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This paper considers the existence of positive solutions of the boundary value problems V+𝜆(V𝑟+V𝑝−V𝑞) = 0 and V(−1) = V(1) = 0,
where 𝑝 > 𝑟 > 𝑞 > −1 and 𝜆 is a positive parameter. Using a time-map approach, we obtain the exact number of positive solutions
in different cases.

1. Introduction and Main Results

The study of multiplicity results to boundary value problem

V + 𝜆𝑓 (V) = 0, 𝑡 ∈ (𝑎, 𝑏) ,

V (𝑎) = V (𝑏) = 0,
(1)

where 𝜆 > 0 is a positive parameter, is very interesting
because of its applications. As we know, when 𝑓(V) = V𝑝(𝑥) +
V𝑞(𝑥), the boundary value problem

−V (𝑥) = 𝜇V𝑝 (𝑥) + V𝑞 (𝑥) , 𝑎 ≤ 𝑥 ≤ 𝑏,

V (𝑥) > 0, 𝑥 ∈ (𝑎, 𝑏) ,

V (𝑎) = V (𝑏) = 0,

(2)

where 0 < 𝑞 < 1 < 𝑝 and 𝑘 ≥ 0 are fixed given numbers and
𝜇 > 0 is a parameter, comes from the elliptic problem

−Δ𝑢 = 𝜆𝑢
𝑞
+ 𝑢
𝑝
, 𝑥 ∈ Ω,

𝑢 > 0, 𝑥 ∈ Ω,

𝑢 = 0, 𝑥 ∈ 𝜕Ω,

(3)

with 0 < 𝑞 < 1 < 𝑝, which was raised by Ambrosetti et al. in
[1].

Under different assumptions on 𝑓, there are many results
for the above problems and elliptic equations (see [2–8]).

In [9, 10], Liu considered the case of 𝑓(V) = V𝑝 + (1/𝜆)V𝑞

and𝑓(V) = V𝑝+V𝑞+𝑘V and gave the exact number of solutions
and many interesting properties of the solutions.

Cheng [11] investigated the following two-point boundary
value problem:

−𝑦

= 𝜆 (𝑦

𝑝
− 𝑦
𝑞
) , 𝑡 ∈ (−1, 1) ,

𝑦 (−1) = 𝑦 (1) = 0,

(4)

where 𝜆 > 0 is a positive parameter and 𝑝 > 𝑞 > −1 and got
the exact number of positive solutions.

Now, in this paper we consider the more general case

−V = 𝜆 (V𝑟 + V𝑝 − V𝑞) , 𝑡 ∈ (−1, 1) ,

V (−1) = V (1) = 0,
(5)

where 𝜆 > 0 is a positive parameter, 𝑝 > 𝑟 > 𝑞 > −1, and
(1/(𝑟 + 1)) + (1/(𝑝 + 1)) − (1/(𝑞 + 1)) < 0.

Define 𝛽, where 𝛽 satisfies

𝛽
𝑟

𝑟 + 1

+

𝛽
𝑝

𝑝 + 1

−

𝛽
𝑞

𝑞 + 1

= 0. (6)

For 𝑝 > 𝑟 > 𝑞 and −1 < 𝑞 < 1, let 𝜆
1
be given by

𝜆
1

=
𝑟 + 1

2

𝛽
1−𝑟

× (∫

1

0

𝑑𝑡

√𝑡
𝑞+1
[(1 − 𝑡

𝑟−𝑞
) + ((𝑟 + 1) / (𝑝 + 1)) 𝛽

𝑝−𝑟
(1 − 𝑡
𝑝−𝑞
)]

)

2

.

(7)

The main results of this paper are as follows.
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Theorem 1. If 𝑝 > 𝑟 > 𝑞 ≥ 1, (5) has exactly one positive
solution for any 𝜆 > 0.

Theorem2. If𝑝 > 𝑟 ≥ 1 > 𝑞 > −1, (5) has exactly one positive
solution for 𝜆 ∈ (0, 𝜆

1
] and none for 𝜆 > 𝜆

1
.

Theorem 3. If 𝑝 > 1 > 𝑟 > 𝑞 ≥ 0, (5) has exactly one positive
solution for 𝜆 ∈ (0, 𝜆

1
] and none for 𝜆 > 𝜆

1
.

Theorem 4. If (1/3) ≥ 𝑝 > 𝑟 > 𝑞 ≥ 0, (5) has exactly one
positive solution for 𝜆 ∈ (𝜆

1
, +∞) and none for 𝜆 < 𝜆

1
.

Theorem 5. Assume that 1 > 𝑝 > 𝑟 > 0 > 𝑞 > −1. Define

𝜃 (𝑟, 𝑝, 𝑞)

= ∫

1

0

1 − 𝑟

[𝑡
𝑞+1

(1 − 𝑚
1
𝛽
𝑟−𝑞
𝑡
𝑟−𝑞

− 𝑚
2
𝛽
𝑝−𝑞

𝑡
𝑝−𝑞

)]
1/2
𝑑𝑡

− (𝑟 − 𝑞)∫

1

0

1 − 𝑡
𝑞+1

[𝑡
𝑞+1

(1 − 𝑚
1
𝛽
𝑟−𝑞
𝑡
𝑟−𝑞

− 𝑚
2
𝛽
𝑝−𝑞

𝑡
𝑝−𝑞

)]
3/2
𝑑𝑡

−

(𝑝 − 𝑟) (𝑞 + 1)

𝑝 + 1

𝛽
𝑝−𝑞

× ∫

1

0

1 − 𝑡
𝑝+1

[𝑡
𝑞+1

(1 − 𝑚
1
𝛽
𝑟−𝑞
𝑡
𝑟−𝑞

− 𝑚
2
𝛽
𝑝−𝑞

𝑡
𝑝−𝑞

)]
3/2
𝑑𝑡,

(8)

where𝑚
1
= (𝑞 + 1)/(𝑟 + 1) and𝑚

2
= (𝑞 + 1)/(𝑝 + 1). One has

the following.

(1) If 𝜃(𝑟, 𝑝, 𝑞) ≥ 0, (5) has exactly one positive solution
for 𝜆 ∈ (𝜆

1
, +∞) and none for 𝜆 ∈ (0, 𝜆

1
).

(2) If 𝜃(𝑟, 𝑝, 𝑞) < 0, there exists 𝜆
0
∈ (0, 𝜆

1
) such that

(5) has exactly two positive solutions for 𝜆 ∈ (𝜆
0
, 𝜆
1
],

exactly one for 𝜆 ∈ (𝜆
1
, +∞) or 𝜆 = 𝜆

0
, and none for

𝜆 ∈ (0, 𝜆
0
).

2. The Proofs of Theorems 1–4

We assume throughout this section that 𝑝 > 𝑟 > 𝑞 > −1 and

1

𝑟 + 1

+

1

𝑝 + 1

−

1

𝑞 + 1

< 0. (9)

Denote that 𝐸 = (𝛽, +∞), where 𝛽 is given by (6). For 𝑎 ≥ 𝛽
and 𝑡 ∈ (0, 1), let

𝑃 (𝑎, 𝑡) = ∫

𝑎

𝑎𝑡

(𝑧
𝑟
+ 𝑧
𝑝
) 𝑑𝑧, 𝑄 (𝑎, 𝑡) = ∫

𝑎

𝑎𝑡

𝑧
𝑞
𝑑𝑧. (10)

Define a function 𝐹 : 𝐸 → (0, +∞) as

𝐹 (𝑎) = ∫

𝑎

0

[2∫

𝑎

V
(𝑧
𝑟
+ 𝑧
𝑝
− 𝑧
𝑞
) 𝑑𝑧]

−1/2

𝑑V for 𝑎 ∈ 𝐸.

(11)

It is clear that ∫𝛽
0
(𝑧
𝑟
+ 𝑧
𝑝
− 𝑧
𝑞
)𝑑𝑧 = 0. Now we claim that 𝑎𝑟 +

𝑎
𝑝
−𝑎
𝑞
> 0 for 𝑎 ≥ 𝛽 and∫𝑎

0
[2 ∫

𝑎

V
(𝑧
𝑟
+ 𝑧
𝑝
− 𝑧
𝑞
)𝑑𝑧]

−1/2

𝑑V < ∞
if and only if 𝑎 ∈ 𝐸.

Let 𝑔
1
(𝑧) = 𝑧

𝑝 and 𝑔
2
(𝑧) = 𝑧

𝑟
− 𝑧
𝑞; then 𝑓(𝑧) =

𝑔
1
(𝑧)+𝑔

2
(𝑧). Immediately, we get that𝑔

2
(𝑥) = 𝑟𝑧

𝑟−1
−𝑞𝑧
𝑞−1

=

𝑧
𝑞−1
(𝑟𝑧
𝑟−𝑞

− 𝑞). In order to judge the sign of 𝑔
2
(𝑥), we just

judge the sign of 𝑇(𝑧) = 𝑟𝑧
𝑟−𝑞

− 𝑞. Since 𝑇(0) = −𝑞, 𝑇(1) =
𝑟−𝑞, and 𝑇(𝑧) = 𝑟(𝑟−𝑞)𝑧𝑟−𝑞−1, we can get the following two
results.

(1) For 𝑟 > 𝑞 > 0, the function 𝑔
2
(𝑧) has a stable point

𝑧
0
= (𝑞/𝑟)

1/(𝑟−𝑞). When 𝑧 ∈ (0, 𝑧
0
), we have 𝑔

2
(𝑧) < 0,

and when 𝑧 ∈ (𝑧
0
, +∞), we have 𝑔

2
(𝑧) > 0.

(2) For 𝑟 > 0 > 𝑞, we have 𝑔
2
(𝑧) > 0 on 𝑧 ∈ (0, +∞).

Combining 𝑔
1
(𝑥) = 𝑝𝑧

𝑝−1 and 𝑔
1
(𝑥) = 𝑝(𝑝 − 1)𝑧

𝑝−2

with the above two results, we obtain the monotony
of 𝑓(𝑧).

(3) For 𝑝 ≥ 1 > 𝑟 > 𝑞 > 0, the function 𝑓(𝑧) has a
stable point 𝑧

∗
on (0, 1). When 𝑧 ∈ (0, 𝑧

∗
), we have

𝑓

(𝑧) < 0 and when 𝑧 ∈ (0, 𝑧

∗
), we have 𝑓(𝑧) > 0.

(4) For 1 > 𝑝 > 𝑟 > 𝑞 > 0, we have that 𝑓(𝑧) > 0 on
(0, +∞).

(5) For 𝑝 > 𝑟 > 0 > 𝑞 or 𝑝 > 0 > 𝑟 > 𝑞, we have that
𝑓

(𝑧) > 0 on (0, +∞).

Then from∫

𝛽

0
(𝑧
𝑟
+𝑧
𝑝
−𝑧
𝑞
)𝑑𝑧 = 0, we infer that 𝑎𝑟+𝑎𝑝−𝑎𝑞 > 0

for 𝑎 ≥ 𝛽.
We consider the integration ∫

𝑎

0
[2 ∫

𝑎

V
(𝑧
𝑟
+ 𝑧
𝑝
−

𝑧
𝑞
)𝑑𝑧]
−1/2

𝑑V. It is clear that V = 𝑎 is a flaw point. Since
∫

𝑎

0
[2 ∫

𝑎

V
(𝑧
𝑟
+ 𝑧
𝑝
− 𝑧
𝑞
)𝑑𝑧]

−1/2

𝑑V < ∫

𝑎

0
[2 ∫

𝑎

V
(𝑧
𝑝
− 𝑧
𝑞
)𝑑𝑧]

−1/2

𝑑V

on 𝐸, we consider the integration ∫𝑎
0
[2 ∫

𝑎

V
(𝑧
𝑝
− 𝑧
𝑞
)𝑑𝑧]

−1/2

𝑑V.
Using Lagrange theorem, we obtain that

∫

𝑎

0

[2∫

𝑎

V
(𝑧
𝑝
− 𝑧
𝑞
) 𝑑𝑧]

−1/2

𝑑V

= ∫

𝑎

0

[2(

𝑎
𝑝+1

𝑝 + 1

−

V𝑝+1

𝑝 + 1

)

−2(

𝑎
𝑞+1

𝑞 + 1

−

V𝑞+1

𝑞 + 1

)]

−1/2

𝑑V

= ∫

𝑎

0

{2[V + 𝜃
1
(𝑎 − V)]

𝑝

(𝑎 − V)

−2[V + 𝜃
2
(𝑎 − V)]

𝑞

(𝑎 − V)}
−1/2

𝑑V

= ∫

𝑎

0

[2 (𝑎 − V)]−1/2 {[V + 𝜃
1
(𝑎 − V)]

𝑝

−[V + 𝜃
2
(𝑎 − V)]

𝑞

}

−1/2

𝑑V

< ∞,

(12)

where 𝜃
1
, 𝜃
2
∈ (0, 1) are constants.

The following Lemma 6 is listed to show that to study
the number of positive solutions of (5) is equivalent to study
the shape of the map 𝐹(𝑎) on 𝐸. Lemmas 7–9 show some
properties of 𝐹(𝑎) on 𝐸.
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Lemma 6. Let 𝑢(𝑎, 𝑡) be the unique solution of the problem

0 ≤ 𝑢 (𝑡) ≤ 𝑎,

∫

𝑎

𝑢(𝑡)

[2∫

𝑎

V
(𝑧
𝑟
+ 𝑧
𝑝
− 𝑧
𝑞
) 𝑑𝑧]

−1/2

𝑑V = 𝐹 (𝑎) 𝑡,

𝑡 ∈ [0, 1] ,

(13)

where 𝑎 ∈ 𝐸. One has the following.

(1) If 𝜆 > 0 and V is a positive solution of (5), V(0) ∈ 𝐸,
𝐹(V(0)) = √𝜆, and V(𝑡) = 𝑢(V(0), |𝑡|) for 𝑡 ∈ [−1, 1].

(2) If 𝑎 ∈ 𝐸 and 𝐹(𝑎) = √𝜆, V(𝑡) = 𝑢(V(0), |𝑡|) is a positive
solution of (5) with V(0) = 𝑎.

Proof. (1) Assume that𝜆 > 0 and V is a positive solution of (5).
Let 𝜏 ∈ [−1, 1] satisfy V(𝜏) = max

𝑡∈[−1,1]
V(𝑡) = 𝑎. It follows

from V(𝜏) = 0 that

[V(𝑠)]
2

= ∫

𝑠

𝜏

2V (𝜂) V (𝜂) 𝑑𝜂

= 2𝜆∫

𝑎

V(𝑠)
(𝑧
𝑟
+ 𝑧
𝑝
− 𝑧
𝑞
) 𝑑𝑧, 𝑠 ∈ (−1, 1) .

(14)

This implies that 𝑎 ≥ 𝛽 and V(𝑠) ̸= 0 if V(𝑠) < 𝑎. And combine
V(𝜏) = −𝜆(𝑎𝑟 + 𝑎𝑝 − 𝑎𝑞) < 0 to obtain

V (𝑠) > 0 for 𝑠 ∈ (−1, 𝜏) ,

V (𝑠) < 0 for 𝑠 ∈ (𝜏, 1) .
(15)

Then, we have that

V (𝑠) [2∫
𝑎

V(𝑠)
(𝑧
𝑟
+ 𝑧
𝑝
− 𝑧
𝑞
) 𝑑𝑧]

−1/2

= √𝜆, 𝑠 ∈ (−1, 𝜏) ,

−V (𝑠) [2∫
𝑎

V(𝑠)
(𝑧
𝑟
+ 𝑧
𝑝
− 𝑧
𝑞
) 𝑑𝑧]

−1/2

= √𝜆, 𝑠 ∈ (𝜏, 1) .

(16)

It follows that

∫

𝑎

V(𝑡)
[2∫

𝑎

V
(𝑧
𝑟
+ 𝑧
𝑝
− 𝑧
𝑞
) 𝑑𝑧]

−1/2

𝑑V = (𝜏 − 𝑡)√𝜆,

𝑡 ∈ [−1, 𝜏] ,

(17)

∫

𝑎

V(𝑡)
[2∫

𝑎

V
(𝑧
𝑟
+ 𝑧
𝑝
− 𝑧
𝑞
) 𝑑𝑧]

−1/2

𝑑V = (𝑡 − 𝜏)√𝜆,

𝑡 ∈ [𝜏, 1] ,

(18)

(1 − 𝜏)√𝜆 = ∫

𝑎

0

[2∫

𝑎

V
(𝑧
𝑟
+ 𝑧
𝑝
− 𝑧
𝑞
) 𝑑𝑧]

−1/2

𝑑V

= (𝜏 + 1)√𝜆.

(19)

From (19) and 𝑎 ≥ 𝛽 we have that 𝜏 = 0. With (17) and (18)
we obtain the result (1) of this theorem.

(2) Since 𝑢(𝑎, 0) = 𝑎 > 0 and 𝑢(𝑎, 𝑡) is a positive solution
of the boundary value problem

𝑢

+ [𝐹 (𝑎)]

2
(𝑢
𝑟
+ 𝑢
𝑝
− 𝑢
𝑞
) = 0, 𝑡 ∈ (0, 1) ,

𝑢


(0) = 0, 𝑢 (1) = 0,

(20)

we have that V(𝑡) = 𝑢(𝑎, |𝑡|) is a positive solution of (5).

Lemma 7. 𝐹 is differentiable on (𝛽,∞), and

𝐹 (𝑎) =

1

4√2

∫

1

0

𝐻
0
(𝑎, 𝑡) 𝑑𝑡, 𝑎 > 𝛽, (21)

𝐹


(𝑎) =

1

4√2

∫

1

0

𝐻
1
(𝑎, 𝑡) 𝑑𝑡, 𝑎 > 𝛽, (22)

where

𝐻
0
(𝑎, 𝑡) = 4𝑎[𝑃 (𝑎, 𝑡) − 𝑄 (𝑎, 𝑡)]

−1/2
,

𝐻
1
(𝑎, 𝑡) = 2[𝑃 (𝑎, 𝑡) − 𝑄 (𝑎, 𝑡)]

−3/2

× [

1 − 𝑟

𝑟 + 1

𝑎
𝑟+1

(1 − 𝑡
𝑟+1
) +

1 − 𝑝

𝑝 + 1

𝑎
𝑝+1

(1 − 𝑡
𝑝+1

)

−

1 − 𝑞

𝑞 + 1

𝑎
𝑞+1

(1 − 𝑡
𝑞+1
)] .

(23)

Proof. Equation (21) can be obtained by (11), immediately.
From

𝜕𝑃 (𝑎, 𝑡)

𝜕𝑎

=

𝜕

𝜕𝑎

× [

1 − 𝑟

𝑟 + 1

𝑎
𝑟+1

(1 − 𝑡
𝑟+1
) +

1 − 𝑝

𝑝 + 1

𝑎
𝑝+1

(1 − 𝑡
𝑝+1

)]

= 𝑎
𝑟
(1 − 𝑡

𝑟+1
) + 𝑎
𝑝
(1 − 𝑡

𝑝+1
) ,

𝜕𝑄 (𝑎, 𝑡)

𝜕𝑎

=

𝜕

𝜕𝑎

[

1

𝑞 + 1

𝑎
𝑞+1

(1 − 𝑡
𝑞+1
)] = 𝑎

𝑞
(1 − 𝑡

𝑞+1
) ,

(24)

we have that

𝜕𝐻
0
(𝑎, 𝑡)

𝜕𝑎

= 2[𝑃 (𝑎, 𝑡) − 𝑄 (𝑎, 𝑡)]
−3/2

× [

1 − 𝑟

𝑟 + 1

𝑎
𝑟+1

(1 − 𝑡
𝑟+1
) +

1 − 𝑝

𝑝 + 1

𝑎
𝑝+1

(1 − 𝑡
𝑝+1

)

−

1 − 𝑞

𝑞 + 1

𝑎
𝑞+1

(1 − 𝑡
𝑞+1
)]

= 𝐻
1
(𝑎, 𝑡) .

(25)

It follows from (21) that 𝐹 is differentiable on (𝛽,∞) and (22)
is true.
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Lemma 8. Consider the following:

lim
𝑎→𝛽

𝐹 (𝑎) = {

+∞, 𝑞 ≥ 1,

√𝜆
1
, 𝑞 < 1,

(26)

where 𝜆
1
is given by (7).

Proof. From

lim
𝑎→𝛽

∫

𝑎

𝛽

𝑑V

√2∫

𝑎

V
(𝑧
𝑟
+ 𝑧
𝑝
− 𝑧
𝑞
) 𝑑𝑧

= 0 (27)

and the Lebesgue theorem, we have that

lim
𝑎→𝛽

𝐹 (𝑎) = lim
𝑎→𝛽

∫

𝛽

0

𝑑V

√2∫

𝑎

V
(𝑧
𝑟
+ 𝑧
𝑝
− 𝑧
𝑞
) 𝑑𝑧

= ∫

𝛽

0

𝑑V

√2∫

𝛽

V
(𝑧
𝑟
+ 𝑧
𝑝
− 𝑧
𝑞
) 𝑑𝑧

.

(28)

On the other hand, from∫

𝛽

0
(𝑧
𝑟
+𝑧
𝑝
−𝑧
𝑞
)𝑑𝑧 = 0, we can obtain

that

∫

𝛽

0

𝑑V

√2∫

𝛽

V
(𝑧
𝑟
+ 𝑧
𝑝
− 𝑧
𝑞
) 𝑑𝑧

= ∫

𝛽

0

𝑑V

√2∫

V

0
(𝑧
𝑞
− 𝑧
𝑟
− 𝑧
𝑝
) 𝑑𝑧

= ∫

1

0

(𝛽𝑑𝑡)

× (√2[

(𝛽𝑡)
𝑞+1

𝑞 + 1

−

(𝛽𝑡)
𝑟+1

𝑟 + 1

−

(𝛽𝑡)
𝑝+1

𝑝 + 1

])

−1

= ∫

1

0

(𝛽𝑑𝑡)

× (2 [

𝛽
𝑟+1

𝑟 + 1

𝑡
𝑞+1

+

𝛽
𝑝+1

𝑝 + 1

𝑡
𝑞+1

−

(𝛽𝑡)
𝑟+1

𝑟 + 1

−

(𝛽𝑡)
𝑝+1

𝑝 + 1

])

−1/2

= √
𝑟 + 1

2

𝛽
(1−𝑟)/2

× ∫

1

0

𝑑𝑡

√𝑡
𝑞+1

[(1−𝑡
𝑟−𝑞
)+((𝑟+1) / (𝑝+1)) 𝛽

𝑝−𝑟
(1−𝑡
𝑝−𝑞

)]

.

(29)

This completes the proof of Lemma 8.

Lemma 9. Consider the following:

lim
𝑎→+∞

𝐹 (𝑎) =

{
{
{

{
{
{

{

0, 𝑝 > 1, 𝑟 ≥ 1 𝑜𝑟 𝑝 > 1, 𝑟 < 1,

𝜋

2√2

, 𝑝 = 1, 𝑟 = 1,

+∞, 𝑝 < 1, 𝑟 < 1.

(30)

Proof. From

lim
𝑎→+∞

𝑄 (𝑎, 𝑡)

𝑃 (𝑎, 𝑡)

= lim
𝑎→+∞

𝑎
𝑞+1

(1 − 𝑡
𝑞+1
) / (𝑞 + 1)

𝑎
𝑟+1

(1 − 𝑡
𝑟+1
) / (𝑟 + 1) + 𝑎

𝑝+1
(1 − 𝑡
𝑝+1

) / (𝑝 + 1)

= lim
𝑎→+∞

((1 − 𝑡
𝑞+1
) (𝑟 + 1) (𝑝 + 1))

× ((𝑞 + 1) (𝑝 + 1) 𝑎
𝑟−𝑞

(1 − 𝑡
𝑟+1
)

+ (𝑞 + 1)(𝑟 + 1)𝑎
𝑝−𝑞

(1 − 𝑡
𝑝+1

))

−1

= 0,

(31)

we have that

lim
𝑎→+∞

𝑎

√𝑃 (𝑎, 𝑡) − 𝑄 (𝑎, 𝑡)

= lim
𝑎→+∞

𝑎

√𝑃 (𝑎, 𝑡)

= lim
𝑎→+∞

1

√(1/ (𝑟+1)) 𝑎
𝑟−1

(1−𝑡
𝑟+1
) + (1/ (𝑝+1)) 𝑎

𝑝−1
(1−𝑡
𝑝+1

)

.

(32)

From Lemma 7 and the Lebesgue theorem, we can obtain the
results of this lemma.

In the following section, we give the proofs of Theorems
1–5. For convenience, we denote that

𝐼 (𝑎, 𝑡) =

1 − 𝑟

𝑟 + 1

𝑎
𝑟+1

(1 − 𝑡
𝑟+1
) +

1 − 𝑝

𝑝 + 1

𝑎
𝑝+1

(1 − 𝑡
𝑝+1

)

−

1 − 𝑞

𝑞 + 1

𝑎
𝑞+1

(1 − 𝑡
𝑞+1
) .

(33)

Hence from Lemma 7, we have that

𝐹


(𝑎) =

1

4√2

∫

1

0

2(𝑃 − 𝑄)
−3/2

𝐼 (𝑎, 𝑡) 𝑑𝑡, for 𝑎 > 𝛽.

(34)

Proof of Theorem 1. From 𝑝 > 𝑟 > 𝑞 ≥ 1, we obtain that

𝐼 (𝑎, 𝑡) <

1 − 𝑟

𝑟 + 1

𝑎
𝑟+1

(1 − 𝑡
𝑟+1
) +

1 − 𝑝

𝑝 + 1

𝑎
𝑝+1

(1 − 𝑡
𝑝+1

)

−

1 − 𝑞

𝑞 + 1

𝑎
𝑝+1

(1 − 𝑡
𝑝+1

)

=

1 − 𝑟

𝑟 + 1

𝑎
𝑟+1

(1 − 𝑡
𝑟+1
) +

2 (𝑞 − 𝑝)

(𝑝 + 1) (𝑞 + 1)

𝑎
𝑝+1

× (1 − 𝑡
𝑝+1

) < 0,

(35)

for 𝑎 > 𝛽, 𝑡 ∈ (0, 1). Thus 𝐹(𝑎) < 0 for 𝑎 > 𝛽. By Lemmas 6,
8, and 9, we have the results of this theorem.

Proof of Theorem 2. From 𝑝 > 𝑟 ≥ 1 > 𝑞 > −1, (33), and (34),
we have that 𝐹(𝑎) < 0 for 𝑎 > 𝛽. It follows from Lemmas 6,
8, and 9 that the results of Theorem 2 hold.
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Proof of Theorem 3. Conditions𝑝 > 1 > 𝑟 > 𝑞 ≥ 0 and (1/(𝑟+
1))+(1/(𝑝+1))−(1/(𝑞+1)) < 0 imply that 𝑟𝑝−1 > 𝑞(𝑟+𝑝+2) >
0. With (33), we obtain that

𝐼 (𝑎, 𝑡) <

1 − 𝑟

𝑟 + 1

𝑎
𝑝+1

(1 − 𝑡
𝑝+1

) +

1 − 𝑝

𝑝 + 1

𝑎
𝑝+1

(1 − 𝑡
𝑝+1

)

−

1 − 𝑞

𝑞 + 1

𝑎
𝑞+1

(1 − 𝑡
𝑞+1
)

<

2 (1 − 𝑟𝑝)

(𝑝 + 1) (𝑟 + 1)

𝑎
𝑝+1

(1 − 𝑡
𝑝+1

) −

1 − 𝑞

𝑞 + 1

𝑎
𝑞+1

× (1 − 𝑡
𝑞+1
) < 0,

(36)

for 𝑎 > 𝛽, 𝑡 ∈ (0, 1), which means that 𝐹(𝑎) < 0 for 𝑎 >

𝛽. Thus by Lemmas 6, 8, and 9, we have the results of this
theorem.

Proof of Theorem 4. From (1/3) ≥ 𝑝 > 𝑟 > 𝑞 ≥ 0 and (33), we
have that

𝐼 (𝑎, 𝑡) >

1 − 𝑟

𝑟 + 1

𝑎
𝑞+1

(1 − 𝑡
𝑞+1
) +

1 − 𝑝

𝑝 + 1

𝑎
𝑞+1

(1 − 𝑡
𝑞+1
)

−

1 − 𝑞

𝑞 + 1

𝑎
𝑞+1

(1 − 𝑡
𝑞+1
)

> (2

1 − 𝑝

𝑝 + 1

−

1 − 𝑞

𝑞 + 1

) 𝑎
𝑞+1

(1 − 𝑡
𝑞+1
)

=

𝑞 (3 − 𝑝) + (1 − 3𝑝)

(𝑝 + 1) (𝑞 + 1)

𝑎
𝑞+1

(1 − 𝑡
𝑞+1
) > 0,

(37)

for 𝑎 > 𝛽, 𝑡 ∈ (0, 1). Hence 𝐹(𝑎) > 0 for 𝑎 > 𝛽. By Lemmas
6, 8, and 9, we have the results of this theorem.

3. The Proof of Theorem 5

In this sectionwe always assume that 1 > 𝑝 > 𝑟 > 0 > 𝑞 > −1.
Denote that

𝑆 (𝑎, 𝑡) =

𝑃 (𝑎, 𝑡)

𝑄 (𝑎, 𝑡)

, 𝑎 > 𝛽, 𝑡 ∈ (0, 1) , (38)

ℎ
1
(𝑠) = (𝑠 − 1) (𝑠 − 𝑛) , 𝑠 ∈ (−∞,∞) , (39)

ℎ
2
(𝑠) = −3 (𝑠 − 𝑚) (𝑠 − 𝑛) + 2 (𝑠 − 1) (𝑠 − 𝑙) ,

𝑠 ∈ (−∞,∞) ,

(40)

where 𝑃(𝑎, 𝑡), 𝑄(𝑎, 𝑡), and 𝛽 are given by (10), (6), and

𝑚 = 𝑚 (𝑡) =

𝑞 + 1

𝑟 + 1

−

(𝑝 − 𝑟) (𝑞 + 1)

(𝑝 + 1) (𝑟 + 1)

𝑎
𝑝−𝑞 1 − 𝑡

𝑝+1

1 − 𝑡
𝑞+1

,

𝑎 > 𝛽, 𝑡 ∈ (0, 1) ,

𝑛 = 𝑛 (𝑡) =

1 − 𝑞

1 − 𝑟

+

(𝑝 − 𝑟) (𝑞 + 1)

(𝑝 + 1) (1 − 𝑟)

𝑎
𝑝−𝑞 1 − 𝑡

𝑝+1

1 − 𝑡
𝑞+1

,

𝑎 > 𝛽, 𝑡 ∈ (0, 1) ,

𝑙 = 𝑙 (𝑡) =

1 − 𝑞
2

1 − 𝑟
2
+

(𝑝
2
− 𝑟
2
) (𝑞 + 1)

(𝑝 + 1) (1 − 𝑟
2
)

𝑎
𝑝−𝑞 1 − 𝑡

𝑝+1

1 − 𝑡
𝑞+1

,

𝑎 > 𝛽, 𝑡 ∈ (0, 1) .

(41)

Remark 10. From 1 > 𝑝 > 𝑟 > 0 ≥ 𝑞 > −1, (6), and (41), it is
obvious that𝑚 < 1, 𝑛 > 1, and 𝑙 < 𝑛.

Lemma 11. For 𝑎 > 𝛽 and 𝑡 ∈ (0, 1),

𝑞 + 1

𝑟 + 1

𝑎
𝑟−𝑞

+

𝑞 + 1

𝑝 + 1

𝑎
𝑝−𝑞

<

𝑃 (𝑎, 𝑡)

𝑄 (𝑎, 𝑡)

< 𝑎
𝑟−𝑞

+ 𝑎
𝑝−𝑞

. (42)

Proof. Let

𝐾 (𝑡) =

𝑎
𝑟

𝑟 + 1

[(𝑟 − 𝑞) 𝑡
𝑟+𝑞+1

+ (𝑞 + 1) 𝑡
𝑞
− (𝑟 + 1) 𝑡

𝑟
]

+

𝑎
𝑝

𝑝 + 1

[(𝑝 − 𝑞) 𝑡
𝑝+𝑞+1

+ (𝑞 + 1) 𝑡
𝑞
− (𝑝 + 1) 𝑡

𝑝
] .

(43)

Condition 1 > 𝑝 > 𝑟 > 0 > 𝑞 > −1 implies that

𝐾


(𝑡) =

𝑎
𝑟

𝑟 + 1

[ (𝑟 − 𝑞) (𝑟 + 𝑞 + 1) 𝑡
𝑟+𝑞

+ (𝑞 + 1) 𝑞𝑡
𝑞−1

− (𝑟 + 1) 𝑟𝑡
𝑟−1
]

+

𝑎
𝑝

𝑝 + 1

[ (𝑝 − 𝑞) (𝑝 + 𝑞 + 1) 𝑡
𝑝+𝑞

+ (𝑞 + 1) 𝑞𝑡
𝑞−1

− (𝑝 + 1) 𝑝𝑡
𝑝−1

]

<

𝑎
𝑟

𝑟 + 1

[(𝑟 − 𝑞) (𝑟 + 𝑞 + 1)

+ (𝑞 + 1) 𝑞 − (𝑟 + 1) 𝑟] 𝑡
𝑟+𝑞

+

𝑎
𝑝

𝑝 + 1

[(𝑝 − 𝑞) (𝑝 + 𝑞 + 1) + (𝑞 + 1) 𝑞

− (𝑝 + 1) 𝑝] 𝑡
𝑝+𝑞

= 0, 𝑡 ∈ (0, 1) .

(44)

With𝐾(1) = 0 and (44), we have that𝐾(𝑡) > 0 for 𝑡 ∈ (0, 1).
It follows that

𝜕

𝜕𝑡

𝑃 (𝑎, 𝑡)

𝑄 (𝑎, 𝑡)

=

𝑞 + 1

(1 − 𝑡
𝑞+1
)
2
𝑎
−𝑞
𝐾 (𝑡) > 0, 𝑡 ∈ (0, 1) . (45)

Combining

lim
𝑡→0

𝑃 (𝑎, 𝑡)

𝑄 (𝑎, 𝑡)

=

𝑞 + 1

𝑟 + 1

𝑎
𝑟−𝑞

+

𝑞 + 1

𝑝 + 1

𝑎
𝑝−𝑞

,

lim
𝑡→1

𝑃 (𝑎, 𝑡)

𝑄 (𝑎, 𝑡)

= 𝑎
𝑟−𝑞

+ 𝑎
𝑝−𝑞

,

(46)

we have the results of this lemma.

Lemma 12. For 1 > 𝑝 > 𝑟 > 0 > 𝑞 > −1,

lim
𝑎→𝛽

𝐹


(𝑎) =

1

2√2

(

𝑞 + 1

𝛽
𝑞+1

)

1/2

𝜃 (𝑟, 𝑝, 𝑞) . (47)
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Proof. From Lemma 7 we have that

2√2𝐹


(𝑎)

= ∫

1

0

((

1 − 𝑟

𝑟 + 1

𝑎
𝑟+1

(1 − 𝑡
𝑟+1
) +

1 − 𝑝

𝑝 + 1

𝑎
𝑝+1

(1 − 𝑡
𝑝+1

)

−

1 − 𝑞

𝑞 + 1

𝑎
𝑞+1

(1 − 𝑡
𝑞+1
))

× ([𝑃 (𝑎, 𝑡) − 𝑄 (𝑎, 𝑡)]
3/2
)

−1

)𝑑𝑡

= ∫

1

0

1 − 𝑟

[𝑃 (𝑎, 𝑡) − 𝑄 (𝑎, 𝑡)]
1/2
𝑑𝑡

−

𝑟 − 𝑞

𝑞 + 1

𝑎
𝑞+1

∫

1

0

1 − 𝑡
𝑞+1

[𝑃 (𝑎, 𝑡) − 𝑄 (𝑎, 𝑡)]
3/2
𝑑𝑡

−

𝑝 − 𝑟

𝑝 + 1

𝑎
𝑝+1

∫

1

0

1 − 𝑡
𝑝+1

[𝑃 (𝑎, 𝑡) − 𝑄 (𝑎, 𝑡)]
3/2
𝑑𝑡.

(48)

It follows from Lebesgue theorem that

lim
𝑎→𝛽

∫

1

0

1 − 𝑟

[𝑃 (𝑎, 𝑡) − 𝑄 (𝑎, 𝑡)]
1/2
𝑑𝑡

= ∫

1

0

1 − 𝑟

[𝑃 (𝛽, 𝑡) − 𝑄 (𝛽, 𝑡)]
1/2
𝑑𝑡,

lim
𝑎→𝛽

𝑟 − 𝑞

𝑞 + 1

𝑎
𝑞+1

∫

1

0

1 − 𝑡
𝑞+1

[𝑃 (𝑎, 𝑡) − 𝑄 (𝑎, 𝑡)]
3/2
𝑑𝑡

+ lim
𝑎→𝛽

𝑝 − 𝑟

𝑝 + 1

𝑎
𝑝+1

∫

1

0

1 − 𝑡
𝑝+1

[𝑃 (𝑎, 𝑡) − 𝑄 (𝑎, 𝑡)]
3/2
𝑑𝑡

=

𝑟 − 𝑞

𝑞 + 1

𝛽
𝑞+1

∫

1

0

1 − 𝑡
𝑞+1

[𝑃 (𝛽, 𝑡) − 𝑄 (𝛽, 𝑡)]
3/2
𝑑𝑡

+

𝑝 − 𝑟

𝑝 + 1

𝛽
𝑝+1

∫

1

0

1 − 𝑡
𝑝+1

[𝑃 (𝛽, 𝑡) − 𝑄 (𝛽, 𝑡)]
3/2
𝑑𝑡.

(49)

Finally, ∫𝛽
0
(𝑧
𝑟
+ 𝑧
𝑝
− 𝑧
𝑞
)𝑑𝑧 = 0 implies that

𝑃 (𝛽, 𝑡) − 𝑄 (𝛽, 𝑡)

= ∫

𝛽𝑡

0

(𝑧
𝑞
− 𝑧
𝑟
− 𝑧
𝑝
) 𝑑𝑧

=

(𝛽𝑡)
𝑞+1

𝑞 + 1

(1 − 𝑚
1
𝛽
𝑟−𝑞
𝑡
𝑟−𝑞

− 𝑚
2
𝛽
𝑝−𝑞

𝑡
𝑝−𝑞

) .

(50)

Combing (49) and (50), we complete the proof of this lemma.

Lemma 13. 𝐹(𝑎) has continuous derivatives up to second order
on (𝛽,∞) as follows:

𝐹


(𝑎) =

1 − 𝑟

2√2

∫

1

0

𝐺 (𝑎, 𝑡) ℎ
1
(𝑆 (𝑎, 𝑡)) 𝑑𝑡, 𝑎 > 𝛽, (51)

𝐹


(𝑎) =

1 − 𝑟
2

4𝑎√2

∫

1

0

𝐺 (𝑎, 𝑡) ℎ
2
(𝑆 (𝑎, 𝑡)) 𝑑𝑡, 𝑎 > 𝛽, (52)

where 𝐺(𝑎, 𝑡) = [𝑆(𝑎, 𝑡) − 1]−5/2[𝑄(𝑎, 𝑡)]−1/2.

Proof. Equation (51) can be obtained by

𝐻
1
(𝑎, 𝑡) = 2[𝑃 (𝑎, 𝑡) − 𝑄 (𝑎, 𝑡)]

−3/2

× [ (1 − 𝑟) 𝑃 (𝑎, 𝑡) − (1 − 𝑞)𝑄 (𝑎, 𝑡)

−

𝑝 − 𝑟

𝑝 + 1

𝑎
𝑝+1

(1 − 𝑡
𝑝+1

)]

= 2[

𝑃 (𝑎, 𝑡)

𝑄 (𝑎, 𝑡)

− 1]

−5/2

[𝑄 (𝑎, 𝑡)]
−1/2

× (1 − 𝑟) [

𝑃 (𝑎, 𝑡)

𝑄 (𝑎, 𝑡)

−

1 − 𝑞

1 − 𝑟

−

(𝑝 − 𝑟) (𝑞 + 1)

(𝑝 + 1) (1 − 𝑟)

× 𝑎
𝑝−𝑞 1 − 𝑡

𝑝+1

1 − 𝑡
𝑞+1

] [

𝑃 (𝑎, 𝑡)

𝑄 (𝑎, 𝑡)

− 1]

= 2 (1 − 𝑟) 𝐺 (𝑎, 𝑡) ℎ
1
(𝑆 (𝑎, 𝑡))

(53)

and Lemma 7, immediately. From (24) we have that

𝑎

𝜕𝐻
1
(𝑎, 𝑡)

𝜕𝑎

= −3(𝑃 − 𝑄)
−5/2

× [ (𝑟 + 1) 𝑃 − (𝑞 + 1)𝑄

+

𝑝 − 𝑟

𝑝 + 1

𝑎
𝑝+1

(1 − 𝑡
𝑝+1

)]

× [(1 − 𝑟) 𝑃 − (1 − 𝑞)𝑄 −

𝑝 − 𝑟

𝑝 + 1

𝑎
𝑝+1

× (1 − 𝑡
𝑝+1

) ] + 2(𝑃 − 𝑄)
−3/2

× [ (1 − 𝑟
2
) 𝑃 − (1 − 𝑞

2
)𝑄

−

𝑝
2
− 𝑟
2

𝑝 + 1

𝑎
𝑝+1

(1 − 𝑡
𝑝+1

)]

= (

𝑃

𝑄 − 1

)

−3/2

(1 − 𝑟
2
)

× {−3 [𝑃 −

𝑞 + 1

𝑟 + 1

𝑄 +

(𝑝 − 𝑟)

(𝑝 + 1) (𝑟 + 1)

× 𝑎
𝑝+1

(1 − 𝑡
𝑝+1

) ]

× [𝑃 −

1 − 𝑞

1 − 𝑟

𝑄 −

(𝑝 − 𝑟)

(𝑝 + 1) (1 − 𝑟)

𝑎
𝑝+1

× (1 − 𝑡
𝑝+1

) ] + 2 (𝑃 − 𝑄)
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× [𝑃 −

1 − 𝑞
2

1 − 𝑟
2
𝑄 −

(𝑝
2
− 𝑟
2
)

(𝑝 + 1) (1 − 𝑟
2
)

× 𝑎
𝑝+1

(1 − 𝑡
𝑝+1

) ]}

= (1 − 𝑟
2
)𝐺 (𝑎, 𝑡) ℎ

2
(𝑆 (𝑎, 𝑡)) ,

(54)

and so (52) holds.

Lemma 14. There exist 𝛿(𝑟, 𝑝, 𝑞) > 0 and 𝜂(𝑟, 𝑝, 𝑞) > 0 such
that

𝐹


(𝑎) + 𝛿 (𝑟, 𝑝, 𝑞) 𝐹


(𝑎)

1 + 𝑟

2𝑎

> 𝜂 (𝑟, 𝑝, 𝑞) (𝑎
𝑟−𝑞

+ 𝑎
𝑝−𝑞

)
−5/2

𝑎
−(3+𝑞)/2

𝑓𝑜𝑟 𝑎 > 𝛽.

(55)

Proof. From (41) and 1 > 𝑝 > 𝑟 > 0 > 𝑞 > −1, we have that

min
𝑠∈[1,𝑛]

ℎ
2
(𝑠) = min {ℎ

2
(1) , ℎ

2
(𝑛)}

= (𝑛 − 1)min {3 (1 − 𝑚) , 2 (𝑛 − 𝑙)}
≥ 2 (𝑛 − 1)min {(1 − 𝑚) , (𝑛 − 𝑙)}

> 2 (𝑛 − 1)min{
𝑟 − 𝑞

𝑟 + 1

,

(1 − 𝑞) (𝑟 − 𝑞)

1 − 𝑟
2

}

= 2 (𝑛 − 1)

𝑟 − 𝑞

𝑟 + 1

.

(56)

And since ℎ
1
((1 + 𝑛)/2) = −((𝑛 − 1)

2
/4) < 0, let 𝛿(𝑟, 𝑝, 𝑞) > 0

satisfy

min
𝑠∈[1,𝑛]

[ℎ
2
(𝑠) + 𝛿 (𝑟, 𝑝, 𝑞) ℎ

1
(𝑠)] = 2 (𝑛 − 1)

𝑟 − 𝑞

𝑟 + 1

. (57)

Set

ℎ (𝑠) = ℎ
2
(𝑠) + 𝛿 (𝑟, 𝑝, 𝑞) ℎ

1
(𝑠) , 𝑠 ∈ (−∞,∞) . (58)

From ℎ(𝑠) = (𝛿−1)𝑠
2
+(3𝑚+3𝑛−2𝑙−2−𝛿−𝛿𝑛)𝑠−3𝑚𝑛+2𝑙+𝛿𝑛,

we have that 𝛿(𝑟, 𝑝, 𝑞) − 1 > 0 and

ℎ (𝑠) ≥ min
𝑠∈[1,𝑛]

ℎ (𝑠) = 2 (𝑛 − 1)

𝑟 − 𝑞

𝑟 + 1

, 𝑠 ∈ (−∞,∞) .

(59)

On the other hand, from (10), (38), and Lemma 11, we have
that

0 < 𝑄 (𝑎, 𝑡) <

1

𝑞 + 1

𝑎
𝑞+1
,

0 <

𝑞 + 1

𝑎
𝑞+1

∫

𝑎

0

(𝑧
𝑟
+ 𝑧
𝑝
− 𝑧
𝑞
) 𝑑𝑧

=

𝑞 + 1

𝑟 + 1

𝑎
𝑟−𝑞

+

𝑞 + 1

𝑝 + 1

𝑎
𝑝−𝑞

− 1

< 𝑆 (𝑎, 𝑡) − 1 < 𝑆 (𝑎, 𝑡) < 𝑎
𝑟−𝑞

+ 𝑎
𝑝−𝑞

,

(60)

for 𝑎 > 𝛽, 𝑡 ∈ (0, 1).

This means that

𝐺 (𝑎, 𝑡) = [𝑆 (𝑎, 𝑡) − 1]
−5/2

[𝑄 (𝑎, 𝑡)]
−1/2

> (𝑎
𝑟−𝑞

+ 𝑎
𝑝−𝑞

)
−5/2

𝑎
−(1+𝑞)/2

√1 + 𝑞,

(61)

for 𝑎 > 𝛽, 𝑡 ∈ (0, 1). It follows from Lemma 13 and (58) that

𝐹


(𝑎) + 𝛿 (𝑟, 𝑝, 𝑞) 𝐹


(𝑎)

1 + 𝑟

2𝑎

=

1 − 𝑟
2

4𝑎√2

∫

1

0

𝐺 (𝑎, 𝑡) ℎ (𝑆 (𝑎, 𝑡)) 𝑑𝑡.

(62)

Now, from (59)–(62) we have (55), where

𝜂 (𝑟, 𝑝, 𝑞) =

(1 − 𝑟) (𝑟 − 𝑞)√1 + 𝑞

2√2

∫

1

0

[𝑛 (𝑡) − 1] 𝑑𝑡. (63)

Lemma 15. If 𝜃(𝑟, 𝑝, 𝑞) ≥ 0, then 𝐹(𝑎) > 0 for 𝑎 > 𝛽. If
𝜃(𝑟, 𝑝, 𝑞) < 0, then there exists 𝑎∗ > 𝛽, such that 𝐹(𝑎) < 0 for
𝑎 ∈ (𝛽, 𝑎

∗
) and 𝐹(𝑎) > 0 for 𝑎 > 𝑎∗.

Proof. It follows from Lemma 14 that if

𝐹


(𝑎) = 0, then 𝐹 (𝑎) > 0, (64)

and then

𝐹


(𝑎) has at most one zero in (𝛽,∞) . (65)

By (40), (42), and (51) we can obtain that

𝐹


(𝑎) > 0 for 𝑃 (𝑎, 𝑡)
𝑄 (𝑎, 𝑡)

> 𝑛 (𝑡) . (66)

With (10) and (41), (66) implies that

𝐹


(𝑎) > 0 for
𝑞 + 1

𝑟 + 1

𝑎
𝑟
+ (

𝑞 + 1

𝑝 + 1

−

𝑝 − 𝑟

1 − 𝑟

) 𝑎
𝑝
>

1 − 𝑞

1 − 𝑟

𝑎
𝑞
.

(67)

If 𝜃(𝑟, 𝑝, 𝑞) ̸= 0, then from Lemma 12 and (64)–(67) we have
the results of this lemma, immediately. If 𝜃(𝑟, 𝑝, 𝑞) = 0, then
by Lemmas 12 and 14 we have that 𝐹(𝑎) > 0 for 𝑎 near 𝛽, and
so 𝐹(𝑎) > 0 for 𝑎 near 𝛽. Thus, it follows from (64)–(67) that
𝐹

(𝑎) > 0 for 𝑎 > 𝛽.

Proof of Theorem 5. From Lemmas 6, 8, 9, and 15, we can
obtain the results of Theorem 5.
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