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This paper considers the existence of positive solutions of the boundary value problems v"' + A(v' +vf —19) = 0 and v(~1) = v(1) = 0,
where p > r > g > —1 and A is a positive parameter. Using a time-map approach, we obtain the exact number of positive solutions

in different cases.

1. Introduction and Main Results

The study of multiplicity results to boundary value problem

V4 Af(v) =0, te(ab),

v(a) =v(b) =0, 2

where A > 0 is a positive parameter, is very interesting
because of its applications. As we know, when f(v) = v/ (x) +
v1(x), the boundary value problem

V' (x) = w? (x) +v1(x), a<x<b,
v(x) >0, x¢€(ab), (2)
v(a)=v(b) =0,

where 0 < g < 1 < pand k > 0 are fixed given numbers and
p > 0 is a parameter, comes from the elliptic problem

“Au=wl+uf, xeQ,
u>0, xeQ, (3)
u=0, xe€oQ,

with 0 < g < 1 < p, which was raised by Ambrosetti et al. in
[1].

Under different assumptions on f, there are many results
for the above problems and elliptic equations (see [2-8]).

In [9, 10], Liu considered the case of f(v) = v* + (1/A)v1
and f(v) = v’ +v1+kv and gave the exact number of solutions
and many interesting properties of the solutions.

Cheng [11] investigated the following two-point boundary
value problem:

-y =20 -y7), te(-11),
y(=1)=y(1)=0,

where A > 0 is a positive parameter and p > g > —1 and got
the exact number of positive solutions.
Now, in this paper we consider the more general case

(4)

N S I ay “L1),
v (V' +vP =), te(-1,1) )
v(-1)=v(1) =0,

where A > 0 is a positive parameter, p > ¥ > g > —1, and

(1/(r+ 1))+ (1/(p+1)) - (1/(g + 1)) <0.
Define 3, where f8 satisfies

g, B P

_ -0 (6)
r+1 p+1 g+1
For p>r>gand-1< g < 1,let A, be given by
M
el
=B Z
§ Jl dt
D E (=) (G D (por ) BT (1= 27)]
7)

The main results of this paper are as follows.



Theorem 1. If p > r > q > 1, (5) has exactly one positive
solution for any A > 0.

Theorem2. Ifp > r > 1 > q > —1, (5) has exactly one positive
solution for A € (0,A,] and none for A > A;.

Theorem 3. If p > 1 > r > g > 0, (5) has exactly one positive
solution for A € (0, A,] and none for A > A,.

Theorem 4. If (1/3) = p > r > q > 0, (5) has exactly one
positive solution for A € (A, +00) and none for A < A,.

Theorem 5. Assumethat1 > p >r >0 > q > —1. Define

0(r, p.q)

! 1—r
:J 1/2dt
o 699 (1m0~ r14)

1 1-— tq+1
~(r-a)| e
0 (1971 (1= m, g1 — mypr-atr-a)]

(p-1r)(g+ 1)ﬁp_q
p+1
1 _ 4ptl
XJ 1=t 3/zdt,
0 {6941 (1= my 9070 — m, Be-a¢p-1)]

(8)

wherem, = (q+1)/(r + 1) and m, = (q+ 1)/(p + 1). One has
the following.

(1) If0(r, p,q) = 0, (5) has exactly one positive solution
for A € (Ay,+00) and none for A € (0,7,).

(2) If 6(r, p,q) < O, there exists A, € (0,A,) such that
(5) has exactly two positive solutions for A € (Ay, A,],

exactly one for A € (A,,+00) or A = A, and none for
A €(0,A).

2. The Proofs of Theorems 1-4

We assume throughout this section that p > r > g > —1 and

1 1 1
+ - <
r+1 p+1 g+1

0. 9)

Denote that E = (3, +00), where f3 is given by (6). Fora > 3
andt € (0,1), let
a

P(a,t) :J (2" +2)dz,

at

Qat) = J 2Adz. (10)

at
Define a function F : E — (0, +00) as
a a -1/2
F(a)=J [ZJ (zr+zp—zq)dz] dv forac€E.
0 v
(11)
It is clear that foﬁ (z" + 2P — z7)dz = 0. Now we claim that a” +

af—a? > 0fora > fand _[;[2 Lu(zr +2zP - zq)dz]_l/zdv < 0o
ifand onlyifa € E.
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Let g,(z) = 2P and g,(z) = 2" - 2% then f(z2) =
91(2)+g,(z). Immediately, we get that g/, (x) = rz ' —qz1™" =
2771 (rz"™1 - g). In order to judge the sign of g}(x), we just
judge the sign of T(z) = rz" % — q. Since T(0) = —q, T(1) =
r—qand T'(z) = r(r—q)z" 1", we can get the following two
results.

(1) For r > q > 0, the function g,(z) has a stable point
Zy = (q/r)l/(rfq). When z € (0, z,), we have gj(2) < 0,
and when z € (z;, +00), we have g;(z) > 0.

(2) Forr > 0 > g, we have g;(z) > 0onz € (0,+00).
Combining g} (x) = pz?" and g}’ (x) = p(p - 1)z72
with the above two results, we obtain the monotony

of f(2).

(3)Forp =1 > r > q > 0, the function f(z) has a
stable point z, on (0,1). When z € (0,z,), we have
f'(z) < 0.and when z € (0, z,), we have f'(z) > 0.

(4)Forl >p>r>qg> O,wehavethatf'(z) > 0 on
(0, +00).

(5)Forp>r>0>gqorp>0>r > q,we have that
f'(z) > 0 0n (0, +00).

Then from Ioﬁ(zr+zp—zq)dz = 0, weinfer thata”+a?—a? > 0
fora > f5.
We consider the

integration _[; [2 .[j(zr +zP-

zq)dz]fl/zdv. It is clear that v = a is a flaw point. Since

'[(;l 2 _[Va(zr +zP - zq)dz]_l/zdv < jou[2 Iva(zp - zq)dz]_l/zdv

on E, we consider the integration _[; [2 _[f(zp _ Zq)dz]_l/zdv'
Using Lagrange theorem, we obtain that
@ a -1/2
J [ZI (27 - 29) dz] dv
0 v
_ J‘“ ) aP+1 - VPH
0 p+1l p+1
q+1 q+1 -1/2
] dv
q+1 g+1

= j 2lv+6,@-nl* @~ 12)

0

2+ 6, (@-)]a-v} dv

= j 2@-v""{[v+6,@a-v)*

0
~[v+6,(@a- v)]q}_l/zdv

< 00,

where 0,,0, € (0,1) are constants.

The following Lemma 6 is listed to show that to study
the number of positive solutions of (5) is equivalent to study
the shape of the map F(a) on E. Lemmas 7-9 show some
properties of F(a) on E.
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Lemma 6. Let u(a,t) be the unique solution of the problem

0O<u(t)<a,

a -1/2 13)
J (2" +2f -z%)dz| dv=F(a)t,

v

a
[
u(t)

where a € E. One has the following.

tel0,1],

(1) If A > 0 and v is a positive solution of (5), v(0) € E,
F(»(0)) = VA, and v(t) = u(v(0), |t]) fort € [-1,1].
(2) Ifa € Eand F(a) = VA, v(t) = u(v(0), |t]) is a positive
solution of (5) with v(0) = a.
Proof. (1) Assume that A > 0 and visa positive solution of (5).
Let 7 € [-1,1] satisfy v(7) = max,_; ;jv(t) = a. It follows
from v'(7) = 0 that

Y@L = [ 2" v ()

a
=21 J (2" +2F - z7)dz,
v(s)

(14)
se(-1,1).

This implies thata > S and V' (s) #0if v(s) < a. And combine
V(1) = =Ma" + a? — a9) < 0 to obtain

V' (s)>0 forse(-1,1),
, (15)
v (s) <0 forse(r1).

Then, we have that
a -1/2
v (s) [ZJ (z’+zp—zq)dz] =V, se(-1,1),
v(s)

a -1/2
—v' (s) [2 J (2" + 2P - 29) dz] =V, se(r1).
v(s) (16)

It follows that

a
E
v(t)

a -1/2
J (2" +zp—zq)dz] dv=(t-1t) VA,

v

tel[-1,1],

17)

a a -1/2
J [ZJ (zr+zp—zq)dz] dv=(t-1) VA,
v(t) v

telrnl],
(18)

(1-17)VA= J: [2 r (2" +2zF - 29) dz]l/zdv

v

19)
=(t+1) VaA.

From (19) and a > f we have that 7 = 0. With (17) and (18)
we obtain the result (1) of this theorem.

(2) Since u(a, 0) = a > 0 and u(a, t) is a positive solution
of the boundary value problem

W'+ [F@)P W +u? —ul) =0,

4 (0) =0, u(l) =0,

0,1),
reon (20)

we have that v(t) = u(a, [t]) is a positive solution of (5). [

Lemma 7. F is differentiable on (f3, 00), and

1 1
F (a) = m JO HO (a, t) dt, a > ﬁ, (21)
/ I
Fa= L H (abd, a>p (22

where

H, (a,t) = 4a[P (a,t) - Q (@, 1)] *,
H, (a,t) = 2[P (a,t) - Q(a,1)]

% |::+;71”ar+1 (1 _ tr+1) + Hapﬂ (1 _ tp+1)

_ﬁaw (1- tw)] .

(23)

Proof. Equation (21) can be obtained by (11), immediately.
From

oP(a,t) 0
da  Oa
I1-7 1 1y, L= P pn 1
x|t (- )+ o Ear (10 )

=ar(1—tr+1)+ap(l—tp+l),

aQ(a,t)_i 1 +1 (g1 | _ g+l
da ‘aa[qﬂ“q (1= )]_a4(1 ),
(24)

we have that

Mo @1 _ ip(a,1) - Qa0
da

% |::+;71’ar+1 (1 _ tr+1) " Hapﬂ (1 _ tp+1)

1-
_qT‘fanrl (1 _ tq+l):|

=H, (a,t).
(25)

It follows from (21) that F is differentiable on (3, co) and (22)
is true. ]



Lemma 8. Consider the following:

. +00, g=1,
limF (a) = 2
O o
where A is given by (7).
Proof. From
a
lim J = dv =0 (27)
a—-pJg \/2 .[v (2" +zP - z9) dz
and the Lebesgue theorem, we have that
B
lim F (a) = lim J . dv
a—p a—BJo \/2.[1/ (2" +zP - z9) dz
(28)

_J’ﬁ dv

’ \jz If (z" +zP — z9) dz

On the other hand, from Ioﬁ (2" +zP -z%)dz = 0, we can obtain
that

J’B dv
0

\/2 Lﬁ (z" +zP - z9) dz

_ J‘ﬁ dv
0 \/2 _[OV (z9—-2z"—zP)dz

= [ (gar

y <\/2 [(ﬁt)q+1 B (ﬁt)r+1 B (ﬁt)p+1:|>_l
q+1 r+1 p+1
- | (pa)

1
0
r+1 p+1
x| 2 ﬁ—tq“ +ﬁ—tqul
r+1 p+1

B (gt D/

r+1 p+1
N LERYGERE
- \/ 2 P
Jl dt
X .
O\t [(1=t0)+((r+1) / (p+1)) BT (1-2279)]
(29)
This completes the proof of Lemma 8. O
Lemma 9. Consider the following:
0, p>Lrxlorp>1,r<l,
n
i = =t} = 1, r= 1,
aEerF (a) 2 p (30)

+00, p<l,r<l
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Proof. From

Q(a1)
m ———
a—+oo P (a,t)

I at (1-11") /(q+1)
T TG D e (L oD
lim ((1-¢"")r+1)(p+1))

X ((q +1)(p+1)a™(1- t’“)
+(g+ D(r+1)af™9(1 - 1‘p+1))_1
=0,
(31)
we have that
lim ——— 2%
a—+eo \/P(a)t)_Q(a>t)
a*)+00"/P(a,t)
= lim ! .
TN )t (1=t + (1 (p+1)) @ (1-6071)
(32)

From Lemma 7 and the Lebesgue theorem, we can obtain the
results of this lemma. O

In the following section, we give the proofs of Theorems
1-5. For convenience, we denote that

I(at) = :;rarﬂ (1 _ tr+1) n Haml (1 _ tp+1)

+1
(33)
_ 124 g0 (1-1),
q+1
Hence from Lemma 7, we have that
1 (! _
F'a=—J2P— 3/21a,tdt, for a > f.
(a) a3 b (P-Q) (a,1) B
(34)
Proof of Theorem 1. From p > r > q > 1, we obtain that
- 1-
I(a,t) < uar“ (1 - t”l) b P gen (1 —tP“)
r+1 p+1
_ ﬂapﬂ (1 _ tp+1>
q+1 (35)
_ l_rar+1 (l_tr+1)+ Z(q—p) P!
r+1 (p+1)(g+1)

x(1-t"") <o,

fora > f,t € (0,1). Thus F'(a) < 0 for a > f3. By Lemmas 6,
8, and 9, we have the results of this theorem. O]

Proof of Theorem 2. From p > r > 1 > g > —1,(33), and (34),
we have that F'(a) < 0 fora > B. It follows from Lemmas 6,
8, and 9 that the results of Theorem 2 hold. O
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Proof of Theorem 3. Conditions p > 1>+ > g > 0and (1/(r+

D)+(1/(p+1))-(1/(g+1)) < Oimplythatrp—1 > g(r+p+2) >
0. With (33) we obtain that

1 p+1 (1 _ tp+1) + ;Papﬂ (1 _ tp+1)

I(a,t)<
pt+1

—4q gx1 +1
_q?aq (1=¢7) (36)
2(1—1’])) p+l p+l
(p+1)(r+1)a (1_t )_
x(l—tq+1)<0,

_qaq+1
q+1

fora > f5,t € (0,1), which means that F'(a) < 0fora >
B. Thus by Lemmas 6, 8, and 9, we have the results of this
theorem. O

Proof of Theorem 4. From (1/3) > p > r > g > 0 and (33), we
have that

It > —tat (1-401) ¢ —Laot (1)
_ %aqﬂ (1 _ tq+1)

1- 1-
><2 P__Q>aq+1 (l_tq+1)
p+tl g+1

_q(3_p)+(1_3p)aq+l g+l >
ST en@en 4 Um0

fora > B,t € (0,1). Hence F'(a) > 0fora > B. By Lemmas
6, 8, and 9, we have the results of this theorem.

(37)

3. The Proof of Theorem 5

In this section we always assume that1 > p >+ >0 > g > —1.
Denote that

P(a,t)
Q(a,t)’
hi(s)=(s-1)(s—n),

S(a,t) =

a>p, te(0,1), (38)

s € (—00,00), (39)

hy(s)=-3(s-m)(s—-n)+2(s—1)(s-1),
(40)
s € (—00,00),
where P(a,t), Q(a, t), and B are given by (10), (6), and
- o pHl
m:m(t):q+1_(p r)(q+1)ap_q1 b ’
r+1 (p+1)(r+1) 1 _ za+l
a>p, te(0,1),
- _ 4ptl
n:n(t)zl_q (p r)(‘l+1)p 1-¢tP
1-r (P+1)(1—r) 1 -+’ (41)

a>p te(01),

1-¢ (PP-7)@+1) 14—
= + a >
1-r2 (p+1)(1-r?) 1 -+t
a>p, te(0,1).

Remark 10. From 1 > p>r > 0> g > —1,(6), and (41), it is
obvious thatm < 1,n > 1,and [ < n.

Lemma 11. Fora > Bandt € (0,1),

9t g, AP pa PaD) <ad T+af 1 (42)
r+1 p+1 Q(a,t)
Proof. Let

K(t) = “—r [(r— O+ (g4 1)t (r 4 )]

[(p @) t" T+ (g + 1) 87— (p+ 1) 7]
(43)

p+l

Condition 1 > p > r > 0 > g > —1 implies that

r

K (t) = [(r—q)(r+q+1)tr+q

—(r+ l)rtr_l]

r+1
+(qg+1)qt?!
p
+
p+1

[(p-a)(p+q+1)t"

q-1 _ p-1
+(q+1) gt = (p+1) pt*] )

7

[(r-aq)(r+q+1)
+(q+1)g-(r+1)r|t™

r+1

@ - (prar )+ 1)q

p+1

-(p+1)p]tP" =0, te(01).

With K(1) = 0 and (44), we have that K(t) > 0 for t € (0, 1).
It follows that

EP(a,t) B
ot Q(at)

q+1

-q
- tq+1)2a K(t) >0,

te(0,1). (45)

Combining

P(a,t) q+1
im————=
t-0Q(a,t) r+1

. P(at)

lim————=

t=1Q(a, 1)

rq+q+1ap—q
p+1

=a 1+ aP™,

>

(46)

we have the results of this lemma. O

Lemmal2. Forl1>p>r>0>¢g>-1,

1/2
hmﬁF (a) = > 0(r,p.q). (47)

2\1/_<L/13;r+1



Proof. From Lemma 7 we have that

2\/51;, (a)
! 17 r+1 r+1 1 P p+1 p+1
J <<r +1 (1 g ) p+ 1 (1 ‘ )

0
1-
_q+?aq+1 (1 _tq+l)>

x (IP(a,t) - Q(a, t)]3/2)_1> dt

211 1-7 gt
0 [P(a,t) - Q(a,1)]"

_r_qaqﬂJ'l 1-t1! dt
o [P(a,t) - Q(a, 1)

q+1
~ uap+1 J>1 1- tP+1 dt
p+1 o [P(a,t) - Q(a,t)]*?
(48)
It follows from Lebesgue theorem that
1 _
lim J Lor dt
a=plo [P(a,t) - Q(a,1)]'?
1 _
=J 1-r 1/zdt’
o [P(B.t)-Q(B.1)]
_ 1 _4qtl
lim ~—4 41! J s 5zt
aaﬁq+l 0 [P(a,t)—Q(a,t)] /
—r 1-tP*! )
+lim—p PHJ 32t
aaﬁp‘l'l 0 [P(a,t)—Q(a,f)]/
_ _ g+l
_ 79 ggn J 1-1 5t
a+1° o [P(B1)-Q(B.1)]
_ _ 4ptl
+ ulgl’“ J. 1-t 3/2dt.
pr1 o [p(B1)-Q(B.1)]
Finally, _[Oﬁ (2" + 2F — 2%)dz = 0 implies that
P(B.t)-Q(B 1)
Bt q »
= -z - d
L (" -2" - 2%)dz (50)

(g™
q+1

(1= m, B0 =, BP9 |

Combing (49) and (50), we complete the proof of this lemma.
O

Lemmal3. F(a) has continuous derivatives up to second order
on (P, 00) as follows:

1l _1-1’ 1

F (a)——zﬁ LG(a,t)hl(S(a,t))dt, a>pB, (51
g Lo h d 52
F(@—MﬁLGmwzwmm>aa>ﬁ (52)

where G(a, t) = [S(a,t) — 1]7[Q(a, )] /2.
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Proof. Equation (51) can be obtained by

H, (a,1) = 2[P(a,1) - Q(a,1)] "
X [(1 _r)P(a’t)_(l _‘J)Q(a’t)

_Eapﬂ (1 _ tp+1)]

p+1
_[Pl(at) -2 -1/2
-4555—4 Q@)
P@t) 1-q (p-r)(q+1)
><(1_r)[Q(a,t)_1—1’_(p+1)(1—r)
pql =t [P(a,t)_ ]
*a 1—tq+1] Q@
=21 -r)G(a,t)hy (S(a,t))
(53)

and Lemma 7, immediately. From (24) we have that

0H, (a,t)
a— =
a

(D 52
F) 3(P-Q)

X [(r+1)P—(q+1)Q

Pt 1)

X[(l—r)P—(l—q)Q—Fap“

+1

x (1=t | +2(P-Q7"

x[@_f)p_@_qu

2 2
_pp;: ap+1 (1 _ tp+1)]

p o\
~(a5) 0-7)
X {—3 [P— 15,
r+1
><apﬂ (1 _tp+1)]

l-¢g (P_T) p+l
X [P_ l—rQ_(p+l)(1—r) “

(p-r)
(p+1)(r+1)

><(1—tP+‘)]+z(P—Q)
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-
(p+)(-7)

=(1-7")G(@at)hy (S (1),
(54)

and so (52) holds. O
Lemma 14. There exist §(r, p,q) > 0 and yn(r, p,q) > 0 such
that

1+7r

2a

>n(r,p,q) (a1 + ap_q)_s/za_(3+q)/2 for a> B.
(55)

F"(a)+8(r,p,q) F' (a)

Proof. From (41)and 1 > p > r > 0 > g > —1, we have that

min]h2 (s) = min{h, (1), h, (n)}

s€[l,n
=(m-1)min{3(1 -m),2(n-10)}
>2(mn-1)min{(1 -m),(n-10)}

(56)
>2(n—1)min{r_q,(l_q)(r_q)}
r+1 1-1r?
=2(n—1)r_q.
r+1

And since by ((1 +n)/2) = —((n - 1)%/4) < 0, let 8(r, p-q) >0
satisfy

min [k, (s)+8(r, pq) by ()] =2(n-1) :4__—? (57)

s€[1,n]
Set

h(s)=h,(s)+8(r,p,q) h (s), s€(—00,00). (58)

From h(s) = (6—1)s*+(3m+3n—21-2—8—-8n)s—3mn+2l+6n,
we have that 6(r, p,q) — 1 > 0 and
r—1q

h(s)> minh(s)=2(n-1) —,
s€[1,n] r+1

s € (—00,00).
(59)

On the other hand, from (10), (38), and Lemma 11, we have
that

+1
al™,

0<Q(a,t) < !
q+1

1 a
< q++1 J (2" +2F - 2%)dz
at™ Jo (60)

_ q+la,_qu q+lap_q_1
r+1 p+1

<S@at)-1<S(at)<a T+af™,

fora > f3,t € (0,1).

7
This means that
G(a,t) = [S(at)-1][Q(an] "
(61)
N (ar—q ¥ ap—q)*S/Za—(l+q)/2 \/m)
fora > f3,t € (0,1). It follows from Lemma 13 and (58) that
F'(a)+0(r,p,q) F (a) 12+ 4
a
1-7 (! 62)
= G(a,t)h(S(a,t))dt.
4a\/fjo (@0 h(S @)
Now, from (59)-(62) we have (55), where
1-r(r-q) 1+q Jl
»p.q) = t)—1]dt. (63)
n(r, pq) " NUORSY
O

Lemma 15. If O(r, p,q) > O, then F'(a) > 0 fora > B. If
O(r, p,q) < 0, then there exists a* > f3, such that F'(a) < 0 for
ac(B,a*)and F'(a) >0 fora>a’.
Proof. It follows from Lemma 14 that if
F'(a) =0, then F"'(a)>0, (64)
and then
F' (a) has at most one zero in (8,00). (65)

By (40), (42), and (51) we can obtain that
P(a,t) .
Q(at)
With (10) and (41), (66) implies that

+1 +1 - 1-
F'(a)>0 for 1 ar+<q _P r)ap>—qaq.
r+1 p+1l 1-r 1-r

(67)

F'(a)>0 for n(t). (66)

If O(r, p,q) #0, then from Lemma 12 and (64)-(67) we have
the results of this lemma, immediately. If 6(r, p,q) = 0, then
by Lemmas 12 and 14 we have that F "(a) > 0 for a near B, and
so F'(a) > 0 for a near B. Thus, it follows from (64)-(67) that

F'(a) > 0fora > . O
Proof of Theorem 5. From Lemmas 6, 8, 9, and 15, we can
obtain the results of Theorem 5. O
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