1

𝑤𝑝𝑗𝑘𝑖𝑓𝑝𝑗 (𝑥𝑝𝑗) + 𝐼𝑘𝑖 = 0,

(10)

− 𝑎(𝑘+1)𝑖𝑥(𝑘+1)𝑖 + 𝑤𝑘𝑖(𝑘+1)𝑖𝑓𝑘𝑖 (𝑥𝑘𝑖) − 𝑤𝑘𝑖(𝑘+1)𝑖𝑓𝑘𝑖 (𝑥𝑘𝑖)

+

𝑚

∑

𝑝=1,𝑝 ̸= 𝑘

𝑛𝑝

∑

𝑗=1

𝑤𝑝𝑗(𝑘+1)𝑖𝑓𝑝𝑗 (𝑥𝑝𝑗) + 𝐼(𝑘+1)𝑖 = 0.

(11)

It follows from (10) that

𝑥𝑘𝑖 ≤
1

𝑎𝑘𝑖

[

[

𝑤(𝑘+1)𝑖𝑘𝑖𝑓(𝑘+1)𝑖 (𝑥(𝑘+1)𝑖)

+

𝑛𝑘+1

∑

𝑗=1,𝑗 ̸= 𝑖

󵄨󵄨󵄨󵄨󵄨
𝑤(𝑘+1)𝑗𝑘𝑖

󵄨󵄨󵄨󵄨󵄨
𝑀(𝑘+1)𝑗 +

󵄨󵄨󵄨󵄨𝐼𝑘𝑖
󵄨󵄨󵄨󵄨
]

]

+
1

𝑎𝑘𝑖

𝑚

∑

𝑝=1,𝑝 ̸= 𝑘,

𝑝 ̸= 𝑘+1

𝑛𝑝

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑤𝑝𝑗𝑘𝑖

󵄨󵄨󵄨󵄨󵄨
𝑀𝑝𝑗

=
1

𝑎𝑘𝑖

[𝑤(𝑘+1)𝑖𝑘𝑖𝑓(𝑘+1)𝑖 (𝑥(𝑘+1)𝑖)

−
󵄨󵄨󵄨󵄨𝑤(𝑘+1)𝑖𝑘𝑖

󵄨󵄨󵄨󵄨𝑀(𝑘+1)𝑖 +
󵄨󵄨󵄨󵄨𝐼𝑘𝑖

󵄨󵄨󵄨󵄨]

+
1

𝑎𝑘𝑖

𝑚

∑

𝑝=1,𝑝 ̸= 𝑘

𝑛𝑝

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑤𝑝𝑗𝑘𝑖

󵄨󵄨󵄨󵄨󵄨
𝑀𝑝𝑗

=
1

𝑎𝑘𝑖

[𝑤(𝑘+1)𝑖𝑘𝑖𝑓(𝑘+1)𝑖 (𝑥(𝑘+1)𝑖)

−
󵄨󵄨󵄨󵄨𝑤(𝑘+1)𝑖𝑘𝑖

󵄨󵄨󵄨󵄨𝑀(𝑘+1)𝑖] + 𝛿𝑘𝑖

= 𝐺
+

𝑘𝑖
(𝑥(𝑘+1)𝑖) .

(12)

Similarly, from (10), we also can obtain that

𝑥𝑘𝑖 ≥
1

𝑎𝑘𝑖

[𝑤(𝑘+1)𝑖𝑘𝑖𝑓(𝑘+1)𝑖 (𝑥(𝑘+1)𝑖)

+
󵄨󵄨󵄨󵄨𝑤(𝑘+1)𝑖𝑘𝑖

󵄨󵄨󵄨󵄨𝑀(𝑘+1)𝑖] − 𝛿𝑘𝑖 = 𝐺
−

𝑘𝑖
(𝑥(𝑘+1)𝑖) .

(13)

So the curve of (10) is between the curves of 𝑥𝑘𝑖 = 𝐺
−

𝑘𝑖
(𝑥(𝑘+1)𝑖)

and 𝑥𝑘𝑖 = 𝐺
+

𝑘𝑖
(𝑥(𝑘+1)𝑖).

Under similar analysis we can obtain that the curve of (11)
is between the curves of 𝑥(𝑘+1)𝑖 = 𝐻

−

(𝑘+1)𝑖
(𝑥𝑘𝑖) and 𝑥(𝑘+1)𝑖 =

𝐻
+

(𝑘+1)𝑖
(𝑥𝑘𝑖). So we can affirm that there are at least three

solutions of (10) and (11); each solution lies separately in
Ω
1

𝑘𝑖
, Ω2
𝑘𝑖
, and Ω

3

𝑘𝑖
. Get one that is in Ω

𝛼𝑘𝑖

𝑘𝑖
, and denote it by

(𝑥𝑘𝑖, 𝑥(𝑘+1)𝑖).

Case 2 (𝑙𝑘 + 1 ≤ 𝑖 ≤ 𝑛𝑘). Let

𝑥𝑘𝑖 =
1

𝑎𝑘𝑖

[

[

𝑚

∑

𝑝=1,𝑝 ̸= 𝑘

𝑛𝑝

∑

𝑗=1

𝑤𝑝𝑗𝑘𝑖𝑓𝑝𝑗 (𝑥𝑝𝑗) + 𝐼𝑘𝑖
]

]

. (14)

Then

󵄨󵄨󵄨󵄨𝑥𝑘𝑖
󵄨󵄨󵄨󵄨 ≤

1

𝑎𝑘𝑖

[

[

𝑚

∑

𝑝=1,𝑝 ̸= 𝑘

𝑛𝑝

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑤𝑝𝑗𝑘𝑖𝑓𝑝𝑗 (𝑥𝑝𝑗)

󵄨󵄨󵄨󵄨󵄨
+ 𝐼𝑘𝑖

]

]

≤
1

𝑎𝑘𝑖

[

[

𝑚

∑

𝑝=1,𝑝 ̸= 𝑘

𝑛𝑝

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑤𝑝𝑗𝑘𝑖

󵄨󵄨󵄨󵄨󵄨
𝑀𝑝𝑗 +

󵄨󵄨󵄨󵄨𝐼𝑘𝑖
󵄨󵄨󵄨󵄨
]

]

= 𝛿𝑘𝑖.

(15)

From the two cases above, we can obtain 𝑥𝑘𝑖 ∈ Ω
𝛼 for any

given 𝑥 ∈ Ω
𝛼. Set 𝑥 = col(𝑥𝑘𝑖). It is obvious that 𝑥 ∈ Ω

𝛼. Set
mapping 𝐹𝛼 : Ω𝛼 → Ω

𝛼 as follows:

𝐹
𝛼
(𝑥) = 𝑥. (16)

Because 𝑓𝑘𝑖(⋅) are continuous mappings, so 𝐹
𝛼 is continuous

mapping. By the Brouwer fixed point theorem, there is
at least one fixed point of 𝐹

𝛼, that is, zero point of (1)
in Ω
𝛼. Therefore, there are at least 3

𝑙 equilibria of the
multidirectional associative memory neural network (1).
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3. Stability Analysis

In this section, the stability of the equilibria is considered. Set

Ψ = {𝜙 = col (𝜙𝑘𝑖) ∈ 𝐶 ([−𝜏, 0] ,R
𝑛
) | −𝛿𝑘𝑖 ≤ 𝜙𝑘𝑖 (𝑠) ≤ 𝛿𝑘𝑖,

for 1 ≤ 𝑘 ≤ 𝑚, 1 ≤ 𝑖 ≤ 𝑛𝑘} ,

𝜂 = (𝜂11, . . . , 𝜂1𝑙1
, 𝜂31, . . . , 𝜂3𝑙3

, . . . , 𝜂(𝑀−1)1, . . . , 𝜂(𝑀−1)𝑙𝑀−1
) ,

(17)

with 𝜂𝑘𝑖 = 1 or 𝜂𝑘𝑖 = 3.
We consider the following 2𝑙 subsets of Ψ:

Ψ
𝜂
= {𝜙 = col (𝜙𝑘𝑖) ∈ Ψ | (𝜙𝑘𝑖, 𝜙(𝑘+1)𝑖) ∈ Ψ

𝜂𝑘𝑖

𝑘𝑖
,

for 𝑘 ∈ 𝐼𝑀, 1 ≤ 𝑖 ≤ 𝑙𝑘} ,

(18)

where

Ψ
1

𝑘𝑖
= {(𝜙𝑘𝑖, 𝜙(𝑘+1)𝑖) ∈ 𝐶 ([−𝜏, 0] ,R

2
) | 𝜙𝑝𝑖 (𝑠) ∈ [𝑥

1−

𝑝𝑖
, 𝑥
1+

𝑝𝑖
] ,

for 𝑝 = 𝑘, 𝑘 + 1} ,

Ψ
3

𝑘𝑖
= {(𝜙𝑘𝑖, 𝜙(𝑘+1)𝑖) ∈ 𝐶 ([−𝜏, 0] ,R

2
) | 𝜙𝑝𝑖 (𝑠) ∈ [𝑥

3−

𝑝𝑖
, 𝑥
3+

𝑝𝑖
] ,

for 𝑝 = 𝑘, 𝑘 + 1} .

(19)

Lemma 2. Under assumptions (H1) and (H2), each Ψ
𝜂 is a

positive invariant set with respect to the solution flow generated
by system (1).

Proof. For any given 𝜂 and any initial condition𝜙 = col(𝜙𝑘𝑖) ∈
Ψ
𝜂, let 𝑥(𝑡; 𝜙) = col(𝑥𝑘𝑖(𝑡; 𝜙)) be the solution of (1) with initial

condition 𝜙 ∈ Ψ
𝜂.

For any 1 ≤ 𝑘 ≤ 𝑚, 1 ≤ 𝑖 ≤ 𝑛𝑘, and any 𝑡 > 0, from (1), we
obtain that

−𝑎𝑘𝑖𝛿𝑘𝑖 ≤
𝑑𝑥𝑘𝑖 (𝑡; 𝜙)

𝑑𝑡
+ 𝑎𝑘𝑖𝑥𝑘𝑖 (𝑡; 𝜙) ≤ 𝑎𝑘𝑖𝛿𝑘𝑖.

(20)

Multiplying both sides of (20) by 𝑒𝑎𝑘𝑖𝑡, we have

−𝑎𝑘𝑖𝛿𝑘𝑖𝑒
𝑎𝑘𝑖𝑡

≤
𝑑𝑥𝑘𝑖 (𝑡; 𝜙) 𝑒

𝑎𝑘𝑖𝑡

𝑑𝑡
≤ 𝑎𝑘𝑖𝛿𝑘𝑖𝑒

𝑎𝑘𝑖𝑡
. (21)

Integrating (21) over [0, 𝑡], we obtain

−𝛿𝑘𝑖 (𝑒
𝑎𝑘𝑖𝑡

− 1) ≤ 𝑥𝑘𝑖 (𝑡; 𝜙) 𝑒
𝑎𝑘𝑖𝑡

− 𝜙𝑘𝑖 (0) ≤ 𝛿𝑘𝑖 (𝑒
𝑎𝑘𝑖𝑡

− 1) .

(22)

Hence it follows that, for 𝑡 > 0,
󵄨󵄨󵄨󵄨𝑥𝑘𝑖 (𝑡; 𝜙)

󵄨󵄨󵄨󵄨 ≤ 𝑒
−𝑎𝑘𝑖𝑡

(
󵄨󵄨󵄨󵄨𝜙𝑘𝑖 (0)

󵄨󵄨󵄨󵄨 − 𝛿𝑘𝑖) + 𝛿𝑘𝑖. (23)

Therefore, for any given initial condition 𝜙 ∈ Ψ
𝜂, we have, for

𝑡 > 0,
󵄨󵄨󵄨󵄨
𝑥𝑘𝑖 (𝑡; 𝜙)

󵄨󵄨󵄨󵄨
≤ 𝛿𝑘𝑖. (24)

That is, 𝑥(𝑡, 𝜙) ∈ Ψ for 𝑡 > 0.

We claim that 𝑥(𝑡, 𝜙) remains in Ψ
𝜂 for any 𝑡 > 0. If

it is not true, there exist 𝑘 ∈ 𝐼𝑀 and 1 ≤ 𝑖 ≤ 𝑙𝑘 that
(𝑥𝑘𝑖(𝑡), 𝑥(𝑘+1)𝑖(𝑡)) firstly (or one of the first) escapes fromΨ

𝜂𝑘𝑖

𝑘𝑖
.

Case 1 (𝑤𝑘𝑖(𝑘+1)𝑖, 𝑤(𝑘+1)𝑖𝑘𝑖 > 0). If 𝜂𝑘𝑖 = 1, then exists 𝑡0 > 0,
such that (𝑥𝑘𝑖(𝑡0), 𝑥(𝑘+1)𝑖(𝑡0)) is on the edges of Ψ𝜂𝑘𝑖

𝑘𝑖
, and for

any 𝑡 < 𝑡0, 𝑥
1−

𝑘𝑖
< 𝑥𝑘𝑖(𝑡) < 𝑥

1+

𝑘𝑖
, 𝑥1−
(𝑘+1)𝑖

< 𝑥(𝑘+1)𝑖(𝑡) < 𝑥
1+

(𝑘+1)𝑖
. If

𝑥𝑘𝑖(𝑡0) = 𝑥
1+

𝑘𝑖
, 𝑥(𝑘+1)𝑖(𝑡0) ∈ [𝑥

1−

(𝑘+1)𝑖
, 𝑥
1+

(𝑘+1)𝑖
], then

𝑑𝑥𝑘𝑖 (𝑡)

𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑡=𝑡0

= −𝑎𝑘𝑖𝑥𝑘𝑖 (𝑡0) +

𝑚

∑

𝑝=1,𝑝 ̸= 𝑘

𝑛𝑝

∑

𝑗=1

𝑤𝑝𝑗𝑘𝑖𝑓𝑝𝑗

× (𝑥𝑝𝑗 (𝑡0 − 𝜏𝑝𝑗𝑘𝑖)) + 𝐼𝑘𝑖

≤ −𝑎𝑘𝑖𝑥
1+

𝑘𝑖
+ 𝑤(𝑘+1)𝑖𝑘𝑖𝑓(𝑘+1)𝑖 (𝑥

1+

(𝑘+1)𝑖
)

−
󵄨󵄨󵄨󵄨𝑤(𝑘+1)𝑖𝑘𝑖

󵄨󵄨󵄨󵄨𝑀(𝑘+1)𝑖

+

𝑚

∑

𝑝=1,𝑝 ̸= 𝑘

𝑛𝑝

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑤𝑝𝑗𝑘𝑖

󵄨󵄨󵄨󵄨󵄨
𝑀𝑝𝑗 +

󵄨󵄨󵄨󵄨𝐼𝑘𝑖
󵄨󵄨󵄨󵄨

= −𝑎𝑘𝑖 {𝑥
1+

𝑘𝑖
−

1

𝑎𝑘𝑖

[𝑤(𝑘+1)𝑖𝑘𝑖𝑓(𝑘+1)𝑖 (𝑥
1+

(𝑘+1)𝑖
)

−
󵄨󵄨󵄨󵄨𝑤(𝑘+1)𝑖𝑘𝑖

󵄨󵄨󵄨󵄨𝑀(𝑘+1)𝑖] − 𝛿𝑘𝑖}

= −𝑎𝑘𝑖 [𝑥
1+

𝑘𝑖
− 𝐺
+

𝑘𝑖
(𝑥
1+

(𝑘+1)𝑖
)] = 0.

(25)

Therefore, (𝑥𝑘𝑖(𝑡), 𝑥(𝑘+1)𝑖(𝑡)) cannot escape fromΨ
𝜂𝑘𝑖

𝑘𝑖
through

the edge of 𝑥𝑘𝑖(𝑡) = 𝑥
1+

𝑘𝑖
, 𝑥(𝑘+1)𝑖(𝑡) ∈ [𝑥

1−

(𝑘+1)𝑖
, 𝑥
1+

(𝑘+1)𝑖
].

With similar proof, we can obtain that (𝑥𝑘𝑖(𝑡), 𝑥(𝑘+1)𝑖(𝑡))

cannot escape fromΨ
𝜂𝑘𝑖

𝑘𝑖
through the other three edges. Hence

(𝑥𝑘𝑖(𝑡), 𝑥(𝑘+1)𝑖(𝑡)) cannot escape from Ψ
1

𝑘𝑖
. We can also prove

that (𝑥𝑘𝑖(𝑡), 𝑥(𝑘+1)𝑖(𝑡)) cannot escape from Ψ
3

𝑘𝑖
.

Case 2 (𝑤𝑘𝑖(𝑘+1)𝑖, 𝑤(𝑘+1)𝑖𝑘𝑖 < 0). The proof is similar to that of
Case 1.

This completes the proof.

We give the criterions concerning the stability for the
multiple equilibria of system (1).

(H3) There exist constants 𝐿𝑘𝑖 > 0 (1 ≤ 𝑘 ≤ 𝑚 and
1 ≤ 𝑖 ≤ 𝑛𝑘) such that

󵄨󵄨󵄨󵄨
𝑓𝑘𝑖 (𝑥) − 𝑓𝑘𝑖 (𝑦)

󵄨󵄨󵄨󵄨
≤ 𝐿𝑘𝑖

󵄨󵄨󵄨󵄨
𝑥 − 𝑦

󵄨󵄨󵄨󵄨
, (26)

for each 𝑥, 𝑦 in a subset 𝑅𝑘𝑖 ⊂ R, where 𝑅𝑘𝑖 is defined
as follows:

𝑅𝑘𝑖 =

{
[𝑥
1−

𝑘𝑖
, 𝑥
1+

𝑘𝑖
] ∪ [𝑥

3−

𝑘𝑖
, 𝑥
3+

𝑘𝑖
] , for 1 ≤ 𝑘 ≤ 𝑀, 1 ≤ 𝑖 ≤ 𝑙𝑘,

[𝛿
−

𝑘𝑖
, 𝛿
+

𝑘𝑖
] , for 1 ≤ 𝑘 ≤ 𝑚, 𝑙𝑘 + 1 ≤ 𝑖 ≤ 𝑛𝑘.

(27)

(H4) For any 1 ≤ 𝑘 ≤ 𝑚, 1 ≤ 𝑖 ≤ 𝑛𝑘, it is satisfied that

𝑎𝑘𝑖 −

𝑚

∑

𝑝=1,𝑝 ̸= 𝑘

𝑛𝑝

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑤𝑝𝑗𝑘𝑖

󵄨󵄨󵄨󵄨󵄨
𝐿𝑘𝑖 > 0. (28)
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Theorem 3. There are 2𝑙 exponential stability equilibria of the
multidirectional associative memory neural network (1), if the
conditions (H1)–(H4) hold.

Proof. According to Theorem 1, for any 𝛼, the multidi-
rectional associative memory neural network (1) has an
equilibrium in Ω

𝛼; let it be 𝑥. According to Lemma 2, for
any 𝜂, the solution 𝑥(𝑡, 𝜙) of the multidirectional associative
memory neural network (1) is in Ψ

𝜂 under initial condition
𝜙 ∈ Ψ

𝜂. Let

𝑦 (𝑡) = col {𝑦𝑘𝑖 (𝑡)} = 𝑥 (𝑡, 𝜙) − 𝑥. (29)

System (1) becomes

𝑑𝑦𝑘𝑖 (𝑡)

𝑑𝑡
= −𝑎𝑘𝑖𝑦𝑘𝑖 (𝑡)

+

𝑚

∑

𝑝=1,𝑝 ̸= 𝑘

𝑛𝑝

∑

𝑗=1

𝑤𝑝𝑗𝑘𝑖 {𝑓𝑝𝑗 [𝑦𝑝𝑗 (𝑡 − 𝜏𝑝𝑗𝑘𝑖) + 𝑥𝑝𝑗]

−𝑓𝑝𝑗 (𝑥𝑝𝑗)} ,

(30)

for 1 ≤ 𝑘 ≤ 𝑚, 1 ≤ 𝑖 ≤ 𝑛𝑘.
According to condition (H4), there exists 𝜇 > 0 such that

𝑎𝑘𝑖 − 𝜇 −

𝑚

∑

𝑝=1,𝑝 ̸= 𝑘

𝑛𝑝

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑤𝑝𝑗𝑘𝑖

󵄨󵄨󵄨󵄨󵄨
𝐿𝑘𝑖𝑒
𝜇𝜏𝑝𝑗𝑘𝑖

> 0. (31)

Define that 𝑢𝑘𝑖(𝑡) = 𝑒
𝜇𝑡
|𝑦𝑘𝑖(𝑡)|, for 1 ≤ 𝑘 ≤ 𝑚 and 1 ≤ 𝑖 ≤ 𝑛𝑘.

It is obvious that 𝑢𝑘𝑖(𝑡) > 0. Denote

𝑄 = max
1≤𝑘≤𝑚,1≤𝑖≤𝑛𝑘

{ sup
𝜃∈(−𝜏,0]

󵄨󵄨󵄨󵄨𝑥𝑘𝑖 (𝜃) − 𝑥𝑘𝑖
󵄨󵄨󵄨󵄨} . (32)

Let 𝛿 > 1 be an arbitrary real number. For any 𝜃 ∈ (−𝜏, 0],
1 ≤ 𝑘 ≤ 𝑚, 1 ≤ 𝑖 ≤ 𝑛𝑘, it is easy to obtain that 𝑢𝑘𝑖(𝑡) < 𝑄𝛿.
We shall prove that

𝑢𝑘𝑖 (𝑡) < 𝑄𝛿, (33)

for 1 ≤ 𝑘 ≤ 𝑚, 1 ≤ 𝑖 ≤ 𝑛𝑘, and any 𝑡 > 0. Suppose this is
not the case; then there exist 𝑘 = 𝑞, 𝑖 = 𝑟, and a time 𝑡0 such
that 𝑢𝑘𝑖(𝑡) ≤ 𝑄𝛿 for 𝑡 ∈ (−𝜏, 𝑡0], 1 ≤ 𝑘 ≤ 𝑚 and 1 ≤ 𝑖 ≤

𝑛𝑘, 𝑢𝑞𝑟(𝑡0) = 𝑄𝛿, and 𝐷
+
𝑢𝑞𝑟(𝑡0) ≥ 0. From (30), we derive

that

𝐷
+ 󵄨󵄨󵄨󵄨󵄨
𝑦𝑞𝑟 (𝑡0)

󵄨󵄨󵄨󵄨󵄨
≤ −𝑎𝑞𝑟

󵄨󵄨󵄨󵄨󵄨
𝑦𝑞𝑟 (𝑡0)

󵄨󵄨󵄨󵄨󵄨

+

𝑚

∑

𝑝=1,𝑝 ̸= 𝑞

𝑛𝑝

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑤𝑝𝑗𝑞𝑟

󵄨󵄨󵄨󵄨󵄨
𝐿𝑝𝑗

󵄨󵄨󵄨󵄨󵄨
𝑦𝑝𝑗 (𝑡0 − 𝜏𝑝𝑗𝑞𝑟)

󵄨󵄨󵄨󵄨󵄨
.

(34)

Hence, from (31) and (34),

𝐷
+ 󵄨󵄨󵄨󵄨󵄨
𝑢𝑞𝑟 (𝑡0)

󵄨󵄨󵄨󵄨󵄨

≤ 𝜇𝑒
𝜇𝑡0

󵄨󵄨󵄨󵄨󵄨
𝑦𝑞𝑟 (𝑡0)

󵄨󵄨󵄨󵄨󵄨
+ 𝑒
𝜇𝑡0

× [

[

− 𝑎𝑞𝑟

󵄨󵄨󵄨󵄨󵄨
𝑦𝑞𝑟 (𝑡0)

󵄨󵄨󵄨󵄨󵄨
+

𝑚

∑

𝑝=1,𝑝 ̸= 𝑞

𝑛𝑝

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑤𝑝𝑗𝑞𝑟

󵄨󵄨󵄨󵄨󵄨
𝐿𝑝𝑗

󵄨󵄨󵄨󵄨󵄨
𝑦𝑝𝑗 (𝑡0 − 𝜏𝑝𝑗𝑞𝑟)

󵄨󵄨󵄨󵄨󵄨
]

]

= − (𝑎𝑞𝑟 − 𝜇) 𝑒
𝜇𝑡0

󵄨󵄨󵄨󵄨󵄨
𝑦𝑞𝑟 (𝑡0)

󵄨󵄨󵄨󵄨󵄨

+

𝑚

∑

𝑝=1,𝑝 ̸= 𝑞

𝑛𝑝

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑤𝑝𝑗𝑞𝑟

󵄨󵄨󵄨󵄨󵄨
𝐿𝑝𝑗𝑒
𝜇𝜏𝑝𝑗𝑞𝑟

󵄨󵄨󵄨󵄨󵄨
𝑢𝑝𝑗 (𝑡0 − 𝜏𝑝𝑗𝑞𝑟)

󵄨󵄨󵄨󵄨󵄨

≤ − (𝑎𝑞𝑟 − 𝜇) 𝑢𝑞𝑟 (𝑡0)

+

𝑚

∑

𝑝=1,𝑝 ̸= 𝑞

𝑛𝑝

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑤𝑝𝑗𝑞𝑟

󵄨󵄨󵄨󵄨󵄨
𝐿𝑝𝑗𝑒
𝜇𝜏𝑝𝑗𝑞𝑟 [

[

sup
𝜃∈[𝑡0−𝜏,𝑡0]

𝑢𝑝𝑗 (𝜃)
]

]

≤ −(𝑎𝑞𝑟 − 𝜇 −

𝑚

∑

𝑝=1,𝑝 ̸= 𝑞

𝑛𝑝

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑤𝑝𝑗𝑞𝑟

󵄨󵄨󵄨󵄨󵄨
𝐿𝑝𝑗𝑒
𝜇𝜏𝑝𝑗𝑞𝑟

)𝑄𝛿

≤ 0,

(35)

which is contradicting 𝐷
+
𝑢𝑞𝑟(𝑡0) ≥ 0. Hence the inequality

(33) holds. Since 𝛿 > 1 is arbitrary, by allowing 𝛿 → 1+, we
have𝑢𝑘𝑖(𝑡) ≤ 𝑄.Therefore,𝑥(𝑡, 𝜙) is exponentially convergent
to 𝑥.

Remark 4. The dynamic system (1) studied in this paper is
different from the system in [18]. First, the coefficients of
system (1) are constants, which are 𝑇-periodic functions in
[18]. Second, the delays of system (1) are constant delays while
they are distributed delays in [18]. Above all, our conclusions
in this paper are different from those in [18], and the proof
methods are different. In [18], we obtained the existence
of 2𝑛0[𝑚/2] exponentially stable 𝑇-periodic solutions, where
𝑛0 = min{𝑛1, 𝑛2, . . . , 𝑛𝑚} if 𝑚 is an even number or 𝑛0 =

min{𝑛1, 𝑛2, . . . , 𝑛𝑚−1} if𝑚 is an oddnumber. Butwe obtain the
existence of 3𝑙 equilibria by Theorem 1 and the exponential
stability of 2

𝑙 equilibria of them by Theorem 3. Because
𝑙𝑘 = min{𝑛𝑘, 𝑛𝑘+1}, so 𝑛0 = min{𝑙𝑘 | 𝑘 ∈ 𝐼𝑀}. It follows
that 𝑙 = ∑

𝑘∈𝐼𝑀
𝑙𝑘 ≥ 𝑛0[𝑚/2]. Therefore, the number of

equilibria obtained in this paper ismore than that of [18] if the
conclusions of [18] are used to the constant coefficient system
(1).
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Figure 2: The exponential stability of 4 equilibria of the MAM neural network (36).

4. Numerical Example

In this section, a numerical example is given to illustrate the
validity of results. Consider an MAM neural network with
three fields as follows:

𝑑𝑥𝑘𝑖

𝑑𝑡
= −𝑎𝑘𝑖𝑥𝑘𝑖 (𝑡) +

3

∑

𝑝=1,𝑝 ̸= 𝑘

𝑛𝑝

∑

𝑗=1

𝑤𝑝𝑗𝑘𝑖𝑓𝑝𝑗

× (𝑥𝑝𝑗 (𝑡 − 𝜏𝑝𝑗𝑘𝑖)) + 𝐼𝑘𝑖,

(36)

where 𝑘 = 1, 2, 3, 𝑛1 = 𝑛2 = 2, 𝑛3 = 1, the neuronal signal
decay rates 𝑎11 = 𝑎12 = 𝑎21 = 𝑎22 = 𝑎31 = 1, the external

input 𝐼11 = 0.1, 𝐼12 = −0.4, 𝐼21 = 0.2, 𝐼22 = −0.2, 𝐼31 = 0.4, the
connection weights

(

0 0 𝑤2111 𝑤2211 𝑤3111

0 0 𝑤2112 𝑤2212 𝑤3112

𝑤1121 𝑤1221 0 0 𝑤3121

𝑤1122 𝑤1222 0 0 𝑤3122

𝑤1131 𝑤1231 𝑤2131 𝑤2231 0

)

= (

0 0 −2 0.3 0.2

0 0 0.4 3 0.1

−3 −0.5 0 0 0.1

0.3 2 0 0 −0.1

1 2 1 −1 0

),

(37)
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Figure 3: The phase of the MAM neural network (36).

and the delays

(

0 0 𝜏2111 𝜏2211 𝜏3111

0 0 𝜏2112 𝜏2212 𝜏3112

𝜏1121 𝜏1221 0 0 𝜏3121

𝜏1122 𝜏1222 0 0 𝜏3122

𝜏1131 𝜏1231 𝜏2131 𝜏2231 0

)

= (

0 0 1 2 1.2

0 0 0.4 1 1.5

1 0.4 0 0 0.8

2 2 0 0 0.7

1.2 1 1 2 0

).

(38)

The neuronal activation functions 𝑓𝑝𝑗(𝑥) = tanh(𝑥) (1 ≤

𝑝 ≤ 3, 1 ≤ 𝑗 ≤ 𝑛𝑝) are continuous, increasing, and bounded
functions, and there are 𝑀𝑝𝑗 = 1 > 0 such that |𝑓𝑝𝑗(𝑥)| ≤

𝑀𝑝𝑗. Hence condition (H1) is satisfied.
Obviously, 𝑛 = 5, 𝑀 = 2, 𝑙1 = 𝑙2 = 2, and 𝑙 = 2. Through

calculations, we have

𝐻
±

21
(𝑥11) = −3𝑓11 (𝑥11) ± 0.8,

𝐺
±

11
(𝑥21) = −2𝑓21 (𝑥21) ± 0.6,

𝐻
±

22
(𝑥12) = 2𝑓21 (𝑥12) ± 0.6,

𝐺
±

12
(𝑥22) = 3𝑓22 (𝑥22) ± 0.9.

(39)

There exist four points(𝑢1
11
, 𝑢
1

21
) = (−0.8, 1), (𝑢

2

11
, 𝑢
2

21
) =

(0.9, −1.2), (𝑢1
12
, 𝑢
1

22
) = (−1, −0.9), and (𝑢

2

12
, 𝑢
2

22
) = (1.1, 0.9),

where 𝑢1
11

< 𝑢
2

11
, 𝑢1
12

< 𝑢
2

12
, such that

𝐻
−

21
(𝑢
1

11
) = 1.1921 > 1, 𝐺

+

11
(𝑢
1

21
) = −0.9232 < −0.8,

𝐻
+

21
(𝑢
2

11
) = −1.3489 < −1.2, 𝐺

−

11
(𝑢
2

21
) = 0.9673 > 0.9,

𝐻
+

22
(𝑢
1

12
) = −0.9232 < −0.9, 𝐺

+

12
(𝑢
1

22
) = −1.2489 < −1,

𝐻
−

22
(𝑢
2

12
) = 1.0010 > 0.9, 𝐺

−

12
(𝑢
2

22
) = 1.2489 > 1.1.

(40)

Hence condition (H2) holds. The curves 𝑥21 = 𝐻
+

21
(𝑥11),

𝑥11 = 𝐺
−

11
(𝑥21) have three crossing points (𝑥

1−

11
, 𝑥
1+

21
) =

(−2.5979, 3.7669), (𝑥
2+

11
, 𝑥
2−

21
) = (0.5198, 0.6327),

and (𝑥
3−

11
, 𝑥
3+

21
) = (1.2886, −1.7763), and the curves

𝑥21 = 𝐻
+

21
(𝑥11), 𝑥11 = 𝐺

−

11
(𝑥21) have three crossing

points (𝑥1+
11
, 𝑥
1−

21
) = (−1.2886, 1.7763), (𝑥2−

11
, 𝑥
2+

21
) = (−0.5198,

0.6327), and (𝑥
3+

11
, 𝑥
3−

21
) = (2.5979, −3.7669). The curves

𝑥22 = 𝐻
+

22
(𝑥12), 𝑥12 = 𝐺

+

12
(𝑥22) have three crossing

points (𝑥
1+

12
, 𝑥
1+

22
) = (−1.6517, −1.2582), (𝑥

2−

12
, 𝑥
2−

22
) =

(−0.6830, −0.5869), and (𝑥
3+

12
, 𝑥
3+

22
) = (3.8670, 2.5982), and

the curves 𝑥22 = 𝐻
−

22
(𝑥12), 𝑥12 = 𝐺

−

12
(𝑥22) have three

crossing points (𝑥1−
12
, 𝑥
1−

22
) = (−3.8670, −2.5982), (𝑥2+

12
, 𝑥
2+

22
) =
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(0.6830, 0.5869), and (𝑥
3−

12
, 𝑥
3−

22
) = (1.6517, 1.2582). From

(27), we obtain the subsets

𝑅11 = [−2.2579, −1.2886] ∪ [1.2886, 2.2579] ,

𝑅21 = [−3.7669, −1.7763] ∪ [1.7763, 3.7669] ,

𝑅12 = [−3.8670, −1.6517] ∪ [1.6571, 3.8670] ,

𝑅22 = [−2.5982, −1.2582] ∪ [1.2582, 2.5982] ,

𝑅31 = [−5.4, 5.4] .

(41)

Because the activation functions 𝑓𝑝𝑗(𝑥) = tanh(𝑥) are
differentiable, we can let 𝐿𝑝𝑗 = max{𝑓󸀠

𝑝𝑗
(𝑥) | 𝑥 ∈ 𝑅𝑝𝑗} > 0;

then 𝐿11 = 0.2625, 𝐿12 = 0.1083, 𝐿21 = 0.1368, 𝐿22 = 0.2765,
and 𝐿31 = 1. By Lagrange’s mean value theorem, condition
(H3) holds. Through calculations we have

1 − 2𝐿21 − 0.3𝐿22 + 0.2𝐿31 = 0.4434 > 0,

1 − 0.4𝐿21 − 3𝐿22 + 0.1𝐿31 = 0.0158 > 0,

1 − 3𝐿11 − 0.5𝐿12 + 0.1𝐿31 = 0.0583 > 0,

1 − 0.3𝐿11 + 2𝐿12 + 0.1𝐿31 = 0.6047 > 0,

1 − 𝐿11 − 2𝐿12 − 𝐿21 − 𝐿22 = 0.1076 > 0.

(42)

Hence condition (H4) holds. Then by Theorems 1 and 3, the
MAM neural network (36) has 3𝑙 = 9 equilibria, and 2

𝑙
= 4

of these equilibria are exponentially stable.
The dynamics of the MAM neural network system (36)

are illustrated in Figures 2 and 3. Evolutions of sixty initial
conditions of the MAM neural network system (36) have
been tracked in Figure 2, which clearly displays that there
exist four stable equilibria of the dynamical system, as
confirmed by our theorems. Figure 3 shows the phases of the
evolutions from time 5 to time 60with sixty initial conditions,
which shows that each evolution has converged to one of the
four stable equilibria at time 60.

5. Conclusions

In this paper, the multistability has been studied for MAM
neural networks. Sufficient conditions are obtained which
ensure the existence of 3

𝑙 equilibria. It is proved that 2
𝑙

of the equilibria are exponentially stable. In [18], we have
discussed the existence and the exponential stability of
multiple periodic solutions for an MAM neural network.
Furthermore, the coexistence of multiple stable equilibria
and periodic solutions of an MAM neural network is an
interesting topic. It will be investigated in the near future.
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