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This paper investigates the problem of dependent stability criteria for neutral type neural networks with mixed time-varying
delays. Firstly, some new delay-dependent stability results are obtained by employing the more general partitioning approach and
generalizing the famous Jensen inequality. Secondly, based on a new type of Lyapunov-Krasovskii functional with the cross terms
of variables, less conservative stability criteria are proposed in terms of linear matrix inequalities (LMIs). Furthermore, it is the first
time that the idea of second-order convex combination and the property of quadratic convex function applied to the derivation of
neutral type neural networks play an important role in reducing the conservatism of the paper. Finally, four numerical examples
are given to show the effectiveness and the advantage of the proposed method.

1. Introduction

During the last two decades, delayed neural networks have
drawn a great deal of attention because of their extensive
applications in various scientific and technical areas, such
as pattern recognition, power systems, parallel computing,
signal processing, finance, associative memories, mechanics
of structures, and other scientific areas [1–30]. It iswell known
that time delay regarded as a major cause of instability and
poor performance often appears in many neural networks.
Therefore, the stability analysis for delayed neural networks
has been investigated extensively in recent few decades. Gen-
erally speaking, studying the dynamical behavior of delayed
neural networks can be mainly classified into two types:
delay-independent stability and delay-dependent stability. As
is known to all, delay-dependent stability criteria are less
conservative than delay-independent ones when the size of
time delay is small.

On the other hand, due to the complicated dynamic
properties of the neural cells in the real world, there exist
many neural network models such as distributed networks,

chemical reactors, and heat exchanges that cannot character-
ize the properties of a neural reaction process precisely. It is
natural and important that these systems will contain some
information about the derivative of the past state to further
describe and model the dynamics of the complex neural
reactions. This new type of neural networks is called neutral
neural networks or neural networks of neutral type. However,
many researchers have focused on the global stability of
neural networks of neutral type only with constant time delay
in recent years, which is very restrictive. Hence, described
with neutral functional differential equations with discrete
and distributed delays, these neural networks called neutral
type neural networks with mixed time-varying delays have
a lot of research on space. The differential expression not
only defines the derivative term of the current state but also
explains the derivative term of the past state. Furthermore, it
is necessary to have some information about the derivative
of the past state in the systems to characterize the dynamics
of such complex neural reactions. Practically, neutral type
phenomenon always appears in studies of automatic control,
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chemical reactors, distributed networks, dynamic process
including steam and water pipes, population ecology, heat
exchanges, microwave oscillators, systems of turbojet engine,
lossless transmission lines, vibrating masses attached to an
elastic bar, and so on. For this reason, there has been a
growing research interest in the study of delayed neural
networks of neutral type in the recent years. Therefore,
some less conservative stability criteria for neutral type
neural networks with mixed time-varying delays have been
reported in recently [25, 31–35]. Many methods have been
proposed in these results to reduce the conservatism of
the stability criteria, such as model transformation method,
free-weighting matrix method, the method of constructing
novel Lyapunov-Krasovskii functionals, delay decomposition
technique, and weighting-matrix decomposition method. In
[36], the authors derived some less conservative stability
criteria by considering some useful terms and using free-
weighting matrix technique. By considering the relationship
between the time-varying delay and its lower and upper
bound, the results obtained in [36] were improved in [37].
By constructing a new Lyapunov-Krasovskii functional and
using free-weighting matrix method, some more less con-
servative criteria than those obtained in [37] were proposed
in [38]. Further, the problems of stability analysis of neutral
type neural networks with discrete and distributed delays
have been investigated in [39]. By using a delay-partitioning
approach, a new type of Lyapunov-Krasovskii functionalswas
constructed to obtain some less conservative stability criteria.
However, time delay in [39] is not only constant delay, but
also the delay-partitioning approach is equational; hence, this
method has some limitations.

Motivated by this technique, it is the first attempt to
investigate the integral nonuniform partitioning method to
be extended for neutral type neural networks with mixed
time-varying delays. In the paper, the reduced conservatism
of Theorem 6 benefits from the construction of the new
Lyapunov-Krasovskii functionals in (17), which contain some
integral nonuniform partitioning method and triple-integral
terms, which play an important role in the improvement of
less conservative results. Secondly, a novel handling method
is given to establish the relationship among ∫𝑡

𝑡−ℎ
�̇�(𝑠)𝑆
5
�̇�(𝑠)𝑑𝑠,

∫
𝑡

𝑡−ℎ
𝑥𝑇(𝑠)𝑑𝑠 and 𝑥(𝑡 − ℎ), which play an important role in

reducing the conservatism of stability criteria further. Fur-
thermore, compared with previous results by using the first-
order convex combination property, our derivation makes
full use of the idea of second-order convex combination and
the property of quadratic convex function given in the formof
a lemma without employing Jensen’s inequality. Finally, four
numerical examples are given to illustrate the effectiveness
and the advantage of the proposed main results.

Notation 1. Notations used in this paper are fairly standard:
𝑅𝑛 denotes the 𝑛-dimensional Euclidean space, 𝑅𝑛×𝑚 is the
set of all 𝑛 × 𝑚 dimensional matrices; 𝐼 denotes the iden-
tity matrix of appropriate dimensions, 𝑇 stands for matrix
transposition, the natation 𝑋 > 0 (resp., 𝑋 ≥ 0), for
𝑋 ∈ 𝑅𝑛×𝑛 means that the matrix is real symmetric posi-
tive definite (resp., positive semidefinite); diag {𝑟

1
, 𝑟
2
, . . . , 𝑟

𝑛
}

denotes block diagonal matrix with diagonal elements 𝑟
𝑖
, 𝑖 =

1, 2, . . . , 𝑛, the symbol ∗ represents the elements below the
main diagonal of a symmetric matrix, and ⟨𝑀⟩

𝑠
is defined

as ⟨𝑀⟩
𝑠
= (1/2)(𝑀 +𝑀𝑇).

2. Preliminaries

Consider the following neural networks of neutral type with
mixed time-varying delays:

�̇� (𝑡) = −𝑊
0
𝑧 (𝑡) + 𝑊

1
𝑔 (𝑧 (𝑡)) + 𝑊

2
𝑔 (𝑧 (𝑡 − ℎ (𝑡)))

+ 𝑊
3
∫
𝑡

𝑡−𝑟

𝑔𝑇 (𝑧 (𝑠)) 𝑑𝑠 + 𝑊
4
̇𝑦 (𝑡 − ℎ (𝑡)) + 𝐽,

(1)

where 𝑧(𝑡) = [𝑧
1
(𝑡), . . . , 𝑧

𝑛
(𝑡)]𝑇 ∈ 𝑅𝑛 is the neural state vector,

𝑔(𝑧(𝑡)) = [𝑔(𝑧
1
(𝑡)), . . . , 𝑔(𝑧

𝑛
(𝑡))]𝑇 is the neuron activation

function, 𝐽 = [𝐽
1
, . . . , 𝐽

𝑛
]𝑇 ∈ 𝑅𝑛 is an external constant input

vector, and𝑊
0
= diag{𝑤

01
, . . . , 𝑤

0𝑛
} > 0,𝑊

1
,𝑊
2
,𝑊
3
, and𝑊

4

are the constant matrices of appropriate dimensions.

AssumptionA. The time-varying delay ℎ(𝑡) is continuous and
differential function that satisfies

0 ≤ ℎ (𝑡) ≤ ℎ, ℎ̇ (𝑡) ≤ ℎ
𝐷
< 1. (2)

Assumption B. For the constants 𝛿+
𝑖
, 𝛿−
𝑖
, the nonlinear func-

tion 𝑔
𝑖
(⋅) in (1) satisfies the following condition:

𝛿−
𝑖
≤
𝑔
𝑖
(𝛼) − 𝑔

𝑖
(𝛽)

𝛼 − 𝛽
≤ 𝛿+
𝑖
,

∀𝛼, 𝛽 ∈ 𝑅, 𝛼 ̸= 𝛽, 𝑖 = 1, 2, . . . , 𝑛.

(3)

Here, we denote Σ = diag{𝛿+
1
, . . . , 𝛿+

𝑛
}, Σ = diag{𝛿−

1
, . . . , 𝛿−

𝑛
},

Σ = diag{max{|𝛿+
1
|, |𝛿−
1
|}, . . . ,max{|𝛿+

𝑛
|, |𝛿−
𝑛
|}} = diag{𝛿

1
, . . . ,

𝛿
𝑛
}, Σ
1
= diag{𝛿+

1
𝛿−
1
, . . . , 𝛿+

𝑛
𝛿−
𝑛
}, Σ
2
= diag{(𝛿+

1
+ 𝛿−
1
)/2, . . . ,

(𝛿+
𝑛
+ 𝛿−
𝑛
)/2}.

Assumption C. For given positive scalars 𝜌
𝑖
satisfies:

0 = 𝜌
0
< 𝜌
1
< ⋅ ⋅ ⋅ < 𝜌

𝑙
= 1 (𝑖 = 1, . . . , 𝑙) . (4)

It is clear that under Assumption B, the system (1) has
one equilibrium point denoted as 𝑧∗ = [𝑧∗

1
, . . . , 𝑧∗

𝑛
]𝑇. For

convenience, we firstly shift the equilibrium point 𝑧∗ to the
origin by letting 𝑥(𝑡) = 𝑧(𝑡) − 𝑧∗, 𝑓(𝑥(𝑡)) = 𝑔(𝑧(𝑡)) − 𝑔(𝑧∗);
then the system (1) can be transformed into

�̇� (𝑡) = −𝑊
0
𝑥 (𝑡) + 𝑊

1
𝑓 (𝑥 (𝑡)) + 𝑊

2
𝑓 (𝑥 (𝑡 − ℎ (𝑡)))

+ 𝑊
3
∫
𝑡

𝑡−𝑟

𝑓𝑇 (𝑥 (𝑠)) 𝑑𝑠 + 𝑊
4
�̇� (𝑡 − ℎ (𝑡)) ,

(5)

where 𝑥(𝑡) = [𝑥
1
(𝑡), . . . , 𝑥

𝑛
(𝑡)] ∈ 𝑅𝑛 is the state vector of

transformed system, 𝑓(𝑥(𝑡)) = [𝑓
1
(𝑥
1
), . . . , 𝑓

𝑛
(𝑥
𝑛
)]𝑇 ∈ 𝑅𝑛.

It is easy to check that the transformed neuron activation
function 𝑓

𝑖
(⋅) satisfies

𝛿−
𝑖
≤
𝑓
𝑖
(𝛼)
𝛼

≤ 𝛿+
𝑖
, 𝑓

𝑖
(0) = 0,

∀𝛼 ∈ 𝑅, 𝛼 ̸= 0, 𝑖 = 1, 2, . . . , 𝑛.
(6)
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The following lemmas are introduced, which will be used in
the proof of the main results.

Fact 1 (Boyd et al. [40], (Schur complement)). For a given
symmetric matrix 𝑋 = 𝑋𝑇 = [𝑋11 𝑋12

∗ 𝑋
22

], where 𝑆
11

∈ 𝑅𝑛×𝑛,
the following conditions are equivalent:

(1) 𝑋 < 0;

(2) 𝑋
11
< 0,𝑋

22
− 𝑋𝑇
12
𝑋−1
11
𝑋
12
< 0;

(3) 𝑋
22
< 0,𝑋

11
− 𝑋
12
𝑋−1
22
𝑋𝑇
12
< 0.

Lemma 1 (see [41]). For symmetric matrices 𝑌
0
, 𝑌
1
, 𝑌
2
, and a

vector 𝜉
𝑡
, Let 𝑓(𝛼) = 𝛼2𝜉𝑇

𝑡
𝑌
2
𝜉
𝑡
+𝛼𝜉𝑇
𝑡
𝑌
1
𝜉
𝑡
+𝜉𝑇
𝑡
𝑌
0
𝜉
𝑡
with𝑌

2
≤ 0.

Then we have 𝑓(𝛼
1
) < 0 and 𝑓(𝛼

2
) < 0 ⇒ 𝑓(𝛼) < 0, ∀𝛼 ∈

[𝛼
1
, 𝛼
2
].

Lemma2 (see [42]). Let𝑊 > 0, and let𝜔(𝑠) be an appropriate
dimensional vector. Then, we have the following facts for any
scalar function 𝛽(𝑠) ≥ 0 ∀𝑠 ∈ [𝑎, 𝑏]:

(1) −∫𝑏
𝑎
𝜔𝑇(𝑠)𝑊𝜔(𝑠)𝑑𝑠 ≤ (𝑏 − 𝑎)𝜉𝑇

𝑡
𝐹
1
𝑊−1𝐹

1
𝜉
𝑡
+

2𝜉𝑇
𝑡
𝐹
1
∫
𝑏

𝑎
𝜔(𝑠)𝑑𝑠;

(2) −∫𝑏
𝑎
𝛽(𝑠)𝜔𝑇(𝑠)𝑊𝜔(𝑠)𝑑𝑠 ≤ ∫

𝑏

𝑎
𝛽(𝑠)𝑑𝑠𝜉𝑇

𝑡
𝐹
2
𝑊−1𝐹

2
𝜉
𝑡
+

2𝜉𝑇
𝑡
𝐹
2
∫
𝑏

𝑎
𝛽(𝑠)𝜔(𝑠)𝑑𝑠;

(3) −∫𝑏
𝑎
𝛽2(𝑠)𝜔𝑇(𝑠)𝑊𝜔(𝑠)𝑑𝑠 ≤ (𝑏 − 𝑎)𝜉𝑇

𝑡
𝐹
3
𝑊−1𝐹

3
𝜉
𝑡
+

2𝜉𝑇
𝑡
𝐹
3
∫
𝑏

𝑎
𝛽(𝑠)𝜔(𝑠)𝑑𝑠,

where matrices 𝐹
𝑖
(𝑖 = 1, 2, 3) and a vector 𝜉

𝑡
independent

of the integral variable are appropriate dimensional arbitrary
ones.

Lemma 3 (see [43]). For any constant matrix 0 < 𝑅 = 𝑅𝑇 ∈
𝑅𝑛×𝑛, a scalar 𝑟 > 0 and a vector function 𝑥 : [0, 𝑟] → 𝑅𝑛 such
that the integrations concerned are well defined; then

− ∫
0

𝑡−𝑟

𝑥𝑇 (𝑠) 𝑅𝑥 (𝑠) 𝑑𝑠

≤ −
1
𝑟
(∫
𝑡

𝑡−𝑟

𝑥 (𝑠) 𝑑𝑠)
𝑇

𝑅(∫
𝑡

𝑡−𝑟

𝑥 (𝑠) 𝑑𝑠) ,

− ∫
0

−𝑟

∫
𝑡

𝑡+𝜃

𝑥𝑇 (𝑠) 𝑅𝑥 (𝑠) 𝑑𝑠 𝑑𝜃

≤ −
2
𝑟2
(∫
0

−𝑟

∫
𝑡

𝑡+𝜃

𝑥 (𝑠) 𝑑𝑠 𝑑𝜃)
𝑇

𝑅(∫
0

−𝑟

∫
𝑡

𝑡+𝜃

𝑥 (𝑠) 𝑑𝑠 𝑑𝜃) .

(7)

Lemma 4 (see [44]). For any constant matrix 𝑅 ∈ 𝑅𝑛×𝑛, 𝑅 =
𝑅𝑇 > 0, a scalar function ℎ := ℎ(𝑡) > 0, and a vector-valued

function �̇� : [−ℎ, 0] → 𝑅𝑛 such that the following integrations
are well defined:

−ℎ∫
𝑡

𝑡−ℎ

�̇� (𝑠) 𝑅�̇� (𝑠) 𝑑𝑠 ≤ [ 𝑥 (𝑡)
𝑥 (𝑡 − ℎ)]

𝑇

[−𝑅 𝑅
𝑅 −𝑅] [

𝑥 (𝑡)
𝑥 (𝑡 − ℎ)] ,

−
ℎ2

2
∫
0

−ℎ

∫
𝑡

𝑡+𝜃

�̇�𝑇 (𝑠) 𝑅�̇� (𝑠) 𝑑𝑠 𝑑𝜃

≤ [

[

ℎ𝑥 (𝑡)

∫
𝑡

𝑡−ℎ

𝑥 (𝑠) 𝑑𝑠
]

]

𝑇

[−𝑅 𝑅
𝑅 −𝑅]

[

[

ℎ𝑥 (𝑡)

∫
𝑡

𝑡−ℎ

𝑥 (𝑠) 𝑑𝑠
]

]
.

(8)

Lemma 5. Let 𝑥(𝑡) ∈ 𝑅𝑛 has continuous derived function �̇�(𝑡)
on interval [0, ℎ]. Then for any matrix 𝑍𝑛×𝑛 > 0, scalar ℎ > 0,
the following inequality holds:

− ℎ∫
𝑡

𝑡−ℎ

�̇� (𝑠) 𝑅�̇� (𝑠) 𝑑𝑠

≤ −
2
ℎ
[[

[

1
ℎ
∫
𝑡

𝑡−ℎ

𝑥 (𝑠) 𝑑𝑠

𝑥 (𝑡 − ℎ)

]]

]

𝑇

[ 𝑅 −𝑅
−𝑅 𝑅 ][[

[

1
ℎ
∫
𝑡

𝑡−ℎ

𝑥 (𝑠) 𝑑𝑠

𝑥 (𝑡 − ℎ)

]]

]

.

(9)

Proof. From Lemma 3, we can get

1
ℎ
(∫
𝑡

𝑡−ℎ

∫
𝜃

𝑡−ℎ

�̇� (𝑠) 𝑑𝑠 𝑑𝜃)
𝑇

𝑅(∫
𝑡

𝑡−ℎ

∫
𝜃

𝑡−ℎ

�̇� (𝑠) 𝑑𝑠 𝑑𝜃)

≤ ∫
𝑡

𝑡−ℎ

(∫
𝜃

𝑡−ℎ

�̇� (𝑠) 𝑑𝑠)
𝑇

𝑅(∫
𝜃

𝑡−ℎ

�̇� (𝑠) 𝑑𝑠) 𝑑𝜃

≤ ∫
𝑡

𝑡−ℎ

∫
𝜃

𝑡−ℎ

(𝜃 − (𝑡 − ℎ)) �̇�𝑇 (𝑠) 𝑅�̇� (𝑠) 𝑑𝑠 𝑑𝜃

≤ ∫
𝑡

𝑡−ℎ

∫
𝑡

𝑠

(𝜃 − (𝑡 − ℎ)) �̇�𝑇 (𝑠) 𝑅�̇� (𝑠) 𝑑𝜃 𝑑𝑠

= ∫
𝑡

𝑡−ℎ

(
ℎ2

2
− (𝑠 − 𝑡 + ℎ)2

2
) �̇�𝑇 (𝑠) 𝑅�̇� (𝑠) 𝑑𝑠

≤
ℎ2

2
∫
𝑡

𝑡−ℎ

�̇�𝑇 (𝑠) 𝑅�̇� (𝑠) 𝑑𝑠.

(10)

Notice that

(∫
𝑡

𝑡−ℎ

∫
𝜃

𝑡−ℎ

�̇� (𝑠) 𝑑𝑠 𝑑𝜃)
𝑇

𝑅(∫
𝑡

𝑡−ℎ

∫
𝜃

𝑡−ℎ

�̇� (𝑠) 𝑑𝑠 𝑑𝜃)

= [[

[

∫
𝑡

𝑡−ℎ

𝑥 (𝑠) 𝑑𝑠

ℎ𝑥 (𝑡 − ℎ)

]]

]

𝑇

[ 𝑅 −𝑅
−𝑅 𝑅 ][[

[

∫
𝑡

𝑡−ℎ

𝑥 (𝑠) 𝑑𝑠

ℎ𝑥 (𝑡 − ℎ)

]]

]

.

(11)
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Therefore, we get

− ∫
𝑡

𝑡−ℎ

�̇� (𝑠) 𝑅�̇� (𝑠) 𝑑𝑠

≤ −
2
ℎ
[

[

1
ℎ
∫
𝑡

𝑡−ℎ

𝑥 (𝑠) 𝑑𝑠

𝑥 (𝑡 − ℎ)
]

]

𝑇

[ 𝑅 −𝑅
−𝑅 𝑅 ][

[

1
ℎ
∫
𝑡

𝑡−ℎ

𝑥 (𝑠) 𝑑𝑠

𝑥 (𝑡 − ℎ)
]

]
.

(12)

This completes the proof.

3. Main Results

In this section we will give sufficient conditions under which
the system (5) is asymptotically stable.

Theorem 6. For given scalars ℎ > 0 and ℎ
𝐷
< 1, the system

(5) with the neuron activation function 𝑓(𝑥(𝑡)) satisfying the
condition (6) is asymptotically stable if there exists 𝑃 > 0,
𝑅𝑇
𝑖
= 𝑅
𝑖
> 0 (𝑖 = 1, 2, 3), 𝑄𝑇

𝑖
= 𝑄
𝑖
> 0 (𝑖 = 1, 2), 𝑆𝑇

𝑖
= 𝑆
𝑖
>

0 (𝑖 = 1, . . . , 8), 𝑍𝑇
𝑖
= 𝑍
𝑖
> 0 (𝑖 = 1, . . . , 𝑙), diagonal matrices

𝐺
𝑖
= diag{𝑔

𝑖1
, 𝑔
2
, . . . , 𝑔in} > 0, 𝐾

𝑖
= diag{𝑘

𝑖1
, 𝑘
2
, . . . , 𝑘in} >

0, 𝐿
𝑖
= diag{𝑙

𝑖1
, 𝑙
2
, . . . , 𝑙in} > 0, (𝑖 = 1, 2, 3) and 𝑀 =

diag{𝑚
𝑖1
, 𝑚
𝑖2
, . . . , 𝑚in} > 0, (𝑖 = 1, 2, 3, 4), 𝑇

𝑖
(𝑖 = 1, . . . , 5)

and 𝐹
𝑖
(𝑖 = 1, . . . , 6) with appropriate dimensions such that

the following symmetric linear matrix inequality holds:

Ξ
1
=
[[[[[

[

Π
0

ℎ𝐹𝑇
1

ℎ𝐹𝑇
2

ℎ𝐹𝑇
3

∗ −ℎ𝑅
3

0 0
∗ ∗ −𝑄

1
0

∗ ∗ ∗ −
ℎ
3
𝑄
2

]]]]]

]

< 0, (13)

Ξ
2
=
[[[[[

[

Π
0
+ ℎΠ
1

ℎ𝐹𝑇
4

ℎ𝐹𝑇
5

ℎ𝐹𝑇
6

∗ −ℎ𝑅
3

0 0
∗ ∗ −𝑄

1
0

∗ ∗ ∗ −
ℎ
3
𝑄
2

]]]]]

]

< 0, (14)

where

Π
0
=⟨2 [𝑒

1
𝑒
7
+ 𝑒
8
] 𝑃[𝑒
2
𝑒
1
− 𝑒
4
]𝑇

+ 2 [𝑒
2
0] 𝑅
1
[0 𝑒
7
+ 𝑒
8
]𝑇

+ 2 [𝑒
2
0] 𝑅
2
[ℎ𝑒
1
𝑒
8
]𝑇⟩
𝑠

+ [𝑒
1
𝑒
1
]

× (𝑅
1
+ 𝑅
2
) [𝑒
1
𝑒
1
]𝑇

− (1 − ℎ
𝐷
) [𝑒
1
𝑒
3
] 𝑅
1
[𝑒
1
𝑒
3
]𝑇

− [𝑒
1
𝑒
4
] 𝑅
2
[𝑒
1
𝑒
4
]𝑇 + ℎ [𝑒

1
𝑒
2
] 𝑅
3

× [𝑒
1
𝑒
2
]𝑇 + 𝑒

2
(ℎ2𝑄
1
+ ℎ3𝑄

2
) 𝑒𝑇
2

+ ⟨2𝐹𝑇
1
[𝑒
7
𝑒
3
− 𝑒
4
]𝑇 + 4𝐹𝑇

2
[ℎ𝑒
3
− 𝑒
7
]𝑇

+ 6𝐹𝑇
3
[ℎ𝑒
3
− 𝑒
7
]𝑇

+2𝐹𝑇
4
[𝑒
8
𝑒
1
− 𝑒
3
]𝑇 − 4𝐹𝑇

5
𝑒𝑇
8
− 6𝐹𝑇
6
𝑒𝑇
8
⟩
𝑠

+ 𝑒
9
(𝑆
1
+ 𝑆
2
) 𝑒𝑇
9
− (1 − ℎ

𝐷
) 𝑒
10
𝑆
1
𝑒𝑇
10
− 𝑒
11
𝑆
2
𝑒𝑇
11

− 𝑒
6
𝑆
4
𝑒𝑇
6
+ 𝑒
2
(𝑆
3
+ 𝑆
4
) 𝑒𝑇
2
− (1 − ℎ

𝐷
) 𝑒
5
𝑆
3
𝑒𝑇
5

+ 𝑒
2
(ℎ𝑆
5
+
ℎ2

2
𝑆
6
) 𝑒𝑇
2
− 2𝑒
1
𝑆
6
𝑒𝑇
1
+
4
ℎ
𝑒
1
𝑆
6
𝑒𝑇
7

+
4
ℎ
𝑒
1
𝑆
6
𝑒𝑇
8
+

4
ℎ2
𝑒
4
𝑆
5
𝑒𝑇
7
+

4
ℎ2
𝑒
4
𝑆
5
𝑒𝑇
8
−
2
ℎ
𝑒
4
𝑆
5
𝑒𝑇
4

− 𝑒
7
(
2
ℎ3
𝑆
5
+

2
ℎ2
𝑆
6
) 𝑒𝑇
7
− 𝑒
7
(
4
ℎ3
𝑆
5
+

4
ℎ2
𝑆
6
) 𝑒𝑇
8

− 𝑒
8
(
2
ℎ3
𝑆
5
+

2
ℎ2
𝑆
6
) 𝑒𝑇
8

+ 𝑒
9
(𝑟𝑆
7
+
𝑟2

2
𝑆
8
+
𝑙

∑
𝑖=1

(𝜌
𝑖
− 𝜌
𝑖−1
) 𝑟𝑍
𝑖
)𝑒𝑇
9

−
𝑙

∑
𝑖=1

1
(𝜌
𝑖
− 𝜌
𝑖−1
) 𝑟

𝑒
11+𝑖

𝑍
𝑖
𝑒𝑇
11+𝑖

−
1
𝑟
(𝑒
12
+ ⋅ ⋅ ⋅ + 𝑒

11+𝑙
) 𝑆
7
(𝑒
12
+ ⋅ ⋅ ⋅ + 𝑒

11+𝑙
)𝑇

−
2
𝑟2
𝑒
12+𝑙

𝑆
8
𝑒𝑇
12+𝑙

+ 𝑒
1
(Σ𝐾
1
− Σ𝐺
1
+ 𝐿
1
Σ) 𝑒𝑇
2
+ 2𝑒
2
(𝐺
1
− 𝐾
1
+ 𝐿
1
) 𝑒𝑇
9

+ 2𝑒
3
(Σ𝐾
2
− Σ𝐺
2
+ 𝐿
2
Σ) 𝑒𝑇
5
+ 2𝑒
5
(𝐺
2
− 𝐾
2
+ 𝐿
2
) 𝑒𝑇
10

+ 2𝑒
4
(Σ𝐾
3
− Σ𝐺
3
+ 𝐿
3
Σ) 𝑒𝑇
6
+ 2𝑒
6
(𝐺
3
− 𝐾
3
+ 𝐿
3
) 𝑒𝑇
11

+ 𝑒
1
(Σ𝑀
1
Σ −𝑀

2
Σ
1
) 𝑒𝑇
1
+ 2𝑒
1
𝑀
2
Σ
2
𝑒𝑇
9
− 𝑒
3
𝑀
3
Σ
1
𝑒𝑇
3

+ 2𝑒
3
𝑀
3
Σ
2
𝑒𝑇
10
− 𝑒
9
(𝑀
1
+𝑀
2
) 𝑒𝑇
9

− 𝑒
10
𝑀
3
𝑒𝑇
10
− 𝑒
4
𝑀
4
Σ
1
𝑒𝑇
4

+ 2𝑒
4
𝑀
4
Σ
2
𝑒𝑇
11
+ 𝑒
2
(−𝑇
1
− 𝑇𝑇
1
) 𝑒𝑇
2

− 𝑒
11
𝑀
4
𝑒𝑇
11
− 2𝑒
1
𝑊𝑇
0
𝑇𝑇
1
𝑒𝑇
2

+ 2𝑒
2
𝑇
1
𝑊
1
𝑒𝑇
9
+ 2𝑒
2
𝑇
1
𝑊
2
𝑒𝑇
10

+ 2𝑒
2
𝑇
1
𝑊
3
(𝑒
12
+ ⋅ ⋅ ⋅ + 𝑒

11+𝑙
)𝑇

+ 2𝑒
2
𝑇
1
𝑊
4
𝑒𝑇
5
− 2𝑒
1
𝑇
2
𝑒𝑇
2
+ 𝑒
1
(−𝑇
2
𝑊
0
−𝑊𝑇
0
𝑇𝑇
2
) 𝑒𝑇
1

+ 2𝑒
1
𝑇
2
𝑊
1
𝑒𝑇
9
+ 2𝑒
1
𝑇
2
𝑊
2
𝑒𝑇
10

+ 2𝑒
1
𝑇
2
𝑊
3
(𝑒
12
+ ⋅ ⋅ ⋅ + 𝑒

11+𝑙
)𝑇

+ 2𝑒
2
𝑇
2
𝑊
4
𝑒𝑇
5
− 2𝑒
2
𝑇𝑇
3
𝑒𝑇
9
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− 2𝑒
1
𝑊𝑇
0
𝑇𝑇
3
𝑒𝑇
9
+ 2𝑒
9
𝑇
3
𝑊
2
𝑒𝑇
10

+ 𝑒
9
(T
3
𝑊
1
+𝑊𝑇
1
𝑇𝑇
3
) 𝑒𝑇
9
+ 2𝑒
9
𝑇
3
𝑊
3
(𝑒
12
+ ⋅ ⋅ ⋅ + 𝑒

11+𝑙
)𝑇

+ 2𝑒
5
𝑊𝑇
4
𝑇𝑇
3
𝑒𝑇
9
− 2𝑒
2
𝑇𝑇
4
𝑒𝑇
10
+ 𝑒
9
𝑊𝑇
1
𝑇𝑇
4
𝑒𝑇
10

+ 𝑒
10
(𝑇
4
𝑊
2
+𝑊𝑇
2
𝑇𝑇
4
) 𝑒𝑇
10

+ 2𝑒
10
𝑇
4
𝑊
3
(𝑒
12
+ ⋅ ⋅ ⋅ + 𝑒

11+𝑙
)𝑇

+ 2𝑒
5
𝑊𝑇
4
𝑇𝑇
4
𝑒𝑇
10
+ 2𝑒
5
𝑊𝑇
4
𝑇𝑇
3
𝑒𝑇
9

− 2𝑒
2
𝑇𝑇
5
𝑒𝑇
5
− 2𝑒
1
𝑊𝑇
0
𝑇𝑇
5
𝑒𝑇
5

+ 𝑒
5
𝑇
5
𝑊
1
𝑒𝑇
9
+ 𝑒
5
𝑇
5
𝑊
2
𝑒𝑇
10
+ 2𝑒
5
(𝑇
5
𝑊
4
+𝑊𝑇
4
𝑇𝑇
4
) 𝑒𝑇
5

+ 2𝑒
5
𝑇
5
𝑊
3
(𝑒
12
+ ⋅ ⋅ ⋅ + 𝑒

11+𝑙
)𝑇 − 2𝑒

1
𝑊𝑇
0
𝑇𝑇
4
𝑒𝑇
10
,

Π
1
=⟨2 (𝑒

2
0) 𝑅
1
(𝑒
1
𝑒
0
)𝑇 − 4𝐹𝑇

2
𝑒𝑇
3
− 6𝐹𝑇
3
𝑒𝑇
3

+ 4𝐹𝑇
5
𝑒𝑇
1
+ 6𝐹𝑇
6
𝑒𝑇
1
⟩
𝑠

,

(15)

with

⟨⋅⟩
𝑠
=
1
2
[(⋅) + (⋅)𝑇] , 𝑒

𝑖
= [0𝑛×(𝑖−1) 𝐼𝑛×𝑛 0

𝑛×(12+𝑙−𝑖)]
𝑇

(𝑖 = 1, . . . , 12 + 𝑙) .
(16)

Proof. Consider a novel augmented Lyapunov-Krasovskii
functional for the system (5) as follows:

𝑉 (𝑥
𝑡
) = 𝑉
1
(𝑥
𝑡
) + 𝑉
2
(𝑥
𝑡
) + 𝑉
3
(𝑥
𝑡
) + 𝑉
4
(𝑥
𝑡
) + 𝑉
5
(𝑥
𝑡
)

+ 𝑉
6
(𝑥
𝑡
) + 𝑉
7
(𝑥
𝑡
) ,

(17)

where

𝑉
1
(𝑥
𝑡
) = 𝜉𝑇
1
(𝑡) 𝑃𝜉

1
(𝑡) ,

𝑉
2
(𝑥
𝑡
) =∫
𝑡

𝑡−ℎ(𝑡)

𝜉𝑇
2
(𝑡, 𝑠) {[𝐸

1
𝐸
2
] 𝑅
1
[𝐸
1
𝐸
2
]𝑇} 𝜉
2
(𝑡, 𝑠) 𝑑𝑠

+ ∫
𝑡

𝑡−ℎ

𝜉𝑇
2
(𝑡, 𝑠) {[𝐸

1
𝐸
2
] 𝑅
2
[𝐸
1
𝐸
2
]𝑇} 𝜉
2
(𝑡, 𝑠) 𝑑𝑠,

(18)

𝑉
3
(𝑥
𝑡
)

= ∫
𝑡

𝑡−ℎ

(ℎ − 𝑡 + 𝑠) 𝜉𝑇
2
(𝑡, 𝑠) {[𝐸

2
𝐸
3
] 𝑅
3
[𝐸
2
𝐸
3
]𝑇} 𝜉
2
(𝑡, 𝑠) 𝑑𝑠

+ ∫
𝑡

𝑡−ℎ

(ℎ − 𝑡 + 𝑠)2𝜉𝑇
2
(𝑡, 𝑠) {𝐸

3
𝑄
1
𝐸𝑇
3
} 𝜉
2
(𝑡, 𝑠) 𝑑𝑠

+ ∫
𝑡

𝑡−ℎ

(ℎ − 𝑡 + 𝑠)3𝜉𝑇
2
(𝑡, 𝑠) {𝐸

3
𝑄
2
𝐸𝑇
3
} 𝜉
2
(𝑡, 𝑠) 𝑑𝑠,

(19)

𝑉
4
(𝑥
𝑡
)

= ∫
𝑡

𝑡−ℎ(𝑡)

𝑓𝑇 (𝑥 (𝑠)) 𝑆
1
𝑓 (𝑥 (𝑠)) 𝑑𝑠

+ ∫
𝑡

𝑡−ℎ

𝑓𝑇 (𝑥 (𝑠)) 𝑆
2
𝑓 (𝑥 (𝑠)) 𝑑𝑠

+ ∫
𝑡

𝑡−ℎ(𝑡)

�̇�𝑇 (𝑠) 𝑆
3
�̇� (𝑠) 𝑑𝑠

+ ∫
𝑡

𝑡−ℎ

�̇�𝑇 (𝑠) 𝑆
4
�̇� (𝑠) 𝑑𝑠,

(20)

𝑉
5
(𝑥
𝑡
) =∫
𝑡

𝑡−ℎ

(ℎ − 𝑡 + 𝑠) �̇�𝑇 (𝑠) 𝑆
5
�̇� (𝑠) 𝑑𝑠

+ ∫
0

−ℎ

∫
0

𝜃

∫
𝑡

𝑡+𝜆

�̇�𝑇 (𝑠) 𝑆
6
�̇� (𝑠) 𝑑𝑠 𝑑𝜆 𝑑𝜃,

(21)

𝑉
6
(𝑥
𝑡
) =∫
𝑡

𝑡−𝑟

(𝑟 − 𝑡 + 𝑠) 𝑓𝑇 (𝑥 (𝑠)) 𝑆
7
𝑓 (𝑥 (𝑠)) 𝑑𝑠

+ ∫
0

−𝑟

∫
0

𝜃

∫
𝑡

𝑡+𝜆

𝑓𝑇 (𝑥 (𝑠)) 𝑆
8
𝑓 (𝑥 (𝑠)) 𝑑𝑠 𝑑𝜆 𝑑𝜃

+ 2
𝑙

∑
𝑖=1

∫
−𝜌
𝑖−1
𝑟

−𝜌
𝑖
𝑟

∫
𝑡

𝑡+𝜃

𝑓 (𝑥 (𝑠)) 𝑍
𝑖
𝑓 (𝑥 (𝑠)) 𝑑𝑠 𝑑𝜃,

(22)

𝑉
7
(𝑥
𝑡
) = 2

𝑛

∑
𝑖=1

𝑔
1𝑖
∫
𝑥
𝑖
(𝑡)

0

(𝑓
𝑖
(𝑠) − 𝛿−

𝑖
𝑠) 𝑑𝑠

+ 2
𝑛

∑
𝑖=1

𝑘
1𝑖
∫
𝑥
𝑖
(𝑡)

0

(𝛿+
𝑖
𝑠 − 𝑓
𝑖
(𝑠)) 𝑑𝑠

+ 2
𝑛

∑
𝑖=1

𝑙
1𝑖
∫
𝑥
𝑖
(𝑡)

0

(𝑓
𝑖
(𝑠) + 𝛿

𝑖
𝑠) 𝑑𝑠

+ 2
𝑛

∑
𝑖=1

𝑔
2𝑖
∫
𝑥
𝑖
(𝑡−ℎ(𝑡))

0

(𝑓
𝑖
(𝑠) − 𝛿−

𝑖
𝑠) 𝑑𝑠

+ 2
𝑛

∑
𝑖=1

𝑘
2𝑖
∫
𝑥
𝑖
(𝑡−ℎ(𝑡))

0

(𝛿+
𝑖
𝑠 − 𝑓
𝑖
(𝑠)) 𝑑𝑠

+ 2
𝑛

∑
𝑖=1

𝑙
2𝑖
∫
𝑥
𝑖
(𝑡−ℎ(𝑡))

0

(𝑓
𝑖
(𝑠) + 𝛿

𝑖
𝑠) 𝑑𝑠

+ 2
𝑛

∑
𝑖=1

𝑔
3𝑖
∫
𝑥
𝑖
(𝑡−ℎ)

0

(𝑓
𝑖
(𝑠) − 𝛿−

𝑖
𝑠) 𝑑𝑠

+ 2
𝑛

∑
𝑖=1

𝑘
3𝑖
∫
𝑥
𝑖
(𝑡−ℎ)

0

(𝛿+
𝑖
𝑠 − 𝑓
𝑖
(𝑠)) 𝑑𝑠

+ 2
𝑛

∑
𝑖=1

𝑙
3𝑖
∫
𝑥
𝑖
(𝑡−ℎ)

0

(𝑓
𝑖
(𝑠) + 𝛿

𝑖
𝑠) 𝑑𝑠,

(23)
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with

𝜉𝑇
1
(𝑡) = [𝑥𝑇 (𝑡) ∫

𝑡

𝑡−ℎ

𝑥𝑇 (𝑠) 𝑑𝑠] ,

𝜉𝑇
2
(𝑡, 𝑠) = [𝑥𝑇 (𝑡) 𝑥𝑇 (𝑠) �̇�𝑇 (𝑠)] ,

𝜉𝑇
3
(𝑡) = [ 𝑥𝑇 (𝑡) �̇�𝑇 (𝑡) 𝑥𝑇 (𝑡 − ℎ (𝑡)) 𝑥𝑇 (𝑡 − ℎ)

�̇�𝑇 (𝑡 − ℎ (𝑡)) �̇�𝑇 (𝑡 − ℎ) ] ,

𝜉𝑇
4
(𝑡) = [ ∫

𝑡−ℎ(𝑡)

𝑡−ℎ

𝑥𝑇 (𝑠) 𝑑𝑠 ∫
𝑡

𝑡−ℎ(𝑡)

𝑥𝑇 (𝑠) 𝑑𝑠 𝑓𝑇 (𝑥 (𝑡))

𝑓𝑇 (𝑥 (𝑡 − ℎ (𝑡))) 𝑓𝑇 (𝑥 (𝑡 − ℎ) ) ] ,

𝜉𝑇
5
(𝑡) = [∫

𝑡

𝑡−𝜌
1
𝑟

𝑓𝑇 (𝑥 (𝑠)) 𝑑𝑠 ⋅ ⋅ ⋅ ∫
𝑡−𝜌
𝑙−1
𝑟

𝑡−𝑟

𝑓𝑇 (𝑥 (𝑠)) 𝑑𝑠] ,

𝜉𝑇 (𝑡) = [ 𝜉𝑇
3
(𝑡) 𝜉𝑇
4
(𝑡) 𝜉𝑇
5
(𝑡) ∫
0

−𝑟

∫
𝑡

𝑡+𝜃

𝑓𝑇 (𝑥 (𝑠)) 𝑑𝑠 𝑑𝜃] ,

𝐸
𝑖
= [0𝑛×(𝑖−1) 𝐼𝑛×𝑛 0

𝑛×(3−𝑖)]
𝑇 (𝑖 = 1, 2, 3) .

(24)

The time derivative of 𝑉(𝑥
𝑡
) along the trajectory of system (5)

is given as

�̇� (𝑥
𝑡
) = �̇�
1
(𝑥
𝑡
) + �̇�
2
(𝑥
𝑡
) + �̇�
3
(𝑥
𝑡
) + �̇�
4
(𝑥
𝑡
)

+ �̇�
5
(𝑥
𝑡
) + �̇�
6
(𝑥
𝑡
) + �̇�
7
(𝑥
𝑡
) ,

(25)

where

�̇�
1
(𝑥
𝑡
) = 2𝜉𝑇

1
(𝑡) 𝑃 ̇𝜉
1
(𝑡)

= 2𝜉𝑇 (𝑡) [𝑒1 𝑒
7
+ 𝑒
8
] 𝑃[𝑒
2
𝑒
1
− 𝑒
4
]𝑇𝜉 (𝑡) ,

�̇�
2
(𝑥
𝑡
) ≤ [𝑥𝑇 (𝑡) 𝑥𝑇 (𝑡)] 𝑅1[𝑥

𝑇 (𝑡) 𝑥𝑇 (𝑡)]
𝑇

+ 2 [�̇�𝑇 (𝑡) 0] 𝑅1 ∫
𝑡

𝑡−ℎ(𝑡)

[𝑥𝑇 (𝑡) 𝑥𝑇 (𝑠)]
𝑇

𝑑 (𝑠)

− (1 − ℎ
𝐷
) × [𝑥𝑇 (𝑡) 𝑥𝑇 (𝑡 − ℎ (𝑡))] 𝑅1

× [𝑥𝑇 (𝑡) 𝑥𝑇 (𝑡 − ℎ (𝑡))]
𝑇

+ [𝑥𝑇 (𝑡) 𝑥𝑇 (𝑡)] 𝑅2

× [𝑥𝑇 (𝑡) 𝑥𝑇 (𝑡)]
𝑇

+ 2 [�̇�𝑇 (𝑡) 0] 𝑅2

× ∫
𝑡

𝑡−ℎ

[𝑥𝑇 (𝑡) 𝑥𝑇 (𝑠)]
𝑇

𝑑 (𝑠) − [𝑥𝑇 (𝑡) 𝑥𝑇 (𝑡 − ℎ)]

× 𝑅
2
[𝑥𝑇 (𝑡) 𝑥𝑇 (𝑡 − ℎ)]

𝑇

= 𝜉𝑇 (𝑡) { (𝑒1 𝑒
1
) 𝑅
1
(𝑒
1
𝑒
1
)𝑇 + 2 (𝑒

2
0)

× 𝑅
1
(ℎ (𝑡) 𝑒

1
𝑒
8
)𝑇 − (1 − ℎ

𝐷
)

× (𝑒
1
𝑒
3
) 𝑅
1
(𝑒
1
𝑒
3
)𝑇 + (𝑒

1
𝑒
1
)

× 𝑅
2
(𝑒
1
𝑒
1
)𝑇 + 2 (𝑒

2
0) 𝑅
2

× (ℎ𝑒
1
𝑒
7
+ 𝑒
8
)𝑇 − (𝑒

1
𝑒
4
)

× 𝑅
2
(𝑒
1
𝑒
4
)𝑇} 𝜉 (𝑡) ,

�̇�
3
(𝑥
𝑡
) = ℎ𝜉

2
(𝑡, 𝑡) {[𝐸

2
𝐸
3
] 𝑅
3
[𝐸
2
𝐸
3
]𝑇} 𝜉
2
(𝑡, 𝑡)

+ �̇�𝑇 (𝑡) (ℎ2𝑄
1
+ ℎ3𝑄

2
) �̇� (𝑡) + 𝑉

𝑎
(𝑥 (𝑡))

= 𝜉𝑇 (𝑡) {ℎ (𝑒1 𝑒
2
) 𝑅
3
(𝑒
1
𝑒
2
)𝑇

+ 𝑒
2
(ℎ2𝑄
1
+ ℎ3𝑄

2
) 𝑒𝑇
2
} 𝜉 (𝑡)

+ 𝑉
𝑎
(𝑥 (𝑡)) .

(26)

Here, 𝑉
𝑎
(𝑥(𝑡)) is the sum of all integral terms expressed as

𝑉
𝑎
(𝑥 (𝑡))

= −∫
𝑡

𝑡−ℎ

𝜂
2
(𝑡, 𝑠) {[𝐸

2
𝐸
3
] 𝑅
3
[𝐸
2
𝐸
3
]𝑇} 𝜂
2
(𝑡, 𝑠) 𝑑𝑠

− ∫
𝑡

𝑡−ℎ

2 (ℎ − 𝑡 + 𝑠) 𝜂
2
(𝑡, 𝑠) {𝐸

3
𝑄
1
𝐸𝑇
3
} 𝜂
2
(𝑡, 𝑠) 𝑑𝑠

− ∫
𝑡

𝑡−ℎ

3(ℎ − 𝑡 + 𝑠)2𝜂
2
(𝑡, 𝑠) {𝐸

3
𝑄
2
𝐸𝑇
3
} 𝜂
2
(𝑡, 𝑠) 𝑑𝑠

≤ −∫
𝑡−ℎ(𝑡)

𝑡−ℎ

𝜂
2
(𝑡, 𝑠) {[𝐸

2
𝐸
3
] 𝑅
3
[𝐸
2
𝐸
3
]𝑇} 𝜂
2
(𝑡, 𝑠) 𝑑𝑠

− ∫
𝑡−ℎ(𝑡)

𝑡−ℎ

2 (ℎ − 𝑡 + 𝑠) 𝜂
2
(𝑡, 𝑠) {𝐸

3
𝑄
1
𝐸𝑇
3
} 𝜂
2
(𝑡, 𝑠) 𝑑𝑠

− ∫
𝑡−ℎ(𝑡)

𝑡−ℎ

3(ℎ − 𝑡 + 𝑠)2𝜂
2
(𝑡, 𝑠) {𝐸

3
𝑄
2
𝐸𝑇
3
} 𝜂
2
(𝑡, 𝑠) 𝑑𝑠

− ∫
𝑡

𝑡−ℎ(𝑡)

𝜂
2
(𝑡, 𝑠) {[𝐸

2
𝐸
3
] 𝑅
3
[𝐸
2
𝐸
3
]𝑇} 𝜂
2
(𝑡, 𝑠) 𝑑𝑠

− ∫
𝑡

𝑡−ℎ(𝑡)

2 (ℎ (𝑡) − 𝑡 + 𝑠) 𝜂
2
(𝑡, 𝑠) {𝐸

3
𝑄
1
𝐸𝑇
3
} 𝜂
2
(𝑡, 𝑠) 𝑑𝑠

− ∫
𝑡

𝑡−ℎ(𝑡)

3(ℎ (𝑡) − 𝑡 + 𝑠)2𝜂
2
(𝑡, 𝑠) {𝐸

3
𝑄
2
𝐸𝑇
3
}

× 𝜂
2
(𝑡, 𝑠) 𝑑𝑠

= �̂�
𝑎
(𝑥 (𝑡)) .

(27)
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Apply Lemma 2 to �̂�
𝑎
(𝑥(𝑡)),

�̂�
𝑎
(𝑥 (𝑡)) ≤ 𝜉𝑇 (𝑡) {(ℎ − ℎ (𝑡)) 𝐹𝑇

1
𝑅−1
3
𝐹
1
+ 2𝐹𝑇
1
[𝑒
7
𝑒
3
− 𝑒
4
]𝑇

+ (ℎ − ℎ (𝑡))2𝐹𝑇
2
𝑄−1
1
𝐹
2

+ 4𝐹𝑇
2
[(ℎ − ℎ (𝑡)) 𝑒

3
− 𝑒
7
]𝑇

+ 3 (ℎ − ℎ (𝑡)) 𝐹𝑇
3
𝑄−1
1
𝐹
3

+ 6𝐹𝑇
3
[(ℎ − ℎ (𝑡)) 𝑒

3
− 𝑒
7
]𝑇

+ ℎ (𝑡) 𝐹𝑇
4
𝑅−1
3
𝐹
4
+ 2𝐹𝑇
4
(𝑒
8
𝑒
1
− 𝑒
3
)𝑇

+ ℎ2 (𝑡) 𝐹𝑇
5
𝑄−1
1
𝐹
5
+ 4𝐹𝑇
5
[ℎ (𝑡) 𝑒

1
− 𝑒
8
]𝑇

+ 3ℎ (𝑡) 𝐹𝑇
6
𝑄−1
2
𝐹
6
+ 6𝐹𝑇
6
[ℎ (𝑡) 𝑒

1
− 𝑒
8
]𝑇}

× 𝜉 (𝑡) ,

�̇�
4
(𝑥
𝑡
) ≤ 𝑓𝑇 (𝑥 (𝑡)) 𝑆

1
𝑓 (𝑥 (𝑡))

− (1 − ℎ
𝐷
) 𝑓𝑇 (𝑥 (𝑡 − ℎ (𝑡))) 𝑆

1
𝑓 (𝑥 (𝑡 − ℎ (𝑡)))

+ 𝑓𝑇 (𝑥 (𝑡)) 𝑆
2
𝑓 (𝑥 (𝑡))

− 𝑓𝑇 (𝑥 (𝑡 − ℎ)) 𝑆
2
𝑓 (𝑥 (𝑡 − ℎ)) + �̇�𝑇 (𝑡) 𝑆

3
�̇� (𝑡)

− (1 − ℎ
𝐷
) �̇�𝑇 (𝑡 − ℎ (𝑡)) 𝑆

3
�̇� (𝑡 − ℎ (𝑡))

+ �̇�𝑇 (𝑡) 𝑆
4
�̇� (𝑡) − �̇�𝑇 (𝑡 − ℎ) 𝑆

4
�̇� (𝑡 − ℎ)

= 𝜉𝑇 (𝑡) {𝑒
9
(𝑆
1
+ 𝑆
2
) 𝑒𝑇
9
− (1 − ℎ

𝐷
) 𝑒
10
𝑆
1
𝑒𝑇
10

− 𝑒
11
𝑆
2
𝑒𝑇
11
+ 𝑒
2
(𝑆
3
+ 𝑆
4
) 𝑒𝑇
2

− (1 − ℎ
𝐷
) 𝑒
5
𝑆
3
𝑒𝑇
5
− 𝑒
6
𝑆
4
𝑒𝑇
6
} 𝜉 (𝑡) ,

(28)

�̇�
5
(𝑥
𝑡
) = �̇�𝑇 (𝑡) (ℎ𝑆

5
+
ℎ2

2
𝑆
6
) �̇� (𝑡)

− ∫
𝑡

𝑡−ℎ

�̇�𝑇 (𝑠) 𝑆
5
�̇� (𝑠) 𝑑𝑠

− ∫
0

−ℎ

∫
𝑡

𝑡+𝜃

�̇�𝑇 (𝑠) 𝑆
6
�̇� (𝑠) 𝑑𝑠 𝑑𝜃.

(29)

From Lemmas 4 and 5, we have

− ∫
𝑡

𝑡−ℎ

�̇�𝑇 (𝑠) 𝑆
5
�̇� (𝑠) 𝑑𝑠

≤ −
2
ℎ
[

[

1
ℎ
∫
𝑡

𝑡−ℎ

𝑥 (𝑠) 𝑑𝑠

𝑥 (𝑡 − ℎ)
]

]

𝑇

[
𝑆
5

−𝑆
5

−𝑆
5

𝑆
5

]

× [

[

1
ℎ
∫
𝑡

𝑡−ℎ

𝑥 (𝑠) 𝑑𝑠

𝑥 (𝑡 − ℎ)
]

]
,

− ∫
0

−ℎ

∫
𝑡

𝑡+𝜃

�̇�𝑇 (𝑠) 𝑆
6
�̇� (𝑠) 𝑑𝑠 𝑑𝜃

≤
2
ℎ2
[

[

ℎ𝑥 (𝑡)

∫
𝑡

𝑡−ℎ

𝑥 (𝑠) 𝑑𝑠
]

]

𝑇

[
−𝑆
6

𝑆
6

𝑆
6

−𝑆
6

][

[

ℎ𝑥 (𝑡)

∫
𝑡

𝑡−ℎ

𝑥 (𝑠) 𝑑𝑠
]

]
.

(30)

Then combining (29) and (30), we can obtain that

�̇�
5
(𝑥
𝑡
)

≤ 𝜉𝑇 (𝑡) {𝑒
2
(ℎ𝑆
5
+
ℎ2

2
𝑆
6
) 𝑒𝑇
2

− 2𝑒
1
𝑆
6
𝑒𝑇
1
+
4
ℎ
𝑒
1
𝑆
6
𝑒𝑇
7
+
4
ℎ
𝑒
1
𝑆
6
𝑒𝑇
8

+
4
ℎ2
𝑒
4
𝑆
5
𝑒𝑇
7
+

4
ℎ2

(𝑡) 𝑒
4
𝑆
5
𝑒𝑇
8
−
2
ℎ
𝑒
4
𝑆
5
𝑒𝑇
4

− 𝑒
7
(
2
ℎ3
𝑆
5
+

2
ℎ2
𝑆
6
) 𝑒𝑇
7
− 𝑒
7
(
4
ℎ3
𝑆
5
+

4
ℎ2
𝑆
6
) 𝑒𝑇
8

− 𝑒
8
(
2
ℎ3
𝑆
5
+

2
ℎ2
𝑆
6
) 𝑒𝑇
8
} 𝜉 (𝑡) ,

(31)

�̇�
6
(𝑥
𝑡
)

= 𝑟𝑓𝑇 (𝑥 (𝑡)) 𝑆
7
𝑓 (𝑥 (𝑡))

− ∫
𝑡

𝑡−𝑟

𝑓𝑇 (𝑥 (𝑠)) 𝑆
7
𝑓 (𝑥 (𝑠)) 𝑑𝑠 +

𝑟2

2
𝑓𝑇 (𝑥 (𝑡)) 𝑆

8
𝑓 (𝑥 (𝑡))

− ∫
0

−𝑟

∫
𝑡

𝑡+𝜃

𝑓 (𝑥 (𝑠)) 𝑆
8
𝑓 (𝑥 (𝑠)) 𝑑𝑠 𝑑𝜃

+
𝑙

∑
𝑖=1

(𝜌
𝑖
− 𝜌
𝑖−1
) 𝑟𝑓𝑇 (𝑥 (𝑡)) 𝑍

𝑖
𝑓 (𝑥 (𝑡))

−
𝑙

∑
𝑖=1

∫
𝑡−𝜌
𝑖−1
𝑟

𝑡−𝜌
𝑖
𝑟

𝑓𝑇 (𝑥 (𝑠)) 𝑍
𝑖
𝑓 (𝑥 (𝑠)) 𝑑𝑠.

(32)
From Lemma 3, we get

− ∫
𝑡

𝑡−𝑟

𝑓𝑇 (𝑥 (𝑠)) 𝑆
7
𝑓𝑇 (𝑥 (𝑠)) 𝑑𝑠

≤ −
1
𝑟
∫
𝑡

𝑡−𝑟

𝑓𝑇 (𝑥 (𝑠)) 𝑑𝑠𝑆
7
∫
𝑡

𝑡−𝑟

𝑓 (𝑥 (𝑠)) 𝑑𝑠,

− ∫
0

−𝑟

∫
𝑡

𝑡+𝜃

𝑓𝑇 (𝑥 (𝑠)) 𝑆
8
𝑓 (𝑥 (𝑠)) 𝑑𝑠 𝑑𝜃

≤ −
2
𝑟2

∫
0

−𝑟

∫
𝑡

𝑡+𝜃

𝑓𝑇 (𝑥 (𝑠)) 𝑑𝑠 𝑑𝜃𝑆
8

× ∫
0

−𝑟

∫
𝑡

𝑡+𝜃

𝑓 (𝑥 (𝑠)) 𝑑𝑠 𝑑𝜃,

− ∫
𝑡−𝜌
𝑖−1
𝑟

𝑡−𝜌
𝑖
𝑟

𝑓𝑇 (𝑥 (𝑠)) 𝑍
𝑖
𝑓 (𝑥 (𝑠)) 𝑑𝑠

≤ −
1

(𝜌
𝑖
− 𝜌
𝑖−1
) 𝑟

∫
𝑡−𝜌
𝑖−1
𝑟

𝑡−𝜌
𝑖
𝑟

𝑓𝑇 (𝑥 (𝑠)) 𝑑𝑠𝑍
𝑖

× ∫
𝑡−𝜌
𝑖−1
𝑟

𝑡−𝜌
𝑖
𝑟

𝑓 (𝑥 (𝑠)) 𝑑𝑠.

(33)
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Then combining (32) and (33) we can have that

�̇�
6
(𝑥
𝑡
) ≤ 𝑟𝑓𝑇 (𝑥 (𝑡)) 𝑆

7
𝑓 (𝑥 (𝑡)) +

𝑟2

2
𝑓𝑇 (𝑥 (𝑡)) 𝑆

8
𝑓 (𝑥 (𝑡))

+
𝑙

∑
𝑖=1

(𝜌
𝑖
− 𝜌
𝑖−1
) 𝑟𝑓𝑇 (𝑥 (𝑡)) 𝑍

𝑖
𝑓 (𝑥 (𝑡))

−
1
𝑟

𝑙

∑
𝑖=1

∫
𝑡−𝜌
𝑖−1
𝑟

𝑡−𝜌
𝑖
𝑟

𝑓𝑇 (𝑥 (𝑠)) 𝑑𝑠𝑆
7

𝑙

∑
𝑖=1

∫
𝑡−𝜌
𝑖−1
𝑟

𝑡−𝜌
𝑖
𝑟

𝑓 (𝑥 (𝑠)) 𝑑𝑠

−
2
𝑟2

∫
0

−𝑟

∫
𝑡

𝑡+𝜃

𝑓𝑇 (𝑥 (𝑠)) 𝑑𝑠 𝑑𝜃𝑆
8
∫
0

−𝑟

∫
𝑡

𝑡+𝜃

𝑓 (𝑥 (𝑠)) 𝑑𝑠

−
𝑙

∑
𝑖=1

1
(𝜌
𝑖
− 𝜌
𝑖−1
) 𝑟

∫
𝑡−𝜌
𝑖−1
𝑟

𝑡−𝜌
𝑖
𝑟

𝑓𝑇 (𝑥 (𝑠)) 𝑑𝑠𝑍
𝑖

× ∫
𝑡−𝜌
𝑖−1
𝑟

𝑡−𝜌
𝑖
𝑟

𝑓 (𝑥 (𝑠)) 𝑑𝑠

= 𝜉𝑇 (𝑡) {𝑒
9
(𝑟𝑆
7
+
𝑟2

2
𝑆
8
+
𝑙

∑
𝑖=1

(𝜌
𝑖
− 𝜌
𝑖−1
) 𝑟𝑍
𝑖
)𝑒𝑇
9

−
2
𝑟2
𝑒
12+𝑙

𝑆
8
𝑒𝑇
12+𝑙

−
𝑙

∑
𝑖=1

1
(𝜌
𝑖
− 𝜌
𝑖−1
) 𝑟

𝑒
11+𝑖

× 𝑍
𝑖
𝑒𝑇
11+𝑖

−
1
𝑟
(𝑒
12
+ ⋅ ⋅ ⋅ + 𝑒

11+𝑙
)

× 𝑆
7
(𝑒
12
+ ⋅ ⋅ ⋅ + 𝑒

11+𝑙
)𝑇}𝜉 (𝑡) ,

(34)

�̇�
7
(𝑥
𝑡
)

≤ 2 [𝑓𝑇 (𝑥 (𝑡)) (𝐺
1
− 𝐾
1
+ 𝐿
1
)

+ 𝑥𝑇 (𝑡) (Σ𝐾
1
− Σ𝐺
1
+ 𝐿
1
Σ)]

× �̇� (𝑡) + 2 (1 − ℎ
𝐷
)

× [𝑓𝑇 (𝑥 (𝑡 − ℎ (𝑡))) (𝐺
2
− 𝐾
2
+ 𝐿
2
)

+ 𝑥𝑇 (𝑡 − ℎ (𝑡)) (Σ𝐾
2
− Σ𝐺
2
+ 𝐿
2
Σ)]

× �̇� (𝑡 − ℎ (𝑡))

+ 2 [𝑓𝑇 (𝑥 (𝑡 − ℎ)) (𝐺
3
− 𝐾
3
+ 𝐿
3
)

+ 𝑥𝑇 (𝑡 − ℎ) (Σ𝐾
3
− Σ𝐺
3
+ 𝐿
3
Σ)]

× �̇� (𝑡 − ℎ)

= 2𝜉𝑇 (𝑡) {𝑒
1
(Σ𝐾
1
− Σ𝐺
1
+ 𝐿
1
Σ) 𝑒𝑇
2

+ 2𝑒
2
(𝐺
1
− 𝐾
1
+ 𝐿
1
) 𝑒𝑇
9

+ 2𝑒
3
(Σ𝐾
2
− Σ𝐺
2
+ 𝐿
2
Σ) 𝑒𝑇
5

+ 2𝑒
5
(𝐺
2
− 𝐾
2
+ 𝐿
2
) 𝑒𝑇
10

+ 2𝑒
4
(Σ𝐾
3
− Σ𝐺
3
+ 𝐿
3
Σ) 𝑒𝑇
6

+ 2𝑒
6
(𝐺
3
− 𝐾
3
+ 𝐿
3
) 𝑒𝑇
11
} 𝜉 (𝑡) .

(35)

From (6), for any positive diagonal matrices 𝑀
𝑖

=
diag{𝑚

𝑖1
, . . . ,min} (𝑖 = 1, 2, 3, 4) one can easily check

0 ≤ [𝑥𝑇 (𝑡) Σ𝑀
1
Σ𝑥 (𝑡) − 𝑓𝑇 (𝑥 (𝑡))𝑀

1
𝑓 (𝑥 (𝑡))]

+ [−𝑥𝑇 (𝑡)𝑀
2
Σ
1
𝑥 (𝑡) + 2𝑥𝑇 (𝑡)𝑀

2
Σ
2
𝑓 (𝑥 (𝑡))

−𝑓𝑇 (𝑥 (𝑡))𝑀
2
𝑓 (𝑥 (𝑡))]

+ [ − 𝑥𝑇 (𝑡 − ℎ (𝑡))𝑀
3

× Σ
1
𝑥 (𝑡 − ℎ (𝑡)) + 2𝑥𝑇 (𝑡 − ℎ (𝑡))

× 𝑀
3
Σ
2
𝑓 (𝑥 (𝑡 − ℎ (𝑡))) − 𝑓𝑇 (𝑥 (𝑡 − ℎ (𝑡)))

×𝑀
3
𝑓 (𝑥 (𝑡 − ℎ (𝑡))) ]

+ [ − 𝑥𝑇 (𝑡 − ℎ)𝑀
4
Σ
1
𝑥 (𝑡 − ℎ) + 2𝑥𝑇 (𝑡 − ℎ)𝑀

4
Σ
2
𝑓

× (𝑥 (𝑡 − ℎ)) − 𝑓𝑇 (𝑥 (𝑡 − ℎ))𝑀
4
𝑓 (𝑥 (𝑡 − ℎ)) ]

= 𝜉𝑇 (𝑡) {𝑒
1
(Σ𝑀
1
Σ −𝑀

2
Σ
1
) 𝑒𝑇
1
+ 2𝑒
1
𝑀
2
Σ
2
𝑒𝑇
9
− 𝑒
3
𝑀
3
Σ
1
𝑒𝑇
3

+ 2𝑒
3
𝑀
3
Σ
2
𝑒𝑇
10
− 𝑒
9
(𝑀
1
+𝑀
2
) 𝑒𝑇
9

− 𝑒
10
𝑀
3
𝑒𝑇
10
− 𝑒
4
𝑀
4
Σ
1
𝑒𝑇
4
+ 2𝑒
4
𝑀
4
Σ
2
𝑒𝑇
11

− 𝑒
11
𝑀
4
𝑒𝑇
11
} 𝜉 (𝑡) .

(36)

Furthermore, for arbitrary matrices 𝑇
1
, 𝑇
2
, 𝑇
3
, 𝑇
4
, 𝑇
5
with

appropriate dimensions, we have

2�̇�𝑇 (𝑡) 𝑇
1

× [ − �̇� (𝑡) − 𝑊
0
𝑥 (𝑡) + 𝑊

1
𝑓 (𝑥 (𝑡))

+ 𝑊
2
𝑓 (𝑥 (𝑡 − ℎ (𝑡)))

+𝑊
3
∫
𝑡

𝑡−𝑟

𝑓𝑇 (𝑥 (𝑠)) 𝑑𝑠 + 𝑊
4
(�̇� (𝑡 − ℎ (𝑡)))]

= 𝜉𝑇 (𝑡) {𝑒
2
(−𝑇
1
− 𝑇𝑇
1
) 𝑒𝑇
2
− 2𝑒
1
𝑊𝑇
0
𝑇𝑇
1
𝑒𝑇
2

+ 2𝑒
2
𝑇
1
𝑊
1
𝑒𝑇
9
+ 2𝑒
2
𝑇
1
𝑊
2
𝑒𝑇
10

+ 2𝑒
2
𝑇
1
𝑊
3
(𝑒
12
+ ⋅ ⋅ ⋅ + 𝑒

11+𝑙
)𝑇

+ 2𝑒
2
𝑇
1
𝑊
4
𝑒𝑇
5
} 𝜉 (𝑡) = 0,

(37)



Journal of Applied Mathematics 9

2𝑥𝑇 (𝑡) 𝑇
2

× [ − �̇� (𝑡) − 𝑊
0
𝑥 (𝑡) + 𝑊

1
𝑓 (𝑥 (𝑡)) + 𝑊

2
𝑓 (𝑥 (𝑡 − ℎ (𝑡)))

+𝑊
3
∫
𝑡

𝑡−𝑟

𝑓𝑇 (𝑥 (𝑠)) 𝑑𝑠 + 𝑊
4
(�̇� (𝑡 − ℎ (𝑡)))]

= 𝜉𝑇 (𝑡) {−2𝑒
1
𝑇
2
𝑒𝑇
2
+ 𝑒
1
(−𝑇
2
𝑊
0
−𝑊𝑇
0
𝑇𝑇
2
) 𝑒𝑇
1

+ 2𝑒
1
𝑇
2
𝑊
1
𝑒𝑇
9
+ 2𝑒
1
𝑇
2
𝑊
2
𝑒𝑇
10

+ 2𝑒
1
𝑇
2
𝑊
3
(𝑒
12
+ ⋅ ⋅ ⋅ + 𝑒

11+𝑙
)𝑇

+ 2𝑒
2
𝑇
2
𝑊
4
𝑒𝑇
5
} 𝜉 (𝑡) = 0,

(38)

2𝑓𝑇 (𝑥 (𝑡)) 𝑇
3

× [ − �̇� (𝑡) − 𝑊
0
𝑥 (𝑡) + 𝑊

1
𝑓 (𝑥 (𝑡))

+ 𝑊
2
𝑓 (𝑥 (𝑡 − ℎ (𝑡))) + 𝑊

3
∫
𝑡

𝑡−𝑟

𝑓𝑇 (𝑥 (𝑠)) 𝑑𝑠

+𝑊
4
(�̇� (𝑡 − ℎ (𝑡))) ]

= 𝜉𝑇 (𝑡) {−2𝑒
2
𝑇𝑇
3
𝑒𝑇
9
− 2𝑒
1
𝑊𝑇
0
𝑇𝑇
3
𝑒𝑇
9

+ 𝑒
9
(𝑇
3
𝑊
1
+𝑊𝑇
1
𝑇𝑇
3
) 𝑒𝑇
9
+ 2𝑒
9
𝑇
3
𝑊
2
𝑒𝑇
10

+ 2𝑒
9
𝑇
3
𝑊
3
(𝑒
12
+ ⋅ ⋅ ⋅ + 𝑒

11+𝑙
)𝑇

+ 2𝑒
5
𝑊𝑇
4
𝑇𝑇
3
𝑒𝑇
9
} 𝜉 (𝑡) = 0,

(39)

2𝑓𝑇 (𝑥 (𝑡 − ℎ (𝑡))) 𝑇
4

× [ − �̇� (𝑡) − 𝑊
0
𝑥 (𝑡) + 𝑊

1
𝑓 (𝑥 (𝑡))

+ 𝑊
2
𝑓 (𝑥 (𝑡 − ℎ (𝑡)))

+ 𝑊
3
∫
𝑡

𝑡−𝑟

𝑓𝑇 (𝑥 (𝑠)) 𝑑𝑠

+𝑊
4
(�̇� (𝑡 − ℎ (𝑡)))]

= 𝜉𝑇 (𝑡) {−2𝑒
2
𝑇𝑇
4
𝑒𝑇
10
− 2𝑒
1
𝑊𝑇
0
𝑇𝑇
4
𝑒𝑇
10

+ 𝑒
9
𝑊𝑇
1
𝑇𝑇
4
𝑒𝑇
10
+ 𝑒
10
(𝑇
4
𝑊
2
+𝑊𝑇
2
𝑇𝑇
4
) 𝑒𝑇
10

+ 2𝑒
10
𝑇
4
𝑊
3
(𝑒
12
+ ⋅ ⋅ ⋅ + 𝑒

11+𝑙
)𝑇

+ 2𝑒
5
𝑊𝑇
4
𝑇𝑇
4
𝑒𝑇
10
} 𝜉 (𝑡) = 0,

(40)

�̇�𝑇 (𝑡 − ℎ (𝑡)) 𝑇
5

× [ − �̇� (𝑡) − 𝑊
0
𝑥 (𝑡) + 𝑊

1
𝑓 (𝑥 (𝑡))

+ 𝑊
2
𝑓 (𝑥 (𝑡 − ℎ (𝑡)))

+ 𝑊
3
∫
𝑡

𝑡−𝑟

𝑓𝑇 (𝑥 (𝑠)) 𝑑𝑠

+𝑊
4
(�̇� (𝑡 − ℎ (𝑡)))]

= 𝜉𝑇 (𝑡) {−2𝑒
2
𝑇𝑇
5
𝑒𝑇
5
− 2𝑒
1
𝑊𝑇
0
𝑇𝑇
5
𝑒𝑇
5

+ 𝑒
5
𝑇
5
𝑊
1
𝑒𝑇
9
+ 𝑒
5
𝑇
5
𝑊
2
𝑒𝑇
10

+ 2𝑒
5
𝑇
5
𝑊
3
(𝑒
12
+ ⋅ ⋅ ⋅ + 𝑒

11+𝑙
)𝑇

+ 2𝑒
5
(𝑇
5
𝑊
4
+𝑊𝑇
4
𝑇𝑇
4
) 𝑒𝑇
5
} 𝜉 (𝑡) = 0.

(41)

The combination of (26)–(37) gives that

𝑉 (𝑥
𝑡
) ≤ 𝜉𝑇 (𝑡) {Π

0
+ ℎ (𝑡) Π

1
+ Π
ℎ
} 𝜉 (𝑡) , (42)

where Π
0
, Π
1
are defined in (13) and (14), respectively, and

Π
ℎ
= (ℎ − ℎ (𝑡)) 𝐹𝑇

1
𝑅−1
3
𝐹
1

+ (ℎ − ℎ (𝑡))2𝐹𝑇
2
𝑄−1
1
𝐹
2
+ 3 (ℎ − ℎ (𝑡)) 𝐹𝑇

3
𝑄−1
1
𝐹
3

+ ℎ (𝑡) 𝐹𝑇
4
𝑅−1
3
𝐹
4
+ ℎ2 (𝑡) 𝐹𝑇

5
𝑄−1
1
𝐹
5
+ 3ℎ (𝑡) 𝐹𝑇

6
𝑄−1
2
𝐹
6
.

(43)

Note that the scalar valued function 𝜉𝑇(𝑡){Π
0
+ ℎ(𝑡)Π

1
+

Π
ℎ
}𝜉(𝑡) is quadratic function on the scalar ℎ(𝑡) and the

coefficient of second order is 𝜉𝑇(𝑡)[𝐹𝑇
2
𝑄−1
1
𝐹
2
+𝐹𝑇
5
𝑄−1
1
𝐹
5
]𝜉(𝑡) ≥

0 since 𝑄
1
> 0. This means that the function 𝜉𝑇(𝑡){Π

0
+

ℎ(𝑡)Π
1
+ Π
ℎ
}𝜉(𝑡) is a convex quadratic function for ℎ(𝑡).

Finally, apply Fact 1 and Lemma 1 in order, then we get

Ξ
1
< 0 in (22) , Ξ

2
< 0 in (23) (44)

⇐⇒ [Π
0
+ ℎ (𝑡) Π

1
+ Π
ℎ
]
ℎ(𝑡)=0

< 0,

[Π
0
+ ℎ (𝑡) Π

1
+ Π
ℎ
]
ℎ(𝑡)=ℎ

< 0,
(45)

⇐⇒ Π
0
+ ℎ (𝑡) Π

1
+ Π
ℎ
< 0, ∀ℎ (𝑡) ∈ [0, ℎ] , (46)

which means the asymptotic stability of the system (19). This
completes the proof.

Remark 7. In Theorem 6, the augmented vector 𝜉(𝑡)
has integrating terms of activation function 𝑓(𝑥(𝑡))
which are ∫

𝑡

𝑡−𝜌
1
𝑟
𝑓𝑇(𝑥(𝑠))𝑑𝑠, . . . , ∫

𝑡−𝜌
𝑙−1
𝑟

𝑡−𝑟
𝑓𝑇(𝑥(𝑠))𝑑𝑠 and

∫
0

−𝑟
∫
𝑡

𝑡+𝜃
𝑓𝑇(𝑥(𝑠))𝑑𝑠 𝑑𝜃. By these terms, more past history of

𝑓(𝑥(𝑡)) can be used, which lead to less conservative results.

Remark 8. Compared with those in previous articles, Ours
constructed a new type of Lyapunov-Krasovskii functional
which has three differences: (1) an independent augmented
variable ∫𝑡

𝑡−ℎ
𝑥𝑇(𝑠)𝑑𝑠; (2) the cross terms between entries in

𝜉
1
(𝑡), 𝜉
2
(𝑡, 𝑠), respectively; (3) quadratic terms multiplied by

first, second, and third degrees of a scalar function ℎ − 𝑡 + 𝑠
by 1 means the number increase of the integral by 1.

Remark 9. Compared with traditional approach to deal with
term like ∫𝑡

𝑡−ℎ
�̇�𝑇(𝑠)𝑆

5
�̇�(𝑠)𝑑𝑠, Lemma 5 provides a new han-

dling method. This new handling method can establish the
relationship among∫𝑡

𝑡−ℎ(𝑡)
𝑥𝑇(𝑠)𝑑𝑠,∫𝑡−ℎ(𝑡)

𝑡−ℎ
𝑥𝑇(𝑠)𝑑𝑠 and𝑥(𝑡−ℎ),

which may significantly reduce the conservatism of stability
criteria.
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Remark 10. When𝑊
3
= 0, the system (5) reduces to

�̇� (𝑡) = −𝑊
0
𝑥 (𝑡) + 𝑊

1
𝑓 (𝑥 (𝑡))

+ 𝑊
2
𝑓 (𝑥 (𝑡 − ℎ (𝑡))) + 𝑊

4
�̇� (𝑡 − ℎ (𝑡)) .

(47)

Similarly, based onTheorem 6, we can obtain the asymptoti-
cal stability for system (47) as follows.

Theorem 11. For given scalars ℎ > 0 and ℎ
𝐷
< 1, the system

(47) with the neuron activation function 𝑓(𝑥(𝑡)) satisfying the
condition (6) is asymptotically stable if there exists 𝑃 > 0,
𝑅𝑇
𝑖

= 𝑅
𝑖
> 0 (𝑖 = 1, 2, 3), 𝑄𝑇

𝑖
= 𝑄
𝑖
> 0 (𝑖 = 1, 2),

𝑆𝑇
𝑖

= 𝑆
𝑖

> 0 (𝑖 = 1, . . . , 6), diagonal matrices 𝐺
𝑖

=
diag{𝑔

𝑖1
, 𝑔
𝑖2
, . . . , 𝑔in} > 0, 𝐾

𝑖
= diag{𝑘

𝑖1
, 𝑘
𝑖2
, . . . , 𝑘in} > 0,

𝐿
𝑖
= diag{𝑙

𝑖1
, 𝑙
𝑖2
, . . . , 𝑙in} > 0, (𝑖 = 1, 2, 3), and 𝑀 =

diag{𝑚
𝑖1
, 𝑚
𝑖2
, . . . , 𝑚in} > 0, (𝑖 = 1, 2, 3, 4), 𝑇

𝑖
(𝑖 = 1, . . . , 5)

and 𝐹
𝑖
(𝑖 = 1, . . . , 6) with appropriate dimensions such that

the following symmetric linear matrix inequality holds:

Ξ̂
1
=
[[[[[

[

Π̂
0

ℎ𝐹𝑇
1

ℎ𝐹𝑇
2

ℎ𝐹𝑇
3

∗ −ℎ𝑅
3

0 0
∗ ∗ −𝑄

1
0

∗ ∗ ∗ −
ℎ
3
𝑄
2

]]]]]

]

< 0, (48)

Ξ̂
2
=
[[[[[

[

Π̂
0
+ ℎΠ̂
1

ℎ𝐹𝑇
4

ℎ𝐹𝑇
5

ℎ𝐹𝑇
6

∗ −ℎ𝑅
3

0 0
∗ ∗ −𝑄

1
0

∗ ∗ ∗ −
ℎ
3
𝑄
2

]]]]]

]

< 0, (49)

where

Π̂
0
= ⟨2 [𝑒

1
𝑒
7
+ 𝑒
8
] 𝑃[𝑒
2
𝑒
1
− 𝑒
4
]𝑇

+ 2 [𝑒
2
0] 𝑅
1
[0 𝑒
8
]𝑇

+ 2 [𝑒
2
0] 𝑅
2
[ℎ𝑒
1
𝑒
7
+ 𝑒
8
]𝑇⟩
𝑠

+ [𝑒
1
𝑒
1
]

× (𝑅
1
+ 𝑅
2
) [𝑒
1
𝑒
1
]𝑇 − (1 − ℎ

𝐷
) [𝑒
1
𝑒
3
]

× 𝑅
1
[𝑒
1
𝑒
3
]𝑇 − [𝑒

1
𝑒
4
] 𝑅
2
[𝑒
1
𝑒
4
]𝑇 + ℎ [𝑒

1
𝑒
2
] 𝑅
3

× [𝑒
1
𝑒
2
]𝑇 + 𝑒

2
(ℎ2𝑄
1
+ ℎ3𝑄

2
) 𝑒𝑇
2

+ ⟨2𝐹𝑇
1
[𝑒
7
𝑒
3
− 𝑒
4
]𝑇 + 4𝐹𝑇

2
[ℎ𝑒
3
− 𝑒
7
]𝑇

+ 6𝐹𝑇
3
[ℎ𝑒
3
− 𝑒
7
]𝑇 + 2𝐹𝑇

4
[𝑒
8
𝑒
1
− 𝑒
3
]𝑇 − 4𝐹𝑇

5
𝑒𝑇
8

− 6𝐹𝑇
6
𝑒𝑇
8
⟩
𝑠

+ 𝑒
9
(𝑆
1
+ 𝑆
2
) 𝑒𝑇
9
− (1 − ℎ

𝐷
) 𝑒
10
𝑆
1
𝑒𝑇
10

− 𝑒
11
𝑆
2
𝑒𝑇
11
− 𝑒
6
𝑆
4
𝑒𝑇
6
+ 𝑒
2
(𝑆
3
+ 𝑆
4
) 𝑒𝑇
2

− (1 − ℎ
𝐷
) 𝑒
5
𝑆
3
𝑒𝑇
5
+ 𝑒
2
(ℎ𝑆
5
+
ℎ2

2
𝑆
6
) 𝑒𝑇
2

− 2𝑒
1
𝑆
6
𝑒𝑇
1
+
4
ℎ
𝑒
1
𝑆
6
𝑒𝑇
7
+

4
ℎ2
𝑒
4
𝑆
5
𝑒𝑇
7
+

4
ℎ2
𝑒
4
𝑆
5
𝑒𝑇
8

− 𝑒
7
(
2
ℎ3
𝑆
5
+

2
ℎ2
𝑆
6
) 𝑒𝑇
7
− 𝑒
7
(
4
ℎ3
𝑆
5
+

4
ℎ2
𝑆
6
) 𝑒𝑇
8

− 𝑒
8
(
2
ℎ3
𝑆
5
+

2
ℎ2
𝑆
6
) 𝑒𝑇
8
+ 𝑒
1
(Σ𝐾
1
− Σ𝐺
1
+ 𝐿
1
Σ) 𝑒𝑇
2

+ 2𝑒
2
(𝐺
1
− 𝐾
1
+ 𝐿
1
) 𝑒𝑇
9
+ 2𝑒
3
(Σ𝐾
2
− Σ𝐺
2
+ 𝐿
2
Σ)

× 𝑒𝑇
5
+ 2𝑒
5
(𝐺
2
− 𝐾
2
+ 𝐿
2
) 𝑒𝑇
10

+ 2𝑒
4
(Σ𝐾
3
− Σ𝐺
3
+ 𝐿
3
Σ) 𝑒𝑇
6
+ 2𝑒
6
(𝐺
3
− 𝐾
3
+ 𝐿
3
)

× 𝑒𝑇
11
+ 𝑒
1
(Σ𝑀
1
Σ −𝑀

2
Σ
1
) 𝑒𝑇
1
+ 2𝑒
1
𝑀
2
Σ
2
𝑒𝑇
9

− 𝑒
3
𝑀
3
Σ
1
𝑒𝑇
3
+ 2𝑒
3
𝑀
3
Σ
2
𝑒𝑇
10
− 𝑒
9
(𝑀
1
+𝑀
2
) 𝑒𝑇
9

− 𝑒
10
𝑀
3
𝑒𝑇
10
− 𝑒
4
𝑀
4
Σ
1
𝑒𝑇
4
+ 2𝑒
4
𝑀
4
Σ
2
𝑒𝑇
11

+ 𝑒
2
(−𝑇
1
− 𝑇𝑇
1
) 𝑒𝑇
2
− 𝑒
11
𝑀
4
𝑒𝑇
11
− 2𝑒
1
𝑊𝑇
0
𝑇𝑇
1
𝑒𝑇
2

+ 2𝑒
2
𝑇
1
𝑊
1
𝑒𝑇
9
+ 2𝑒
2
𝑇
1
𝑊
2
𝑒𝑇
10
− 2𝑒
1
𝑇
2
𝑒𝑇
2

+ 𝑒
1
(−𝑇
2
𝑊
0
−𝑊𝑇
0
𝑇𝑇
2
) 𝑒𝑇
1
+ 2𝑒
1
𝑇
2
𝑊
1
𝑒𝑇
9

+ 2𝑒
1
𝑇
2
𝑊
2
𝑒𝑇
10
+ 2𝑒
2
𝑇
2
𝑊
4
𝑒𝑇
5
− 2𝑒
1
𝑊𝑇
0
𝑇𝑇
3
𝑒𝑇
9

+ 2𝑒
9
𝑇
3
𝑊
2
𝑒𝑇
10
+ 𝑒
9
(𝑇
3
𝑊
1
+𝑊𝑇
1
𝑇𝑇
3
) 𝑒𝑇
9

+ 2𝑒
5
𝑊𝑇
4
𝑇𝑇
3
𝑒𝑇
9
− 2ê
2
𝑇𝑇
4
𝑒𝑇
10
− 2𝑒
1
𝑊𝑇
0
𝑇𝑇
4
𝑒𝑇
10

+ 𝑒
9
𝑊𝑇
1
𝑇𝑇
4
𝑒𝑇
10
+ 𝑒
10
(𝑇
4
𝑊
2
+𝑊𝑇
2
𝑇𝑇
4
) 𝑒𝑇
10

+ 2𝑒
5
𝑊𝑇
4
𝑇𝑇
3
𝑒𝑇
9
− 2𝑒
2
𝑇𝑇
5
𝑒𝑇
5
− 2𝑒
1
𝑊𝑇
0
𝑇𝑇
5
𝑒𝑇
5

+ 𝑒
5
𝑇
5
𝑊
1
𝑒𝑇
9
+ 𝑒
5
𝑇
5
𝑊
2
𝑒𝑇
10
−
2
ℎ
𝑒
4
𝑆
5
𝑒𝑇
4

+
4
ℎ
𝑒
1
𝑆
6
𝑒𝑇
8
+ 2𝑒
5
(𝑇
5
𝑊
4
+𝑊𝑇
4
𝑇𝑇
4
) 𝑒𝑇
5

+ 2𝑒
5
𝑊𝑇
4
𝑇𝑇
4
𝑒𝑇
10
+ 2𝑒
2
𝑇
1
𝑊
4
𝑒𝑇
5
− 2𝑒
2
𝑇𝑇
3
𝑒𝑇
9
,

Π̂
1
=⟨2 (𝑒

2
0) 𝑅
1
(𝑒
1
0)𝑇 − 4𝐹𝑇

2
𝑒𝑇
3

− 6𝐹𝑇
3
𝑒𝑇
3
+ 4𝐹𝑇
5
𝑒𝑇
1
+ 6𝐹𝑇
6
𝑒𝑇
1
⟩
𝑠

,

(50)

with

⟨⋅⟩
𝑠
=
1
2
[(⋅) + (⋅)𝑇] ,

𝑒
𝑖
= [0𝑛×(𝑖−1) 𝐼𝑛×𝑛 0

𝑛×(11)]
𝑇 (𝑖 = 1, . . . , 11) .

(51)

Remark 12. When𝑊
4
= 0, the system (5) reduces to

�̇� (𝑡) = −𝑊
0
𝑥 (𝑡) + 𝑊

1
𝑓 (𝑥 (𝑡))

+ 𝑊
2
𝑓 (𝑥 (𝑡 − ℎ (𝑡))) + 𝑊

3
∫
𝑡

𝑡−𝑟

𝑓𝑇 (𝑥 (𝑠)) 𝑑𝑠.
(52)
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Similarly, based onTheorem 6, we can obtain the asymptoti-
cal stability for system (52) as follows.

Theorem 13. For given scalars ℎ > 0 and ℎ
𝐷
< 1, the system

(52) with the neuron activation function 𝑓(𝑥(𝑡)) satisfying the
condition (6) is asymptotically stable if there exists 𝑃 > 0,
𝑅𝑇
𝑖
= 𝑅
𝑖
> 0 (𝑖 = 1, 2, 3), 𝑄𝑇

𝑖
= 𝑄
𝑖
> 0 (𝑖 = 1, 2), 𝑆𝑇

𝑖
=

𝑆
𝑖
> 0 (𝑖 = 1, 2, 5 . . . , 8), 𝑍𝑇

𝑖
= 𝑍
𝑖
> 0 (𝑖 = 1, . . . , 𝑙),

diagonal matrices 𝐺
1

= diag{𝑔
1
, 𝑔
2
, . . . , 𝑔

𝑛
} > 0, 𝐾

1
=

diag{𝑘
1
, 𝑘
2
, . . . , 𝑘

𝑛
} > 0, 𝐿

1
= diag{𝑙

1
, 𝑙
2
, . . . , 𝑙
𝑛
} > 0, and𝑀 =

diag{𝑚
𝑖1
, 𝑚
𝑖2
, . . . , 𝑚in} > 0, (𝑖 = 1, 2, 3, 4), 𝑇

𝑖
(𝑖 = 1, . . . , 4)

and 𝐹
𝑖
(𝑖 = 1, . . . , 6) with appropriate dimensions such that

the following symmetric linear matrix inequality holds:

Ξ̃
1
=
[[[[[

[

Π̃
0

ℎ𝐹𝑇
1

ℎ𝐹𝑇
2

ℎ𝐹𝑇
3

∗ −ℎ𝑅
3

0 0
∗ ∗ −𝑄

1
0

∗ ∗ ∗ −
ℎ
3
𝑄
2

]]]]]

]

< 0, (53)

Ξ̃
2
=
[[[[[

[

Π̃
0
+ ℎΠ̃
1

ℎ𝐹𝑇
4

ℎ𝐹𝑇
5

ℎ𝐹𝑇
6

∗ −ℎ𝑅
3

0 0
∗ ∗ −𝑄

1
0

∗ ∗ ∗ −
ℎ
3
𝑄
2

]]]]]

]

< 0, (54)

where

Π̃
0
= ⟨2 [𝑒

1
𝑒
5
+ 𝑒
6
] 𝑃[𝑒
2
𝑒
1
− 𝑒
4
]𝑇

+ 2 [𝑒
2
0] 𝑅
1
[0 𝑒
6
]𝑇 + 2 [𝑒

2
0]

× 𝑅
2
[ℎ𝑒
1
𝑒
5
+ 𝑒
6
]𝑇⟩
𝑠

+ [𝑒
1
𝑒
1
]

× (𝑅
1
+ 𝑅
2
) [𝑒
1
𝑒
1
]𝑇 − (1 − ℎ

𝐷
) [𝑒
1
𝑒
3
]

× 𝑅
1
[𝑒
1
𝑒
3
]𝑇 − [ẽ

1
𝑒
4
] 𝑅
2
[𝑒
1
𝑒
4
]𝑇

+ ℎ [𝑒
1
𝑒
2
] 𝑅
3
× [𝑒
1
𝑒
2
]𝑇 + 𝑒

2
(ℎ2𝑄
1
+ ℎ3𝑄

2
)

× 𝑒𝑇
2
+ ⟨2𝐹𝑇

1
[𝑒
5
𝑒
3
− 𝑒
4
]𝑇 + 4𝐹𝑇

2
[ℎ𝑒
3
− 𝑒
5
]𝑇

+ 6𝐹𝑇
3
[ℎ𝑒
3
− 𝑒
5
]𝑇 + 2𝐹𝑇

4
[𝑒
6
𝑒
1
− 𝑒
3
]𝑇

− 4𝐹𝑇
5
𝑒𝑇
6
− 6𝐹𝑇
6
𝑒𝑇
6
⟩
𝑠

+ 𝑒
7
(𝑆
1
+ 𝑆
2
) 𝑒𝑇
7

− (1 − ℎ
𝐷
) 𝑒
8
𝑆
1
𝑒𝑇
8
− 𝑒
9
𝑆
2
𝑒𝑇
9
+ 𝑒
2
(ℎ𝑆
5
+
ℎ2

2
𝑆
6
)

× 𝑒𝑇
2
− 2𝑒
1
𝑆
6
𝑒𝑇
1
+
4
ℎ
𝑒
1
𝑆
6
𝑒𝑇
5
+ 𝑒
7
𝑊𝑇
1
𝑇𝑇
4
𝑒𝑇
8

+ 𝑒
8
(𝑇
4
𝑊
2
+𝑊𝑇
2
𝑇𝑇
4
) 𝑒𝑇
8
+
4
ℎ
𝑒
1
× 𝑆
6
𝑒𝑇
6
+

4
ℎ2
𝑒
4
𝑆
5
𝑒𝑇
5

+
4
ℎ2
𝑒
4
𝑆
5
𝑒𝑇
6
−
2
ℎ
𝑒
4
𝑆
5
𝑒𝑇
4
− 𝑒
5
(
2
ℎ3
𝑆
5
+

2
ℎ2
𝑆
6
) 𝑒𝑇
5

− 𝑒
5
(
4
ℎ3
𝑆
5
+

4
ℎ2
𝑆
6
) 𝑒𝑇
6
− 𝑒
6
(
2
ℎ3
𝑆
5
+

2
ℎ2
𝑆
6
) 𝑒𝑇
6

+ 𝑒
7
(𝑟𝑆
7
+
𝑟2

2
𝑆
8
+
𝑙

∑
𝑖=1

(𝜌
𝑖
− 𝜌
𝑖−1
) 𝑟𝑍
𝑖
)𝑒𝑇
7

−
𝑙

∑
𝑖=1

1
(𝜌
𝑖
− 𝜌
𝑖−1
) 𝑟

𝑒
9+𝑖
𝑍
𝑖
𝑒𝑇
9+𝑖

−
1
𝑟
(𝑒
10
+ ⋅ ⋅ ⋅ + 𝑒

9+𝑙
)

× 𝑆
7
(𝑒
10
+ ⋅ ⋅ ⋅ + 𝑒

9+𝑙
)𝑇 −

2
𝑟2
𝑒
10+𝑙

𝑆
8
𝑒𝑇
10+𝑙

+ 𝑒
1
(Σ𝐾
1
− Σ𝐺
1
+ 𝐿
1
Σ) 𝑒𝑇
2
+ 2𝑒
2
(𝐺
1
− 𝐾
1
+ 𝐿
1
) 𝑒𝑇
7

+ 𝑒
1
(Σ𝑀
1
Σ −M

2
Σ
1
) 𝑒𝑇
1
+ 2𝑒
1
𝑀
2
Σ
2
𝑒𝑇
7
− 𝑒
3
𝑀
3
Σ
1
𝑒𝑇
3

+ 2𝑒
7
𝑇
3
𝑊
2
𝑒𝑇
8
+ 2𝑒
3
𝑀
3
Σ
2
𝑒𝑇
8
− 𝑒
7
(𝑀
1
+𝑀
2
) 𝑒𝑇
7

− 𝑒
8
𝑀
3
𝑒𝑇
8
− 𝑒
4
𝑀
4
Σ
1
𝑒𝑇
4
+ 2𝑒
4
𝑀
4
Σ
2
𝑒𝑇
9

+ 𝑒
2
(−𝑇
1
− 𝑇𝑇
1
) 𝑒𝑇
2
− 𝑒
9
𝑀
4
𝑒𝑇
9
− 2𝑒
1
𝑊𝑇
0
𝑇𝑇
1
𝑒𝑇
2

+ 2𝑒
2
𝑇
1
𝑊
1
𝑒𝑇
7
+ 2𝑒
2
𝑇
1
𝑊
2
𝑒𝑇
8
+ 2𝑒
2
𝑇
1
𝑊
3

× (𝑒
10
+ ⋅ ⋅ ⋅ + ẽ

9+𝑙
)𝑇 − 2𝑒

1
×𝑊𝑇
0
𝑇𝑇
4
𝑒𝑇
8
− 2𝑒
1
𝑇
2
𝑒𝑇
2

+ 𝑒
1
(−𝑇
2
𝑊
0
−𝑊𝑇
0
𝑇𝑇
2
) 𝑒𝑇
1
+ 2𝑒
1
𝑇
2
𝑊
1
𝑒𝑇
7

+ 2𝑒
1
𝑇
2
𝑊
2
𝑒𝑇
8
− 2𝑒
2
𝑇𝑇
4
𝑒𝑇
8
+ 2𝑒
1
𝑇
2
𝑊
3

× (𝑒
10
+ ⋅ ⋅ ⋅ + 𝑒

9+𝑙
)𝑇 − 2𝑒

2
𝑇𝑇
3
𝑒𝑇
7
− 2𝑒
1
𝑊𝑇
0
𝑇𝑇
3
𝑒𝑇
7

+ 𝑒
7
(𝑇
3
𝑊
1
+𝑊𝑇
1
𝑇𝑇
3
) 𝑒𝑇
7

+ 2𝑒
7
𝑇
3
𝑊
3
(𝑒
10
+ ⋅ ⋅ ⋅ + 𝑒

9+𝑙
)𝑇

+ 2𝑒
8
𝑇
4
𝑊
3
(𝑒
10
+ ⋅ ⋅ ⋅ + 𝑒

9+𝑙
)𝑇,

Π̃
1
= ⟨2 (𝑒

2
0) 𝑅
1
(𝑒
1
𝑒
0
)𝑇 − 4𝐹𝑇

2
𝑒𝑇
3

− 6𝐹𝑇
3
𝑒𝑇
3
+ 4𝐹𝑇
5
𝑒𝑇
1
+ 6𝐹𝑇
6
𝑒𝑇
1
⟩
𝑠

,

(55)

with

⟨⋅⟩
𝑠
=
1
2
[(⋅) + (⋅)𝑇] ,

𝑒
𝑖
= [0𝑛×(𝑖−1) 𝐼𝑛×𝑛 0

𝑛×(10+𝑙−𝑖)]
𝑇 (𝑖 = 1, . . . , 10 + 𝑙) .

(56)

Remark 14. When𝑊
3
= 0 and𝑊

4
= 0, the system (5) reduces

to

�̇� (𝑡) = −𝑊
0
𝑥 (𝑡) + 𝑊

1
𝑓 (𝑥 (𝑡)) + 𝑊

2
𝑓 (𝑥 (𝑡 − ℎ (𝑡))) . (57)

Similarly, based onTheorem 6, we can obtain the asymptoti-
cal stability for system (57) as follows.

Theorem 15. For given scalars ℎ > 0 and ℎ
𝐷
< 1, the system

(57) with the neuron activation function 𝑓(𝑥(𝑡)) satisfying the
condition (6) is asymptotically stable if there exists 𝑃 > 0, 𝑅𝑇

𝑖
=

𝑅
𝑖
> 0 (𝑖 = 1, 2, 3), 𝑄𝑇

𝑖
= 𝑄
𝑖
> 0 (𝑖 = 1, 2), 𝑆𝑇

𝑖
= 𝑆
𝑖
> 0 (𝑖 =

1, 2, 5, 6), diagonal matrices 𝐺
1
= diag{𝑔

𝑖1
, 𝑔
2
, . . . , 𝑔in} > 0,



12 Journal of Applied Mathematics

𝐾
1
= diag{𝑘

1
, 𝑘
2
, . . . , 𝑘

𝑛
} > 0, 𝐿

1
= diag{𝑙

1
, 𝑙
2
, . . . , 𝑙
𝑛
} > 0,

and 𝑀 = diag{𝑚
𝑖1
, 𝑚
𝑖2
, . . . , 𝑚in} > 0, (𝑖 = 1, 2, 3, 4), 𝑇

𝑖
(𝑖 =

1, . . . , 4) and 𝐹
𝑖
(𝑖 = 1, . . . , 6) with appropriate dimensions

such that the following symmetric linear matrix inequality
holds:

Ξ̆
1
=
[[[[[

[

Π̆
0

ℎ𝐹𝑇
1

ℎ𝐹𝑇
2

ℎ𝐹𝑇
3

∗ −ℎ𝑅
3

0 0
∗ ∗ −𝑄

1
0

∗ ∗ ∗ −
ℎ
3
𝑄
2

]]]]]

]

< 0, (58)

Ξ̆
2
=
[[[[[

[

Π̆
0
+ ℎΠ̆
1

ℎ𝐹𝑇
4

ℎ𝐹𝑇
5

ℎ𝐹𝑇
6

∗ −ℎ𝑅
3

0 0
∗ ∗ −𝑄

1
0

∗ ∗ ∗ −
ℎ
3
𝑄
2

]]]]]

]

< 0, (59)

where

Π̆
0
= ⟨2 [ ̆𝑒

1
̆𝑒
5
+ ̆𝑒
6
] 𝑃[𝑒
2

̆𝑒
1
− 𝑒
4
]𝑇 + 2 [ ̆𝑒

2
0] 𝑅
1
[0 𝑒
6
]𝑇

+ 2 [ ̆𝑒
2
0] 𝑅
2
[ℎ ̆𝑒
1

̆𝑒
5
+ ̆𝑒
6
]𝑇⟩
𝑠

+ [ ̆𝑒
1
𝑒
1
]

× (𝑅
1
+ 𝑅
2
) [ ̆𝑒
1

̆𝑒
1
]𝑇 − (1 − ℎ

𝐷
) [ ̆𝑒
1

̆𝑒
3
] 𝑅
1
[ ̆𝑒
1

̆𝑒
3
]𝑇

− [ ̆𝑒
1

̆𝑒
4
] 𝑅
2
[ ̆𝑒
1

̆𝑒
4
]𝑇 + ℎ [ ̆𝑒

1
̆𝑒
2
] 𝑅
3

× [ ̆𝑒
1

̆𝑒
2
]𝑇 + ̆𝑒

2
(ℎ2𝑄
1
+ ℎ3𝑄

2
) 𝑒𝑇
2

+ ⟨2𝐹𝑇
1
[ ̆𝑒
5

̆𝑒
3
− ̆𝑒
4
]𝑇 + 4𝐹𝑇

2
[ℎ ̆𝑒
3
− ̆𝑒
5
]𝑇

+ 6𝐹𝑇
3
[ℎ ̆𝑒
3
− ̆𝑒
5
]𝑇 + 2𝐹𝑇

4
[ ̆𝑒
6

̆𝑒
1
− ̆𝑒
3
]𝑇

− 4𝐹𝑇
5

̆𝑒𝑇
6
− 6𝐹𝑇
6

̆𝑒𝑇
6
⟩
𝑠
+ ̆𝑒
7
(𝑆
1
+ 𝑆
2
) ̆𝑒𝑇
7

− (1 − ℎ
𝐷
) ̆𝑒
8
𝑆
1
̆𝑒𝑇
8
− ̆𝑒
9
𝑆
2
̆𝑒𝑇
9
+ ̆𝑒
2
(ℎ𝑆
5
+
ℎ2

2
𝑆
6
) ̆𝑒𝑇
2

− 2 ̆𝑒
1
𝑆
6
̆𝑒𝑇
1
+
2
ℎ

̆𝑒
1
𝑆
6
̆𝑒𝑇
5
+
2
ℎ

̆𝑒
1
𝑆
6
̆𝑒𝑇
6
+

2
ℎ2

̆𝑒
4
𝑆
5
̆𝑒𝑇
5

+
2
ℎ2

̆𝑒
4
𝑆
5
̆𝑒𝑇
6
−
2
ℎ

̆𝑒
4
𝑆
5
̆𝑒𝑇
4
− ̆𝑒
5
(
2
ℎ3
𝑆
5
+

2
ℎ2
𝑆
6
) ̆𝑒𝑇
5

− ̆𝑒
5
(
2
ℎ3
𝑆
5
+

2
ℎ2
𝑆
6
) ̆𝑒𝑇
6
− ̆𝑒
6
(
2
ℎ3
𝑆
5
+

2
ℎ2
𝑆
6
) ̆𝑒𝑇
6

+ 2 ̆𝑒
2
(𝐺
1
− 𝐾
1
+ 𝐿
1
) ̆𝑒𝑇
7
+ ̆𝑒
1
(Σ𝐾
1
− Σ𝐺
1
+ 𝐿
1
Σ) ̆𝑒𝑇
2

+ ̆𝑒
1
(Σ𝑀
1
Σ −𝑀

2
Σ
1
) ̆𝑒𝑇
1
+ 2 ̆𝑒
1
𝑀
2
Σ
2
̆𝑒𝑇
7
− ̆𝑒
3
𝑀
3
Σ
1
̆𝑒𝑇
3

+ 2 ̆𝑒
3
𝑀
3
Σ
2
𝑒𝑇
8
− ̆𝑒
7
(𝑀
1
+𝑀
2
) ̆𝑒𝑇
7

− ̆𝑒
8
𝑀
3
̆𝑒𝑇
8
− ̆𝑒
4
𝑀
4
Σ
1
̆𝑒𝑇
4
+ 2 ̆𝑒
4
𝑀
4
Σ
2
𝑒𝑇
9

+ ̆𝑒
2
(−𝑇
1
− 𝑇𝑇
1
) ̆𝑒𝑇
2
− ̆𝑒
9
𝑀
4
̆𝑒𝑇
9
− 2 ̆𝑒
1
𝑊𝑇
0
𝑇𝑇
1

̆𝑒𝑇
2

+ 2 ̆𝑒
2
𝑇
1
𝑊
1
̆𝑒𝑇
7
+ 2 ̆𝑒
2
𝑇
1
𝑊
2
̆𝑒𝑇
8
− 2𝑒
1
𝑇
2
̆𝑒𝑇
2

+ ̆𝑒
1
(−𝑇
2
𝑊
0
−𝑊𝑇
0
𝑇𝑇
2
) ̆𝑒𝑇
1
+ 2 ̆𝑒
1
𝑇
2
𝑊
2
̆𝑒𝑇
8

− 2 ̆𝑒
2
𝑇𝑇
3

̆𝑒𝑇
7
− 2 ̆𝑒
1
𝑊𝑇
0
𝑇𝑇
3

̆𝑒𝑇
7
+ 2 ̆𝑒
7
𝑇
3
𝑊
2
̆𝑒𝑇
8

+ ̆𝑒
7
(𝑇
3
𝑊
1
+𝑊𝑇
1
𝑇𝑇
3
) ̆𝑒𝑇
7
− 2 ̆𝑒
2
𝑇𝑇
4

̆𝑒𝑇
8

− 2 ̆𝑒
1
𝑊𝑇
0
𝑇𝑇
4

̆𝑒𝑇
8
+ ̆𝑒
7
𝑊𝑇
1
𝑇𝑇
4

̆𝑒𝑇
8

+ ̆𝑒
8
(𝑇
4
𝑊
2
+𝑊𝑇
2
𝑇𝑇
4
) ̆𝑒𝑇
8
+ 2 ̆𝑒
1
𝑇
2
𝑊
1
̆𝑒𝑇
7
,

Π̂
1
=⟨2 (𝑒

2
0) 𝑅
1
(𝑒
1
0)𝑇 − 4𝐹𝑇

2
𝑒𝑇
3
− 6𝐹𝑇
3
𝑒𝑇
3

+ 4𝐹𝑇
5
𝑒𝑇
1
+ 6𝐹𝑇
6
𝑒𝑇
1
⟩
𝑠

,
(60)

with

⟨⋅⟩
𝑠
=
1
2
[(⋅) + (⋅)𝑇] ,

𝑒
𝑖
= [0𝑛×(𝑖−1) 𝐼

𝑛×𝑛
0
𝑛×(9𝑖)]

𝑇 (𝑖 = 1, . . . , 9) .
(61)

4. Numerical Examples

In this section, four numerical examples are given to show the
effectiveness and improvement of the main results proposed
in the paper.

Example 1. Consider the following neural networks of neu-
tral type with discrete and distributed delays:

�̇� (𝑡) = −𝑊
0
𝑥 (𝑡) + 𝑊

1
𝑓 (𝑥 (𝑡)) + 𝑊

2
𝑓 (𝑥 (𝑡 − ℎ (𝑡)))

+ 𝑊
3
∫
𝑡

𝑡−𝑟

𝑓𝑇 (𝑥 (𝑠)) 𝑑𝑠 + 𝑊
4
�̇� (𝑡 − ℎ (𝑡)) ,

(62)

where

𝑊
1
=
[[[

[

−2.5573 −1.3813 1.9574 −1.1398
−1.0226 −0.8845 0.5045 −0.2111
1.0378 1.5532 0.6645 1.1902
−0.3896 0.7079 −0.3398 −2.2543

]]]

]

,

𝑊
2
=
[[[

[

0.2853 −0.0793 0.4694 0.5354
−0.5955 1.3352 −0.9036 0.5529
−0.1497 −0.6065 −0.1641 −0.2037
−0.4348 −1.3474 −0.6275 −2.2543

]]]

]

,

𝑊
3
=
[[[

[

0.0265 0.1157 0.0578 −0.0930
0.3186 −0.1363 −0.0859 0.0742
0.2037 −0.2049 0.0112 0.1457
−0.3161 −0.2469 −0.0736 −2.2543

]]]

]

,

𝑊
4
=
[[[

[

−0.3054 0.3682 0.1761 −0.0235
−0.0546 −0.2089 −0.0754 0.2668
0.4563 0.0023 0.1440 0.6928
−0.0115 −0.2349 0.2004 0.1574

]]]

]

,

𝑊
0
= diag {1.6305, 1.9221, 2.5973, 1.3775} ,

Σ = diag {1.0275, 0.9960, 0.3223, 0.2113} ,

Σ = diag {0, 0, 0, 0} .

(63)
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Table 1: Maximum allowable time-delay bounds ℎ = 𝑟 in Example 1.

ℎ
𝐷
= 0 [32] (𝑚 = 𝑙 = 2) [39] (𝑚 = 𝑙 = 3) [39] (𝑙 = 2) Theorem 6 (𝑙 = 3) Theorem 6

ℎ = 𝑟 1.8630 2.7442 3.0942 4.6531 4.8652

Table 2: Maximum allowable time-delay bounds ℎ = 𝑟 for different values ℎ
𝐷
in Example 1.

ℎ
𝐷

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Theorem 6 (𝑙 = 2) 4.3682 4.1238 3.9862 3.6782 3.5132 3.1230 2.8623 2.5219 1.6725
Theorem 6 (𝑙 = 3) 4.5132 4.2685 4.1032 3.8658 3.7216 3.3275 2.9273 2.6312 1.7321
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x
(
t
)

t

Figure 1:The simulation of Example 1 for ℎ = 𝑟 = 4.8652, where the
initial value is [−3, −2, 2, 3]𝑇, ℎ

𝐷
= 0, 𝑙 = 3.

FromTable 1, it can be seen that the stability criterion pro-
posed in the paper is less conservative than those obtained by
Feng et al. in [32] and Lakshmanan et al. in [39]. Besides, from
Tables 1 and 2, the maximum allowable time-delay bounds
ℎ will become larger with the values of 𝑙 becoming larger.
Moreover, Figures 1 and 2 show that the state vector 𝑥(𝑡)
stabilizes to zero asymptotically with different ℎ

𝐷
and initial

values. By using the Matlab LMI toolbox, we solve LMIs (13)
and (14) for the case ℎ

𝐷
= 0 and ℎ = 4.6531 and obtain

𝑃
11
=
[[[

[

0.0048 −0.0009 0.0017 −0.0003
−0.0009 0.0072 −0.0010 0.0004
0.0017 −0.0010 0.0045 −0.0009
−0.0003 0.0004 −0.0009 0.0042

]]]

]

,

𝑅
211

=
[[[

[

0.0022 −0.0012 0.0013 −0.0004
−0.0012 0.0043 −0.0013 0.0006
0.0013 −0.0013 0.0021 −0.0007
−0.0004 0.0006 −0.0007 0.0015

]]]

]

,

𝑅
222

=
[[[

[

0.0063 −0.0006 0.0011 −0.0007
−0.0006 0.0085 −0.0015 0.0006
0.0011 −0.0015 0.0050 −0.0010
−0.0007 0.0006 −0.0010 0.0034

]]]

]

,

𝑅
311

=
[[[

[

0.0030 −0.0004 0.0006 −0.0005
−0.0004 0.0041 −0.0009 0.0004
0.0006 −0.0009 0.0026 −0.0006
−0.0005 0.0004 −0.0006 0.0018

]]]

]

,

𝑍
1
=
[[[

[

0.0307 −0.0024 −0.0035 −0.0050
−0.0024 0.0181 0.0044 −0.0137
−0.0035 0.0044 0.0136 −0.0027
−0.0050 −0.0137 −0.0027 0.0302

]]]

]

,

𝑍
2
=
[[[

[

0.0022 −0.0000 −0.0003 0.0005
−0.0000 0.0017 −0.0000 −0.0001
−0.0003 −0.0000 0.0026 0.0010
0.0005 −0.0001 0.0010 0.0045

]]]

]

,

𝑆
1
=
[[[

[

0.0065 0.0033 0.0006 −0.0023
0.0033 0.0058 0.0017 −0.0031
0.0006 0.0017 0.0049 −0.0010
−0.0023 −0.0031 −0.0010 0.0073

]]]

]

,

𝑆
2
=
[[[

[

0.0066 −0.0003 −0.0016 0.0010
−0.0003 0.0049 0.0006 −0.0003
−0.0016 0.0006 0.0052 0.0011
0.0010 −0.0003 0.0011 0.0063

]]]

]

,

𝑇
1
=
[[[

[

0.0087 −0.0039 0.0032 −0.0014
−0.0037 0.0144 −0.0017 0.0021
0.0030 −0.0016 0.0061 −0.0009
−0.0007 0.0012 −0.0017 0.0092

]]]

]

,

𝑇
2
=
[[[

[

0.0131 −0.0008 0.0044 −0.0002
−0.0043 0.0237 −0.0074 0.0003
−0.0012 0.0029 0.0099 −0.0003
−0.0016 0.0014 −0.0025 0.0086

]]]

]

.

(64)

Example 2. Using this example, we will show the improve-
ment of our results for (52) by two cases (A) and (B). Consider
the following parameters as in [32, 39]:

Case A

𝑊
0
= [

[

6 0 0
0 5 0
0 0 7

]

]
,

𝑊
1
= [

[

1.2 −0.8 0.6
0.5 −1.5 0.7
−0.8 −1.2 −1.4

]

]
,
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Table 3: Maximum allowable time-delay upper bounds ℎ = 𝑟 for ℎ
𝐷
= 0 in Example 2.

ℎ
𝐷
= 0 [9] [45] [46] [12] [21] [39] Theorem 13

Case A 4.3163 4.4697 4.3324 4.8374 4.4879 4.3763 4.9532
Case B 2.8266 2.9137 2.8317 2.7953 6.8279 7.2368 7.8698
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Figure 2: The simulation of Example 1 for ℎ = 𝑟 = 4.5312, where
the initial value is [−0.8, −0.6, 0.4, 0.8]𝑇, ℎ

𝐷
= 0.1, 𝑙 = 3.

𝑊
2
= [

[

−1.4 0.9 0.5
−0.6 1.2 0.8
0.5 −0.7 1.1

]

]
,

𝑊
3
= [

[

−1.8 0.7 −0.8
0.6 1.4 1
−0.4 −0.6 1.2

]

]
,

Σ = [

[

0.5 0 0
0 0.5 0
0 0 0.5

]

]
, Σ = [

[

0 0 0
0 0 0
0 0 0

]

]
.

(65)

Case B

𝑊
0
= [0.9 0

0 0.8] , 𝑊
1
= [ 1 −1.7

−1.6 1 ] ,

𝑊
2
= [ 1 0.6

0.5 0.8] , 𝑊
3
= [0.4 0.3

0.1 0.2] ,

Σ = [0.25 0
0 0.25] , Σ = [0 0

0 0] .

(66)

For the above two Cases A and B of numerical examples,
the maximum allowable upper bounds for guaranteeing the
asymptotical stability of the corresponding systems obtained
from Theorem 13 are listed in Table 3. Table 3 clearly shows
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x2(t)
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Figure 3:The simulation of Example 2 of Case A for ℎ = 𝑟 = 4.9532,
where the initial value is [−0.2, 0.5, −0.4]𝑇, ℎ

𝐷
= 0.

that our results have larger improvement over those results
of previous literature. In Case A, when ℎ

𝐷
= 0, ℎ = 𝑟,

the simulation result is given as Figure 3, which implies that
under the given conditions, the state vector 𝑥(𝑡) stabilizes to
zero asymptotically.

Example 3. Consider the following delayed neural network
given in (47) with parameters:

𝑊
0
= [2 0

0 2] , 𝑊
1
= [1.6 0.3

0.3 0.5] ,

𝑊
2
= [0.2 0.1

0.1 0.2] , 𝑊
4
= [0.15 0

0 0.15] ,

Σ = [1 0
0 1] , Σ = [0 0

0 0] .

(67)

The corresponding results for maximum allowable upper
bounds of the time-varying delay ℎ(𝑡) are given in Table 4.
From Table 4, it can be clearly seen that the maximum
allowable time-delay bounds ℎ will become small with the
values of ℎ

𝐷
becoming large. Furthermore, when ℎ

𝐷
= 0.1,

the state trajectories of the system (47) are shown in Figure 4.

Example 4. In this Example, we give four Cases (A)–(C) that
show the potential benefits and effectiveness of the developed
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Table 4: Maximum allowable time delay bounds ℎ for different values ℎ
𝐷
in Example 3.

ℎ
𝐷

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Theorem 11 9.0123 8.6789 8.4245 8.1237 7.9028 7.4532 7.1279 6.8325 6.0142
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Figure 4: The simulation of Example 3 for ℎ = 𝑟 = 9.0123, where
the initial value is [−3, 3]𝑇, ℎ

𝐷
= 0.1.

method for delayed neural networks. Consider the delayed
system (57) with the following parameters:

Case A

𝑊
1
=
[[[

[

−0.0373 0.4852 −0.3351 0.2336
−1.6033 0.5988 −0.3224 1.2352
0.3394 −0.0860 −0.3824 −0.5785
−0.1311 0.3253 −0.9534 −0.5015

]]]

]

,

𝑊
2
=
[[[

[

0.8674 −1.2405 −0.5325 0.0220
0.0474 −0.9164 0.0360 0.9816
1.8495 2.6117 −0.3788 0.8428
−2.0413 0.5179 1.1734 −0.2775

]]]

]

,

𝑊
0
= diag {1.2769, 0.6231, 0.9230, 0.4480} ,

Σ = diag {0.1137, 0.1279, 0.7994, 0.2368} ,

Σ = diag {0, 0, 0, 0} .

(68)

Case B

𝑊
1
= [0.0530 0.0454

0.0987 0.2750] ,

𝑊
2
= [0.2381 0.9320

0.0388 0.5062] ,

𝑊
0
= diag {1.5, 0.7} , Σ = diag {0.3, 0.8} ,

Σ = diag {0, 0} .

(69)

Table 5: Maximum allowable upper bounds ℎ for different ℎ
𝐷
in

Case A.

ℎ
𝐷

0.1 0.5 0.9
[36] 3.27 2.15 1.31
[37] 3.27 2.22 1.58
[38] 3.30 2.53 2.08
[47] 3.35 2.59 2.13
[48] 3.75 2.73 2.27
[49] 3.70 3.12 2.59
[50] 3.91 2.79 2.33
[42] 4.21 3.15 2.91
Theorem 15 5.19 3.92 3.36

Table 6: Maximum allowable time-delay upper bounds ℎ in Case B.

ℎ
𝐷
= 0 0.4 0.45 0.5 0.55

[36] 3.99 3.27 3.05 2.98
[48] 4.38 3.60 3.33 3.23
[49] (𝑚 = 2) 4.39 3.67 3.46 3.41
[19] 4.4801 4.0626 3.8083 3.7064
[18] (𝑚 = 2) 5.2420 4.4301 4.1055 3.9231
Theorem 1 in [51] 5.0588 4.2603 4.0604 4.0185
Theorem 2 in [51] 5.3079 4.5267 4.2924 4.1903
Corollary 1 in [51] 9.7094 7.7523 6.8570 6.2977
Theorem 15 10.2358 8.8378 7.9531 7.4532

Case C

𝑊
1
= [ 1 1

−1 −1] , 𝑊
2
= [0.88 1

1 1] ,

𝑊
0
= {2, 2} , Σ = diag {0.4, 0.8} ,

Σ = diag {0, 0} .

(70)

FromTables 5, 6, and 7, it is clearly shown thatTheorem 15
is less conservative than those in the mentioned literature.
In Case A, when ℎ

𝐷
= 0.1, the simulation result is given as

Figure 5, which implies that under the given conditions, the
state vector 𝑥(𝑡) stabilizes to zero asymptotically. Hence, this
example indicates fully that themethodproposed in the paper
plays a major role in reducing conservatism.

Finally, we provide the number of decision variables
involved in the LIM in each of the Theorems 6–15 in
Table 8.

5. Conclusions

This paper is concerned with the stability analysis of neutral
type neural networks with mixed time-varying delays. Some
improved delay-dependent stability results are established by
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Table 7: Maximum allowable time-delay bounds ℎ for different values ℎ
𝐷
in Case C.

Method [52] [48] [53] [42] [54] Theorem 15
ℎ
𝐷
= 0.8 2.3571 2.8854 2.9144 3.1409 4.1626 6.9785

ℎ
𝐷
= 0.9 1.6050 1.9631 1.9095 1.6375 3.9766 6.3457

Table 8: Number of decision variables involved in the stability criteria.

Method Number of decision variables Method Number of decision variables
Theorem 6 [(12 + 𝑙)2 + 8 (12 + 𝑙) + 6]𝑛2 + (16 + 𝑙)𝑛 Theorem 11 215𝑛2 + 15𝑛
Theorem 13 [(10 + 𝑙)2 + 8 (10 + 𝑙) + 6]𝑛2 + (14 + 𝑙)𝑛 Theorem 15 159𝑛2 + 13𝑛
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Figure 5:The simulation of Example 4 for ℎ = 5.19, where the initial
value is [−0.2, 0.5, −0.4, 0.2]𝑇, ℎ

𝐷
= 0.1.

using a novel approach for the networks. Improved delay-
dependent stability criteria in terms of linearmatrix inequali-
ties (LMIs) are derived by employing a new type of Lyapunov-
Krasovskii functionals with three and four integral terms.
Different from previous results by using the first-order
convex combination property, our derivation applies the idea
of second-order convex combination and the property of
quadratic convex function. obtained results are formulated
in terms of linear matrix inequalities (LMIs). Numerical
examples are given to illustrate the effectiveness and the
advantage of the proposed main results.
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