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The aim of this paper is to give a complete and practical method for numerical application of Padé approximation with the help of
the 𝑐-table analysis. We present an exhaustive list of useful formulas to compute a 𝑐-table related to a formal power series 𝐶(𝑧) =
∑
∞

𝑛=0
𝑐
𝑛
𝑧
𝑛. Some of these formulas are not widely known, because they were presented in publications of limited circulation. Some

others were never published, as three symmetric Paszkowski-like formulas to overcome the blocks in a 𝑐-table or an extension of
local error formula for Padé approximants in the blocks. All formulas are given in two versions: in terms of Toeplitz determinants
(𝑐-table) and in the version of Hankel determinants (𝑐-table). We compare the theory with numerical observations by reproducing
different computational aspects of software producing the 𝑐-tables with the presence of blocks and their evolution following the
evolution of computer environment.

1. Introduction

The Padé approximation method is largely used to solve
many problems of numerical analysis such as the convergence
acceleration, analytic continuation of complex functions,
moment problems, and numerical integration [1–3] and, in
general, to approximate functions of the complex variable
represented by a truncated power series and the detection
of their zeros and poles. This method is also commonly
applied to solve numerous problems in physicalmodeling [4].
We can find some historical background and fundamental
concepts of this method in [5] and the recently published
book by Trefethen [6]. In [7] the authors present themethods
used to construct matrix Padé approximants if the coefficient
matrices of the input matrix polynomial are triangular. The
extended Euclidean algorithm is applied to solve this prob-
lem. The application of Padé approximants in computational
problems starts frequently by the computation of the auxiliary
table, called 𝑐-table [8]. The entries of 𝑐-table are the Toeplitz
determinants of matrices of linear systems defining the
denominators of Padé approximants. The square blocks of
zeros in the 𝑐-table indicate the existence of corresponding
blocks in the table of Padé approximants. The so-called

valleys in the 𝑐-table are the lines of minimal absolute values
of entries, which indicate the lines of best Padé approximants
(BPA) in the Padé table [9]. Because the computation of the
𝑐-table is simpler, it is recommended to begin by this com-
putation to obtain global preliminary information about the
interesting Padé approximants before their own calculations.

Let us recall some definitions and results related to Padé
approximation.

Let

𝐶 (𝑧) =

∞

∑

𝑛=0

𝑐
𝑛
𝑧
𝑛

, 𝑐
0

̸= 0 (1)

be a formal power series of a function𝑓. It can be aMaclaurin
series of an analytic function at 𝑧 = 0 or an asymptotic series,
such as a Stieltjes series having a zero radius of convergence
[10, 11].

Definition 1. Let

{

𝑚

𝑛

} (𝑧) =

𝑃
𝑚
(𝑧)

𝑄
𝑛
(𝑧)

=

𝑝
0
+ 𝑝
1
𝑧 + ⋅ ⋅ ⋅ + 𝑝

𝑚
𝑧
𝑚

𝑞
0
+ 𝑞
1
𝑧 + ⋅ ⋅ ⋅ + 𝑞

𝑛
𝑧
𝑛
,

deg𝑃
𝑚
≤ 𝑚, deg𝑄

𝑛
≤ 𝑛

(2)
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Table 1

m n
0 1 2 ⋅ ⋅ ⋅

0 {0/0} {0/1} {0/2} ⋅ ⋅ ⋅

1 {1/0} {1/1} ⋅ ⋅ ⋅

2 {2/0} ⋅ ⋅ ⋅

...
...

denote in general a rational function. The Padé table (𝑝-
table) of the formal power series (1) is a doubly infinite
array of irreducible rational functions {𝑚/𝑛} called reduced
Padé forms, determined in such a manner that the Maclaurin
expansion of {𝑚/𝑛} agrees with 𝐶(𝑧) as far as possible.

The first column in Table 1 contains the truncated series
(1). Because a reduced Padé form can be normalized by
dividing all coefficients by one coefficient ̸= 0, then {𝑚/𝑛}

contains only𝑚+𝑛+1 unknownswhich can be determined by
𝑚+𝑛+1 first coefficients of𝐶(𝑧) or, equivalently, by𝑚+𝑛+1

first derivatives of 𝑓 at 𝑧 = 0:

{

𝑚

𝑛

} (0) = 𝑓 (0) , (3)

{

𝑚

𝑛

}



(0) = 𝑓


(0) , . . . , {

𝑚

𝑛

}

(𝑚+𝑛)

(0) = 𝑓
(𝑚+𝑛)

(0) .

(4)

This is usually expressed by the condition

𝑓 (𝑧) −

𝑃
𝑚
(𝑧)

𝑄
𝑛
(𝑧)

= 𝑂 (𝑧
𝑚+𝑛+1

) (5)

which means that the power series expansion of 𝑃
𝑚
(𝑧)/𝑄

𝑛
(𝑧)

matches the power series expansion of 𝑓 at 𝑧 = 0 at least up
to the power𝑚 + 𝑛.

Definition 2 (see Gilewicz [11, page 171]). If the reduced Padé
form {𝑚/𝑛} satisfies (5), then it is a Padé approximant and is
denoted by [𝑚/𝑛]: {𝑚/𝑛} ≡ [𝑚/𝑛].

Definition 3. Thepower series and associated 𝑝-table are said
to be normal if every element of the table is different from any
other element. Each Padé approximant [𝑚/𝑛] reproduces the
series 𝐶(𝑧) exactly up to the term in 𝑧𝑚+𝑛.

Multiplying (5) by 𝑄
𝑛
we obtain

𝑄
𝑛
(𝑧) 𝑓 (𝑧) − 𝑃

𝑚
(𝑧) = 𝑂 (𝑧

𝑚+𝑛+1

) (6)

which leads to the separated linear system for the coefficients
𝑞
𝑗
and 𝑝

𝑗
(𝑐
𝑖
≡ 0 if 𝑖 < 0):

−𝑝
𝑘
+

𝑛

∑

𝑗=0

𝑐
𝑘−𝑗
𝑞
𝑗
= 0 𝑘 = 0, 1, . . . , 𝑚, (7)

𝑛

∑

𝑗=0

𝑐
𝑘−𝑗
𝑞
𝑗
= 0 𝑘 = 𝑚 + 1, . . . , 𝑚 + 𝑛. (8)

The system (8) of 𝑛 equations for (𝑛 + 1) unknowns 𝑞
𝑗

always a nontrivial solution (Frobenius) which determines
the reduced Padé form. Let us note that (6) is equivalent to
(5) only if 𝑄

𝑛
is reversible, that is, if 𝑄

𝑛
(0) ̸= 0. Following this

remark Baker presented an equivalent definition of the Padé
approximant as follows.

Definition 4 (see Baker [10, page 5]). The Padé approximant
is a solution of linear systems (8) and (7) with the condition
𝑄
𝑛
(0) = 𝑞

0
= 1 (𝑐
𝑖
≡ 0 if 𝑖 < 0):

−𝑝
𝑘
+

𝑛

∑

𝑗=1

𝑐
𝑘−𝑗
𝑞
𝑗
= −𝑐
𝑘

𝑘 = 0, 1, . . . , 𝑚, (9)

𝑛

∑

𝑗=1

𝑐
𝑘−𝑗
𝑞
𝑗
= −𝑐
𝑘

𝑘 = 𝑚 + 1, . . . , 𝑚 + 𝑛. (10)

The power series converges only inside the convergence
circle; the Padé approximants reproduce zeros and poles
of meromorphic functions and give a good approximation
of these functions also outside the circle of convergence.
Moreover, in particular cases where the series represents a
rational function, the Padé approximant method finds this
function automatically. In other cases the BPA algorithms
allow finding excellent approximations. Padé approximant is
the best local rational approximation of 𝑓 in the vicinity of
the point of expansion of 𝑓 in the power series. Of course, we
are not limited by the point 𝑧 = 0 and if we are interested in
other regions inC we can compute the Padé approximants at
arbitrary point 𝑧

0
of analyticity of 𝑓 knowing the coefficients

of the series ∑𝑎
𝑗
(𝑧 − 𝑧

0
)
𝑗.

A determinant of the matrix of the system (10) is the
Toeplitz determinant:

𝑚 ≥ 0, 𝑛 ≥ 1: 𝐶
𝑚

𝑛
=





















𝑐
𝑚

𝑐
𝑚−1

. . . 𝑐
𝑚−𝑛+1

𝑐
𝑚+1

. . . . .

⋅ . . . . .

. . . . . .

𝑐
𝑚+𝑛−1

. . . . 𝑐
𝑚





















, (11)

where we put 𝑐
𝑘
≡ 0 if 𝑘 < 0. Defining 𝐶𝑚

0
:= 1 we can build

an infinite table of 𝐶𝑚
𝑛
’s, called 𝑐-table.

The second column of Table 2 contains the coefficients
of the power series 𝐶𝑚

1
= 𝑐
𝑚
. The first row contains the

powers of 𝑐
0
, 𝐶0
𝑛
= (𝑐
0
)
𝑛 and the second row can be computed

recursively by expanding 𝐶1
𝑛
:

𝐶
1

𝑛
=

𝑛

∑

𝑗=1

(−𝑐
0
)
𝑗−1

𝑐
𝑗
𝐶
1

𝑛−𝑗
. (12)

The 𝑐-table was first introduced by Gragg [8]. Baker [10] used
an alternative definition permuting rows in (11), calling the
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Table 2

𝑚

n
𝑚

n
0 1 2 3 ⋅ ⋅ ⋅ 0 1 2 ⋅ ⋅ ⋅

0 1 𝑐
0

(𝑐
0
)
2

(𝑐
0
)
3

⋅ ⋅ ⋅ 0 𝐶
0

0
𝐶
0

1
𝐶
0

2
⋅ ⋅ ⋅

1 1 𝑐
1

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ≡ 1 𝐶
1

0
𝐶
1

1
𝐶
1

2
⋅ ⋅ ⋅

2 1 𝑐
2

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 𝐶
2

0
𝐶
2

1
𝐶
2

2
⋅ ⋅ ⋅

... ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

... ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

resulting Hankel determinants 𝐶(𝑚/𝑛) and the correspond-
ing table a 𝑐-table. An obvious relation between 𝐶(𝑚/𝑛) and
𝐶
𝑚

𝑛
is

𝐶
𝑚

𝑛
= (−1)

𝑛(𝑛−1)/2

𝐶(

𝑚

𝑛

) ,

𝐶 (

𝑚

𝑛

) =





















𝑐
𝑚−𝑛+1

. . . . 𝑐
𝑚

𝑐
𝑚−𝑛+2

. . . . 𝑐
𝑚+1

. . . . . .

. . . . . .

𝑐
𝑚

. . . . 𝑐
𝑚+𝑛−1





















.

(13)

Interest in the 𝑐-table is due to its direct relation to the Padé
table [8, 11] and to the particular ease of its computation.The
𝑐-table contains information about the block structure of the
Padé table. Each square block of zeros in the 𝑐-table defines a
corresponding block in the Padé table. Moreover, a dominant
term of the error of Padé approximant located outside a block
is given by a ratio of two Toeplitz determinants:

𝑓 (𝑧) −

𝑃
𝑚
(𝑧)

𝑄
𝑛
(𝑧)

= (−1)
𝑛
𝐶
𝑚+1

𝑛+1

𝐶
𝑛

𝑚

𝑧
𝑚+𝑛+1

+ ⋅ ⋅ ⋅ . (14)

A theory of valleys in the 𝑐-table [9] leading to a numerical
algorithm of choice of the best Padé approximant [11] is based
on property (14).

In general a 𝑝-table presents a square block structure. We
denote by (𝑚, 𝑛; 𝑘) a 𝑘 × 𝑘 square block of all equal entries
with a west-north corner {𝑚/𝑛}. In each block

∀𝑖, 𝑗 < 𝑘: {𝑚 +

𝑖

𝑛

+ 𝑗}

𝑖+𝑗≤𝑘−1

= [

𝑚

𝑛

] (15)

are Padé approximants and satisfy

𝑓 (𝑧) − [

𝑚

𝑛

] (𝑧) = 𝑂 (𝑧
𝑚+𝑛+𝑘

) , (16)

but the reduced forms located under the antidiagonal of a
block are not Padé approximants:

∀𝑖, 𝑗 < 𝑘: {𝑚 +

𝑖

𝑛

+ 𝑗}

𝑖+𝑗≥𝑘

̸= [

𝑚

𝑛

] (17)

because (𝑚+𝑖)+(𝑛+𝑗)+1 > 𝑚+𝑛+𝑘 (see (16)). If the 𝑝-table
presents a (𝑚, 𝑛; 𝑘) block, the 𝑐-table presents a (𝑘 − 1) × (𝑘 −
1) block of zeros with the west-north corner on the position
(𝑚+1), (𝑛+1). Now the following property becomes evident.

Property 1. The 𝑝-table is normal if all 𝐶𝑚
𝑛

̸= 0.

Let us complete the error formula (14) by the correspond-
ing formula for [𝑚/𝑛] belonging to the block (𝑚, 𝑛; 𝑘):

𝑓 (𝑧) − [

𝑚

𝑛

] (𝑧) = 𝑟𝑧
𝑚+𝑛+𝑘

+ ⋅ ⋅ ⋅ , (18)

where

𝑟 =

𝐶
𝑚+𝑘

𝑛+1

𝐶
𝑚+𝑘−1

𝑛

(−1)
𝑛

=

𝐶
𝑚+1

𝑛+𝑘

𝐶
𝑚

𝑛+𝑘−1

(−1)
𝑛+𝑘−1

=

𝐶 (𝑚 + 𝑘/𝑛 + 1)

𝐶 (𝑚 + 𝑘 − 1/𝑛)

=

𝐶 (𝑚 + 1/𝑛 + 𝑘)

𝐶 (𝑚/𝑛 + 𝑘 − 1)

.

(19)

This formula given in [10, 12] is given here in terms of Toeplitz
and Hankel determinants. An extension of representations of
𝑟 using other determinants around the zeros block in the 𝑐-
table will be presented in the next section.

The existence of an infinite block (𝑚, 𝑛;∞)means that the
series 𝐶(𝑧) represents a rational function [𝑚/𝑛]. If a 𝑝-table
presents a block (𝑚, 𝑛; 𝑘), then the [𝑚/𝑛] Padé approximant
computed with 𝑚 + 𝑛 + 1 coefficients 𝑐

0
, 𝑐
1
, . . . , 𝑐

𝑚+𝑛
located

on the antidiagonal 𝑚 + 𝑛 = const in the 𝑝-table is
clearly the best Padé approximant (BPA) on this antidiagonal,
because it is the only approximant which reproduces exactly
the series 𝐶(𝑧) up to the power 𝑧

𝑚+𝑛+𝑘−1. A number of
algorithms of choice of BPA are presented in [11].The detailed
modern theory of Padé approximants and the exhaustive list
of algorithms of their calculation are presented in [10, 11].The
entries of 𝑝-table can be calculated directly by solving the
linear system (10) ((9) is restricted only to the substitutions)
or by more efficient recursive algorithms adapted to the
Toeplitz systems. One of these is based on theWynn formula

𝑁

𝑊 𝐶 𝐸

𝑆

1

𝑊 − 𝐶

+

1

𝐸 − 𝐶

=

1

𝑁 − 𝐶

+

1

𝑆 − 𝐶

(20)

which permits computing the 𝐸 elements from four others
(ascending algorithm). This method is too laborious and so
it is simpler to discover the block structure of the 𝑝-table
by analyzing the block structure of the 𝑐-table. In numerical
practice we are always interested in BPA and amore rapidway
to determine the position of BPA passes through the analysis
of the 𝑐-table.
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2. Computation of the 𝑐-Table in the Normal
Case: Numerical Recommendations

The particular form of Toeplitz (resp. Hankel) determinants
permits computing them recursively using the Sylvester
formula

𝑁

𝑊 𝐶 𝐸

𝑆

𝑁𝑆 + 𝐸𝑊 = 𝐶
2

(for 𝐶𝑚
𝑛
) ,

𝑁𝑆 − 𝐸𝑊 = 𝐶
2

(for 𝐶(𝑚
𝑛

))

(21)

avoiding the laborious direct computation by (11) (resp. (13)).
Starting from the two first columns one can compute the
“East” 𝐶𝑚

𝑛
elements by the ascending algorithm [13]:

𝐸 =

𝐶

𝑊

𝐶 −

𝑆

𝑊

𝑁. (22)

Alternatively, starting from the first two rows one can com-
pute the “South” elements by the descending algorithm:

𝑆 =

𝐶

𝑁

𝐶 −

𝐸

𝑁

𝑊. (23)

The above order of arithmetic operations diminishes a risk
of overflows or underflows. We have studied in [13] the
complexity of both the above algorithms counting multipli-
cations and divisions (including that of (12) needed for the
descending algorithm) necessary to obtain the 𝐶𝑚

𝑛
from the

normalized sequence (𝑐
𝑗
), that is, with 𝑐

0
= 1. The cost of

the normalization of each coefficient 𝑐
1
, 𝑐
2
, . . . in the second

column of the 𝑐-table is equal to 1. Then the costs in the
second row are 0, 0, 1, 2, . . . , 𝑛 − 1, . . . (12). Then the cost 𝑝

𝐸

of 𝐸 computed by (22) is 𝑝
𝐸
= 𝑝
𝐶
+ 𝑝
𝑊
+ 𝑝
𝑆
+ 𝑝
𝑁
+ 4,

where 𝑝
𝐶
, 𝑝
𝑊
, 𝑝
𝑆
, and 𝑝

𝑁
are the previous costs of 𝐶,𝑊, 𝑆,

and 𝑁, respectively. In fact it is the cost of the calculation of
all 𝑛2 determinants disposed in the triangle pointed on the
last𝐶𝑚
𝑛
if it is situated under or on the diagonal. Analogously,

the global cost of the calculation of all𝑚2 determinants with
the last 𝐶𝑚

𝑛
by the descending algorithm is 𝑝

𝑆
= 𝑝
𝐶
+ 𝑝
𝑁
+

𝑝
𝐸
+ 𝑝
𝑊
+ 4. The following separation line optimizes the cost

of each algorithm.
In the following example we give the number of opera-

tions needed by the descending algorithm followed by the
number of operations needed by the ascending one:

𝐶
8

11
: 105 266, 159 995 𝐶

9

11
: 349 092, 160 070. (24)

The precision of 𝐸 computed by (22) is, crudely estimating,
proportional to the global cost 𝑝

𝐸
= 2𝑝
𝐶
+2𝑝
𝑊
+𝑝
𝑆
+𝑝
𝑁
+5,

where 𝑝
𝐶
, 𝑝
𝑊
, 𝑝
𝑆
, and 𝑝

𝑁
are the previous global costs. We

count twice 𝑃
𝐶
and 𝑃

𝑊
because each presence of an element

in the arithmetic expression introduces its error. On the other
hand if we wish to optimize the precision, we must take
into account all arithmetic operations, including additions
and subtractions. The errors of differences play a dominant
role, but they are not considered here. Consequently the
separation line will be modified. The precision observed

Table 3

Row AA DA Exact values
8 .1345 − 54 .1345 − 54 .1344 − 54

9 .3457 − 64 .3445 − 64 .3465 − 64

10 −.1041 − 73 −.1073 − 73 −.1035 − 73

11 −.6476 − 83 −.5203 − 83 −.6054 − 83

12 −.4552 − 92 .1140 − 91 .1443 − 91

13 .1653 − 97 .9137 − 98 .1387 − 98

14 −.9270 − 103 −.7552 − 103 .9683 − 105

15 −.2095 − 108 −.6141 − 108 .2715 − 110

16 −.2044 − 111 −.1911 − 111 .2241 − 115

numerically usingmultiprecision calculus (see details in [14])
showed that the separation line mounts a few places giving a
clear advantage to the ascended algorithm.

Example 5. Fragment of the 13th column of the 𝑐-table of the
series of the Stieltjes function−(1/𝑥) log(1−𝑥) is computed by
ascending algorithm (AA) and descending algorithm (DA) in
double precision (see Table 3).

The underlined elements (Example 5) computed by the
ascending algorithm situated in the region of accuracy of the
descending algorithm are a little better than those computed
by descending algorithm. The exact values were determined
by multiprecision calculus with 32 digits.

3. Overflow, Underflow, and Detection of
Blocks: Numerical Recommendations

No problems arise in a numerical computation if all coef-
ficients 𝑐

𝑗
are integers [8, 12]. If a block exists, the integer

arithmetic produces zeros exactly. Unfortunately in a real case
the computational problem is generally much more difficult.
Numerical experiments show that 𝐶𝑚

𝑛
’s decrease or increase

quite rapidly. The risk of the overflow or underflow appears
approximately for 𝑚 + 𝑛 ≥ 3𝑝, where 𝑝 is the number
of decimal digits of the floating point representation ([11,
page 344]). Fortran subroutines given in [13, 15] use masks
allowing the determination of exponents of real constants
composing of the arithmetic expression (22) or (23) before
their evaluation. After that the program checks if a global
exponent is inside an authorized range or not and, if so, if
it authorizes the evaluation or not. Knowing the computer
used it is possible to overcome overflows without stopping
an execution of the program, but the use of this technique
embarrasses the software portability.

The underflow problem is related to another important
question: is the computed value of 𝐶𝑚

𝑛
equal to zero or

not? The Vignes permutation-perturbation method to detect
the so-called “zero informatique” in French [16] gives a
satisfactory statistical estimation, allowing one to decide if a
determinant vanishes or not, but in our practical computa-
tional problems its cost is too great. The crude estimation is
the following:

if 

𝐶
𝑚

𝑛





< base−(𝑚+𝑛), then 𝐶

𝑚

𝑛
≈ 0, (25)
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Table 4

(a)

𝑚

n
4 5 6 7

3 1. − 8 1. − 10 1. − 11 1. − 12

4 1. − 10 1. − 11 1. − 12 1. − 13

5 1. − 11 1. − 12 1. − 13 1. − 14

6 1. − 12 1. − 13 1. − 14 1. − 16

7 1. − 13 1. − 14 1. − 16 1. − 17

(b)

𝑚

n
4 5 6 7

3 6.28 + 03 −5.60 + 04 4.99 + 05 −4.45 + 06

4 6.61 − 01 2.19 + 00 7.18 + 00 2.34 + 01

5 6.61 − 07 −6.61 − 07 6.61 − 07 −6.61 − 07

6 9.06 − 10 6.55 − 26 −2.26 − 26 7.48 − 27

7 1.24 − 12 −3.11 − 29 3.48 − 47 9.31 − 47

where base denotes the base of representation of the real con-
stant in the computer (essentially 2, 10, or 16). The second
method, purely empirical, is due to Guziński [17]. Guziński
follows the monotonicity of the ascending or descending
sequences: (|𝐶𝑚+𝑗

𝑛−𝑗
|), 𝑗 = 𝑛, 𝑛 − 1, . . . , 1, 0 or 𝑗 = −𝑚, −𝑚 +

1, . . . , 0, respectively. Using the 32-bit arithmetic (single pre-
cision) he estimates that the true value of determinant (let us
call it “new”) is equal to zero if the previous monotonicity
changes significantly, that is, if the new determinant with
respect to the previous determinant satisfies the following
inequality:

new < previous ∗ 5 ∗ 10−12. (26)

We recommend this efficient method which allows the detec-
tion of the zeros blocks in 𝑐-tables very quickly. Of course, it
must be readapted to the used real constant representation.
These two criteria, (25) and (26), are well-illustrated by
Example 6, where the second table represents a fragment of
𝑐-table for a series produced by a rational function:

𝑓 (𝑥) = [

5

4

] =

1

(1 − (𝑥/3))
2
−

9𝑥
3

(1 − (𝑥/9))
2
. (27)

The numerical constants are denoted shortly by decimal
exponents: for instance .9 × 10

−5 is denoted by .9 − 5. The
first table represents the approximative limits (25) for the
base = 16 : 16−(𝑚+𝑛) ≈ 10

−(6/5)(𝑚+𝑛).Theunderlined elements
correspond to the beginning of the infinite block of zeros
starting at element 𝐶6

5
. As shown here both criteria work: the

underlined elements on the right (𝑐-table) are less than the
corresponding limits on the left and also Guziński criterion
is satisfied for these elements.

Example 6 (zeros block in the 𝑐-table). If the first zero is
detected by the ascending algorithm, it corresponds to the
west-north corner of the block of zeros. Then, we stop at the

moment of the ascending computation of this antidiagonal
and we return to the next antidiagonal to verify the value of
the determinant situated under this first zero. Suppose that
we find 𝑘 − 1 zeros starting from 𝐶

𝑚+1

𝑛+1
which indicate the

existence of the block (𝑚, 𝑛; 𝑘). The next section is devoted
to the strategy of following the calculus.

The “normal” monotonicity, by opposition to the jumps
(26), can be tested by reference to the normal 𝑐-table corre-
sponding, for instance, to the Stieltjes function (see Table 4)

𝑓 (𝑥) = −

1

𝑥

log (1 − 𝑥) = 1 +

1

2

𝑥 +

1

3

𝑥
2

+ ⋅ ⋅ ⋅ . (28)

Example 7 presents a fragment of the 𝑐-table for a series
produced by the mentioned function.

Example 7 (fragment of the 𝑐-table of the Stieltjes function
𝑓 − (1/𝑥) log(1 − 𝑥)). The minima on the antidiagonals are
underlined.They correspond to the positions of the best padé
approximants on the corresponding antidiagonals in the Padé
table. Joining these minima we obtain the valley structure in
the 𝑐-table mentioned in Section 6 (see Table 5).

Using the 64-bit arithmetic (double precision) the risk of
overflows or underflows is rather marginal [14]. Both stan-
dards of mentioned representations of numerical values are
specified by the IEEE Standard for Floating-Point Arithmetic
(IEEE 754).

4. Nonnormal Case: Froissart-Gilewicz and
Paszkowski Identities to Overcome Blocks

The proof of geometrical progression of elements surround-
ing the zeros blocks in the 𝑐-table and an analytic proof
of the identity allowing the computation of the east or
south elements of these blocks when the Sylvester identity
fails are presented in [11]. The purely algebraic proof of an
equivalent identity is given by Paszkowski in [12]. Three new
Paszkowski-like identities and an extension of formula (19)
are proved and are given in this section. Figure 2 illustrates
the 𝑐-table corresponding to the block (𝑚, 𝑛; 𝑘) with 𝑘 = 8

and two “shells” adjacent to the 7 × 7 zeros block.
Elements surrounding the blocks of zeros form geomet-

rical sequences (attention: the sense of west and north arrows
and the superscripts +, − on the south and east sides are
inverted with respect to [11, 12] and now correspond to the
sense of calculation of the elements of the 𝑐-table by presented
algorithms) from the corners as indicated by arrows and with
respective ratios 𝑆, �̂�, �̂�, and 𝐸. Then, it suffices to know
four entries𝐶𝑚

𝑛
,𝐶𝑚
𝑛+1

,𝐶𝑚+1
𝑛

(these three are already computed
before the detection of the block), and 𝐶

𝑚+𝑘

𝑛+1
(first nonzero

element after 𝑘−1 zeros on the 𝑛+1 column which identifies
the block) to calculate all elements surrounding the block of
zeros in the following way:

𝑆 =

𝐶
𝑚+𝑘

𝑛+1

𝐶
𝑚+𝑘

𝑛

, 𝐶
𝑚+𝑘

𝑛+𝑖
= 𝐶
𝑚+𝑘

𝑛
∗ 𝑆
𝑖

,

�̂� =

𝐶
𝑚+1

𝑛

𝐶
𝑚

𝑛

, 𝐶
𝑚+𝑖

𝑛
= 𝐶
𝑚

𝑛
∗ �̂�
𝑖

,
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Table 5

𝑚

n
1 2 3 4 5 6 7 8 9 10 11

1 .5 + 0 −.8 − 1 .4 − 1 −.3 − 1 .2 − 1 −.1 − 1 .1 − 1 −.9 − 2 .8 − 2 −.7 − 2 .6 − 2

2 .3 + 0 −.1 − 1 −.5 − 5 −.8 − 4 −.2 − 4 −.1 − 4 −.4 − 5 .2 − 5 −.1 − 5 −.7 − 6 −.4 − 6

3 .3 + 0 −.4 − 2 −.2 − 4 .2 − 6 −.1 − 7 .1 − 8 −.2 − 9 .2 − 10 −.1 − 10 .4 − 11 −.1 − 11

4 .2 + 0 −.2 − 2 −.3 − 5 .2 − 8 .4 − 11 .7 − 13 .3 − 14 .2 − 15 .3 − 16 −.3 − 17 .3 − 17

5 .2 + 0 −.8 − 3 −.5 − 6 .9 − 10 .4 − 13 −.5 − 17 .2 − 19 −.2 − 21 −.1 − 21 −.2 − 22 −.6 − 23

6 .1 + 0 −.4 − 3 −.1 − 6 .7 − 11 .2 − 15 −.5 − 20 −.2 − 23 .2 − 25 .3 − 27 .1 − 27 .1 − 28

7 .1 + 0 −.2 − 3 −.3 − 7 .7 − 12 .5 − 17 −.8 − 22 .4 − 26 .3 − 30 .3 − 32 −.6 − 33 −.1 − 34

8 .1 + 0 −.2 − 3 −.1 − 7 .1 − 12 .4 − 18 .3 − 23 −.2 − 28 −.6 − 33 −.1 − 36 −.2 − 39 −.1 − 39

9 .1 + 0 −.1 − 3 −.4 − 8 .2 − 13 −.2 − 19 −.2 − 24 .5 − 30 −.6 − 35 −.3 − 40 .1 − 42 .2 − 44

10 .9 − 1 −.7 − 4 −.2 − 8 .3 − 14 .1 − 19 .2 − 25 .4 − 31 −.8 − 31 −.5 − 41 −.4 − 45

�̂� =

𝐶
𝑚

𝑛+1

𝐶
𝑚

𝑛

, 𝐶
𝑚

𝑛+𝑖
= 𝐶
𝑚

𝑛
∗ �̂�
𝑖

,

𝐸 = (−1)
𝑘+1

𝐶
𝑚+1

𝑛
𝐶
𝑚+𝑘

𝑛+1

𝐶
𝑚

𝑛+1
𝐶
𝑚+𝑘

𝑛

, 𝐶
𝑚+𝑖

𝑛+𝑘
= 𝐶
𝑚

𝑛+𝑘
∗ 𝐸
𝑖

,

𝑖 = 0, 1, . . . , 𝑘.

(29)

Two additional relations were proved in [11]:

�̂�𝑆 = (−1)
𝑘+1

𝐸�̂�,

𝑁𝑆 = (−1)
𝑖(𝑘+1)

𝑊𝐸,

(30)

where 𝑁 = 𝐶
𝑚

𝑛+𝑖
, 𝑆 = 𝐶

𝑚+𝑘

𝑛+𝑘−𝑖
, 𝑊 = 𝐶

𝑚+𝑖

𝑚
, and 𝐸 = 𝐶

𝑚+𝑘−𝑖

𝑛+𝑘
.

The following relations (31) show relationships analogous to
(29) which are expressed in terms of Hankel determinants
𝐶(𝑚/𝑛):

𝑆 =

𝐶 (𝑚 + 𝑘/𝑛 + 1)

𝐶 (𝑚 + 𝑘/𝑛)

= (−1)
𝑛

𝑆,

𝐶(𝑚 +

𝑘

𝑛

+ 𝑖) = 𝐶(𝑚 +

𝑘

𝑛

) ∗ 𝑆
𝑖

,

�̃� =

𝐶 (𝑚 + 1/𝑛)

𝐶 (𝑚/𝑛)

= �̂�,

𝐶 (𝑚 +

𝑖

𝑛

) = 𝐶(

𝑚

𝑛

) ∗ �̃�
𝑖

,

�̃� =

𝐶 (𝑚/𝑛 + 1)

𝐶 (𝑚/𝑛)

= (−1)
𝑛

�̂�,

𝐶 (

𝑚

𝑛

+ 𝑖) = 𝐶(

𝑚

𝑛

) ∗ �̃�
𝑖

,

𝐸 = (−1)
𝑘+1

𝐶 (𝑚 + 1/𝑛) 𝐶 (𝑚 + 𝑘/𝑛 + 1)

𝐶 (𝑚/𝑛 + 1) 𝐶 (𝑚 + 𝑘/𝑛)

= 𝐸,

𝐶 (𝑚 +

𝑖

𝑛

+ 𝑘) = 𝐶(

𝑚

𝑛

+ 𝑘) ∗ 𝐸
𝑖

,

𝑖 = 0, 1, . . . , 𝑘

(31)

�̃�𝑆 = (−1)
𝑘+1

𝐸�̃�,

𝑁𝑆 = 𝑊𝐸,

(32)

where here 𝑁 = 𝐶(𝑚/𝑛 + 𝑖), 𝑆 = 𝐶(𝑚 + 𝑘/𝑛 + 𝑘 − 𝑖),
𝑊 = 𝐶(𝑚 + 𝑖/𝑚), and 𝐸 = 𝐶(𝑚 + 𝑘 − 𝑖/𝑛 + 𝑘). Using
the above relations we can easily extend the formulas for 𝑟 in
(18) to other ratios of Toeplitz determinants located around
the zeros block. Let us simplify the notation of the left part of
the formula (19) as follows:

𝑟 =

𝐴
1

𝐵
1

(−1)
𝑛

=

𝐴
∗

1

𝐵
∗

1

(−1)
𝑛+𝑘−1 (33)

and denote the next determinants by 𝐴
𝑖
, 𝐵
𝑖
, 𝐴∗
𝑖
, and 𝐵

∗

𝑖
as

indicated in Figure 3 corresponding to the block (𝑚, 𝑛; 𝑘).
Then, we have the following equivalent formulas:

𝑖 = 1, 2, . . . , 𝑘: 𝑟 =

𝐴
1

𝐵
1

(−1)
𝑛

=

𝐴
𝑖

𝐵
𝑖

(−1)
𝑛

(�̂�𝑆)

𝑖−1

=

𝐴
∗

1

𝐵
∗

1

(−1)
𝑛+𝑘+1

=

𝐴
∗

𝑖

𝐵
∗

𝑖

(−1)
𝑛+(𝑘−1)[𝑖/2]

(�̂�𝑆)

𝑖−1
,

(34)

where [𝑗/2] denote the remainder of division of 𝑗 by 2.
The ascending Sylvester algorithm fails for the second east

column because of the division by𝑊 = 0, that is, for 𝐶𝑚+𝑖
𝑛+𝑘+1

with 𝑖 = 1, . . . , 𝑘 − 1. The descending algorithm fails for the
second south row, that is, for 𝐶𝑚+𝑘+1

𝑛+𝑖
with 𝑖 = 1, . . . , 𝑘 − 1.

This creates the “east shadow” region and the “south shadow”
region where the elements can not be computed by respective
algorithms. These regions are shown in Figure 4.

If no block exists in the way of descending algorithm
then the east shadow region can be computed by this
algorithm. Analogously the ascending algorithm can be used
to compute the south shadow region.Then, the two combined
algorithms allow the easy computation of many 𝑐-tables with
blocks without the use of the special identities which will be
presented in this section. Of course, these identities can be
used to compute the black east column or the black south
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Figure 2: Location of elements in (𝑚, 𝑛; 8) block for Gilewicz-
Froissart and Paszkowski identities.

row which allows following the use of respective, ascending,
or descending algorithm. In fact, the Sylvester algorithms fail
only in the rare situations illustrated in Figure 5. Let 𝐴 be an
intersection of an east shadow region produced by a block
(𝑚, 𝑛; 4) and a south shadow region produced by the block
(𝑀,𝑁; 5). Let 𝐸

4
be an intersection of𝐴 with the second east

3-element column on the right side of the block (𝑚, 𝑛; 4) and
let 𝑆
5
be an intersection of𝐴with the second south 4-element

row in the bottom of the block (𝑀,𝑁; 5). The combined
Sylvester algorithm fails only if both 𝐸

4
and 𝑆

5
(in general:

𝐸
𝑘
and 𝑆
𝐾
) are nonempty.

In this particular case it is necessary to compute 𝐸
4
=

𝐶
𝑚+3

𝑛+5
by the Froissart-Gilewicz or Paszkowski identity, to be

able to follow the recurrence computation of the 𝑐-table by the
combined Sylvester algorithms. If not, we can compute the
south black elements 𝑆

5
at the bottom of the blocks of zeros

and follow the computation by Sylvester algorithms. The last
strategy is recommended if card(𝑆

𝐾
) < card(𝐸

𝑘
), that is, in

the opposite situation, as seen in Figure 5.
However this “theoretical” strategy based on an extensive

application of the combined Sylvester algorithm can be only
used near the diagonal of a 𝑐-table. Indeed, the complexity
diagram (Figure 1, Section 2) shows that outside this region
the cost of the computation of elements needed ismuch lower

0

B2
B1

Ak = A
∗
k

Bk = B
∗
k

A
∗
1

A
∗
2

. . . B
∗
2 B

∗
1

A1A2 . . .

Figure 3: Location of determinants giving different forms of error
𝑟.

Figure 4: East and south shadow regions in the 𝑐-table.

if they are computed by the Froissart-Gilewicz or Paszkowski
formulas.

The first identity allows going around a block (𝑚, 𝑛; 𝑘)

in the 𝑐-table (i.e., for 𝐶
𝑚

𝑛
). It was proven by Froissart

and Gilewicz [11]. Using the notation of Figure 2 it can be
presented in the following form of a determinant:

𝑘 ≥ 3: (−1)
𝑘


















𝑁


𝑁

1

�̂�

𝑆


𝑆

𝐸


















= (−1)
𝑖


















𝑊


𝑊

�̂�

𝐸


𝐸

1

𝑆


















,

𝑘 = 2: 𝑁


𝑁
2
+

𝑆


𝑆
2
=

𝑊


𝑊
2
+

𝐸


𝐸
2
.

(35)

After computing elements 𝐸 or/and 𝑆 one can continue the
computing using the Sylvester formulas.This identity written
for 𝐶(𝑚/𝑛) (now𝑁



, 𝑁, . . . denote Hankel determinants) is

𝑘 ≥ 3: (−1)
𝑘


















𝑁


𝑁

1

�̃�

𝑆


𝑆

𝐸


















= (−1)
𝑖


















−

𝑊


𝑊

�̃�

𝐸


𝐸

(−1)
𝑘

1

𝑆


















,

𝑘 = 2: 𝑁


𝑁
2
+

𝑆


𝑆
2
= −

𝑊


𝑊
2
−

𝐸


𝐸
2
.

(36)
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Figure 5: Intersection of two shadow regions in the 𝑐-table.

Paszkowski identity for 𝐶(𝑚/𝑛), equivalent to the previous,
gives also 𝐸 or/and 𝑆:

𝐸


= (−1)
𝑘𝑖

𝑆
+

[

𝑁


𝑊
−
+

𝑁
+

𝑊
+
((−1)

𝑘
𝑆


𝑆
+
+ (−1)

𝑖
𝑊


𝑊
−
)] . (37)

Paszkowski presented this identity in the elegant form of a
determinant:














𝑁


𝑁
+

𝐸
+

𝑊
−

𝑆
+

𝑊


𝑊
+

𝑆















= 0. (38)

Following (32) we have𝑊− ∗ 𝐸+ = 𝑁
−

∗ 𝑆
+ and 𝑁+ ∗ 𝑆− =

𝐸
−

∗𝑊
+ which give three new Paszkowski-like identities:














𝑁


𝑁
+

𝐸
+

𝑁
−

𝐸
+

𝑊


𝑊
+

𝑆















=














𝑁


𝐸
−

𝐸
+

𝑊
−

𝑆
+

𝑊


𝑆
−

𝑆















=














𝑁


𝑁
+

𝐸
+

𝑁
−

𝐸
+

𝑊


𝑊
+

𝑆















= 0.

(39)

These identities for 𝐶𝑚
𝑛
become















𝑁


𝑁
+

(−1)
𝑘

𝐸
+

(−1)
𝑘𝑛

𝑊
−

𝑆
+

−𝑊


𝑊
+

𝑆


(−1)
𝑘+𝑛















= 0,














𝑁


(−)
𝑘+1

𝑁
+

𝐸
+

(−1)
𝑛

𝑁
−

𝐸
+

𝑊


(−1)
𝑛

𝑊
+

𝑆


(−1) 𝑘 + 1














=















𝑁


(−1)
𝑘𝑛

𝐸
−

𝐸
+

𝑊
−

𝑆
+

𝑊


(−1)
𝑛

𝑆
−

𝑆


(−1)
𝑘+1















=















𝑁


(−1)
𝑛

𝑁
+

𝐸
+

(−1)
𝑘+1

𝑁
−

𝐸
+

𝑊


(−1)
𝑘𝑛

𝑊
+

𝑆
















= 0.

(40)

Achuthan and Ponnuswamy have published [18] a detailed
analysis of a table of approximants of McCabe𝑀-fractions in
the nonnormal case. To this so-called𝑀-table corresponds a
table of Toeplitz (or Hankel) determinants, like the 𝑐-table (or
𝑐-table).These tables have a square block structure analogous
to that presented in this work. Consequently, all our formulas
can be applied to compute the elements around the blocks in
the table of Hankel determinants related to the𝑀-table.

5. Computation of Padé Approximants around
the Blocks: Numerical Recommendations

Our goal consists of indicating the location of the blocks
in the 𝑝-table and then giving some information about the
location of the BPA by means of the analysis of the structure
of the 𝑐-table. The next step in the work of approximation
consists of computing the relevant Padé approximant. Many
methods of computation of Padé approximants use the
relation between the convergents of continued fractions and
Padé approximants [19]. However if we wish to compute an
individual Padé approximant [𝑚/𝑛] solving the linear system
(10) followed by the substitutions (9), we can use Cholesky
method, the cost of which is

1

6

𝑛 (𝑛
2

+ 2) + 𝑚𝑛. (41)

The cost of Cholesky method or other methods adapted to
this particular symmetric matrix (see [11, page 370] or [20])
represents one-half of the cost of the solution by the Gauss
method. For instance the cost of the computation of [6/4]
by Cholesky is 36 but by Longman algorithm is 465. Using
this last algorithm we compute all 45 Padé approximants
located in the triangle ended by the antidiagonal𝑚 + 𝑛 = 10.
If we need to know all 𝑝-tables it is recommended to use
any efficient recursive algorithm (see [10, 11, 20]) computing
the so-called 𝐿-triangle in the 𝑝-table knowing 𝐿 + 1 first
coefficients of the power series of𝑓. To do this it is also useful
to know the generalization of the Wynn cross identity (20)
obtained by FlorentCordellier (see [11, page 369]) for the Padé
approximants surrounding a block (𝑚, 𝑛; 𝑘) in the 𝑝-table:

𝑖 = 1, 2, . . . , 𝑘: (𝑆
𝑖
− 𝐶)
−1

+ (𝑁
𝑖
− 𝐶)
−1

= (𝑊
𝑖
− 𝐶)
−1

(𝐸
𝑖
− 𝐶)
−1

,

(42)

where 𝐶 = [𝑚/𝑛], 𝑆
𝑖
= [𝑚 + 𝑘/𝑛 + 𝑘 − 𝑖], 𝑁

𝑖
= [𝑚 − 1/𝑛 +

𝑖 − 1], 𝑊
𝑖
= [𝑚 + 𝑖 − 1/𝑛 − 1], and 𝐸

𝑖
= [𝑚 + 𝑘 − 𝑖/𝑛 + 𝑘]

occupied symmetric positions around the block as indicated
in Figure 6.

6. Best Padé Approximant (BPA)

The Padé approximant to a function 𝑓 is the best local
approximation of𝑓with respect to the norm of uniform con-
vergence. However in practice we are commonly interested in
the nonlocal quality of this approximation as, for instance, an
analytic continuation of 𝑓. Knowing 𝐿 + 1 first coefficients 𝑐

𝑗

of power expansion (1) of 𝑓 we can compute all Padé approx-
imants [𝑚/𝑛] with𝑚+ 𝑛 ≤ 𝐿, that is, the so-called 𝐿-triangle
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Figure 6: Location of Padé approximants around the block in the
Cordellier identity.

in the 𝑝-table. The entries on the last antidiagonal𝑚 + 𝑛 = 𝐿

contain complete initial information. The natural question
is: where is the BPA on each antidiagonal? The answer to
this question is given in [11] where four empirical algorithms
of choice of BPA, based on the numerical experiments and
justified for few classes of functions, are proposed:

(i) method 𝜌: analysis of the behavior of the sequence
{|𝑐
𝑛
/𝑐
𝑛+1

|} which also allows the elimination of badly
computed coefficients;

(ii) method of valleys: the minima of |𝐶𝑚
𝑛
| on the antidi-

agonals indicate the positions of BPA and/or the
positions of the blocks (see Example 7);

(iii) method of coefficients of PA: estimation of coeffi-
cients which can be neglected allowing the detection
of the blocks;

(iv) method of Gram matrix: analysis of the eigenvalues
of 𝐺 = 𝐴𝐴

𝑇, where 𝐴 is the matrix of the system (10);
this shows if |𝐶𝑚

𝑛
| = (Π

𝑛

𝑖=1
𝜆
𝑖
)
1/2 is equal to zero or not.

In numerous scientific papers where the Padé approximation
method is applied, the authors automatically use the diagonal
Padé approximants [𝑛/𝑛] without any justification. This
frequently leads to erroneous conclusions as those of Van
Dyke (reported in [11, page 414]) who, after selecting for
his problem the [2/2] PA, claimed that PA method is not
satisfactory in his case. Curiously, the [2/2] PA is the worst
choice among all possible elements in the𝑝-table and the BPA
gives a result ten times better than the better approximation
proposed by Van Dyke!

We repeat that our goal is to help the authors wishing to
apply correctly the Padé approximationmethod detecting the
BPA quickly.

7. Numerical Observations and
Computational Suggestions

In numerical practice the coefficients 𝑐
𝑗
used for the compu-

tation of Padé approximants are first computed numerically

or determined experimentally. Then they are affected by
some noise and some errors, in general increasing with the
index. The 𝜌-method of choice of best Padé approximant
(BPA) [11] allows the elimination of the last badly computed
coefficients.This empirical method and the recommendation
do not compute the approximants. Many papers (see [11, 21–
24]) were devoted to analyzing the effect of noise on the Padé
approximants. The so-called Froissart doublets (zero-pole
doublets) appearing in the Padé approximants are created
by the noise. Unfortunately one has not obtained at the
present moment an efficient method of filtering the noise
from the coefficients: the simple elimination of Froissart
doublets spoils the quality of the resulting fraction obtained
by the cleaning of the Padé approximant.

8. Conclusion

This text contains a complete list of useful identities and
empirical numerical rules. Certain of these are new or were
never published in current journals. We hope that the pre-
sented strategy of analysis of the 𝑐-table before the calculation
of the BPA or of the 𝑝-table will allow the improvement of the
efficient use of Padé approximation method.
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S. P. Suetin, “Padé approximants, continued fractions, and
orthogonal polynomials,” Russian Mathematical Surveys, vol.
66, no. 6(402), pp. 37–122, 2011.

[6] L. N. Trefethen, Approximation Theory and Approximation
Practice, SIAM, Philadelphia, Pa, USA, 2013.

[7] M. Kaliyappan, S. Ponnusamy, and S. Sundar, “Recursive for-
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rational functions,” Journal of Computational andAppliedMath-
ematics, vol. 105, no. 1-2, pp. 285–297, 1999.

[25] J. Gilewicz, “Computation of the 𝑐-table related to the Padé
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