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In this paper, we offer the generalization of the known technique of the construction of the gradient of the residual functional based
on the statement of the conjugate problem for the case when the unknown function is complex valued. The notion of the reference
frequency of the medium is introduced. Knowing the value of the reference frequency lets us judge the possibility of simultaneous
definition of the dielectric permittivity and conductivity.

1. Introduction

The problem of definition of the dielectric permittivity and
conductivity is the actual geophysical problem. Theoretical
research of inverse problems of geoelectrics and some numer-
ical examples of definition of these functions can be found in
[1].

There are many works devoted to the problems of recon-
struction of conductivity 𝜎 and dielectric permittivity 𝜀 (or
complex conductivity 𝜎 − 𝑖𝜔𝜀, or complex dielectric per-
mittivity 𝜀 + 𝑖𝜎/𝜔), e.g., in [2–19]). According to the rules,
the inverse problem is solved in frequency domain; that is,
the external current source is harmonic. Despite the quite
obvious idea that we can search for one complex function
𝜀 + 𝑖𝜔

0
𝜎, the authors assume numerical algorithms for

reconstruction either of two real functions 𝜎 and 𝜀 or of
real and imaginary parts of correspondent complex function,
considering that one of the functions 𝜎 or 𝜀 is known. It leads
to the fact that the resulting formulas are too complicated
and inconvenient for analysis and implement on a computer.
Apparently, another reason such numerical algorithms are
offered is that when solving the inverse problem of finding a
complex function𝑤byminimizing the functional 𝐽[𝑤], we go
through the following steps: first, the functional 𝐽 : C → R

and, secondly, by the definition of the gradient, increment

of the functional should be presented in the form 𝛿𝐽[𝑤] =

⟨𝐽
󸀠
[𝑤], 𝛿𝑤⟩+𝑜(‖𝛿𝑤‖); that is, there should be a scalar product

for two complex values ⟨⋅, ⋅⟩ : C × C → R.
In this paper the authors propose a numerical method of

simultaneous definition of the conductivity 𝜎 and dielectric
permittivity 𝜀 considering the example of inverse problem
of subsurface radiolocation. Instead of two unknown real
functions, we consider one complex. The authors generalize
the known technique of finding of the gradient of the residual
functional, using the statement of the conjugate problem for
the case when the unknown function is complex valued. The
notion of the reference frequency of the medium is intro-
duced, which helps to understand where these two functions
can be determined simultaneously. Some test reconstructions
for simulated data are offered.

2. Statement of the Inverse Problem

We consider the media—𝑁
𝑙
-layered structure with interfaces

𝑧
𝑘
(𝑘 = 0,𝑁

𝑙
), 𝑧
0
= 0; 𝑚-layer is the interval [𝑧

𝑚−1
, 𝑧
𝑚
], the

last 𝑁
𝑙
+ 1 (underlying) layer is the half space [𝑧

𝑁𝑙
,∞), and

the air is the half space (−∞, 0].
Electromagnetic properties of each layer are defined by

the permittivity 𝜀
0
𝜀, the conductivity 𝜎, and by magnetic



2 Journal of Applied Mathematics

permeability 𝜇
0
𝜇, 𝜀
0
= 8, 854 ⋅ 10

−12 F/m and 𝜇
0
= 4𝜋 ⋅

10
−7H/m, in most cases the relative permittivity 𝜀 belongs to

the interval [1; 80] and relative magnetic permeability 𝜇 =

1. Since the medium is horizontally stratified, then 𝜀 and
𝜎 are piecewise-constant functions of the variable 𝑧 (𝑧 ∈

(−∞,∞)).
Let the source of external current be a cable disposed on

the height 𝑧
∗
parallel to the 𝑦-axis.

For the component 𝐸
2
(𝑡, 𝑥, 𝑧) from the Maxwell equa-

tions finally, we can obtain the differential equation of the sec-
ond order (see, e.g., [1]):

𝜀

𝜕
2
𝐸
2

𝜕𝑡
2
+ 𝜎

𝜕𝐸
2

𝜕𝑡

=

1

𝜇
0

(

𝜕
2
𝐸
2

𝜕𝑥
2
+

𝜕
2
𝐸
2

𝜕𝑧
2
) . (1)

The Fourier transform with respect to the horizontal variable
𝑥 and the time variable 𝑡 gives the following equation:

𝑢
𝑧𝑧
− (𝜆
2
− 𝜔
2
𝜇
0
𝜀
0
𝜀 + 𝑖𝜔𝜇

0
𝜎) 𝑢 = 0. (2)

At points of discontinuity of the medium, we assume that the
gluing conditions are as follows:

[𝑢]𝑧𝑘
= 0, [𝑢

𝑧
]
𝑧𝑘
= 0, 𝑘 = 0,𝑁

𝑙
. (3)

Source concentrated at the point 𝑧
∗
= 0, which is equivalent

to the gluing conditions at this point

[𝑢]𝑧∗
= 0, [𝑢

𝑧
]
𝑧∗
= −𝑓 (𝜔) 𝜇

0
. (4)

We assume that we have the conditions of damping in infinity

𝑢 󳨀→ 0 (𝑧 󳨀→ ±∞) , (5)

and, relative to the solution of the direct problem (2)–(5), the
additional information is given

𝑢|𝑧=0 = 𝑔 (𝜔, 𝜆) . (6)

Here 𝜆 and 𝜔 are the Fourier parameters with respect to
variables 𝑥 and 𝑡, respectively, [⋅]

𝑧
is the notation for gluing,

that is, [𝑤]
𝑧
= 𝑤(𝑧+0)−𝑤(𝑧−0), and the bar over the complex

value will denote the complex conjunction.
The inverse problem is to find the piecewise-constant

functions 𝜀 and 𝜎, if for solution of the direct problem (2)–
(5), the additional information (6) is known.

Introduce the notation

𝑘
2
= 𝜆
2
− 𝜘, 𝜘 = 𝜔

2
𝜇
0
𝜀
0
𝜀 − 𝑖𝜔𝜇

0
𝜎. (7)

Fix some values of the angular frequency 𝜔
0
. In the

inverse problem, we will recover the complex value 𝜘
0
(𝜘
0
=

𝜔
2

0
𝜇
0
𝜀
0
𝜀 − 𝑖𝜔

0
𝜇
0
𝜎) which is a piecewise-constant function

since the functions 𝜀 and 𝜎 are piecewise constant.
As is easy to see, if we find 𝜘

0
as a solution of the inverse

problems (2)–(6), we immediately recover the functions 𝜀 and
𝜎 as follows:

𝜀 =

Re [𝜘
0
]

𝜔
2

0
𝜇
0
𝜀
0

, 𝜎 =

− Im [𝜘
0
]

𝜔
0
𝜇
0

. (8)

Inverse problem (2)–(6)may be solved byminimizing the
residual functionals as follows:

𝐽 [𝜘
0
] = ∑

𝜔

ℎ
𝜔

󵄨
󵄨
󵄨
󵄨
𝑢 (0, 𝜔, 𝜆

0
) − 𝑔 (𝜔, 𝜆

0
)
󵄨
󵄨
󵄨
󵄨

2
, (9)

(here ℎ
𝜔
are certain weight multipliers). Paying attention to

that in the functional (9), we fix a value of the spatial frequen-
cy 𝜆
0
and prepare additional information (6) for different

values of the angular frequency 𝜔.
For minimization, we will use the gradient method, since

the rate of convergence of such method is higher than that
of the method that uses only the values of the functional;
therefore, we need to get the gradient of the residual func-
tional (9), which in turn requires the definition of the scalar
multiplication of two complex numbers.

For two complex numbers 𝑤
1
and 𝑤

2
, we introduce the

following relation:

⟨𝑤
1
, 𝑤
2
⟩ =

1

2

(𝑤
1
𝑤
2
+ 𝑤
1
𝑤
2
) . (10)

The relation (10) has all the properties of scalarmultiplication.
The proof of this is based on a geometric interpretation of
complex numbers. Let 𝑤

1
= (𝛼
1
, 𝛽
1
) and 𝑤

2
= (𝛼
2
, 𝛽
2
); then,

⟨𝑤
1
, 𝑤
2
⟩ = 𝛼
1
𝛼
2
+ 𝛽
1
𝛽
2
.

For (10) note useful relation

⟨𝑤
1
, 𝑤
2
⟩ = Re [𝑤

1
𝑤
2
] = Re [𝑤

1
𝑤
2
] . (11)

3. Gradient of the Residual Functional

First we note that

𝐽 [𝜘
0
] = 𝐽 [𝜘

1

0
, . . . , 𝜘

𝑚

0
, . . . , 𝜘

𝑁𝑙

0
] , (12)

where 𝜘𝑚
0
are the values of a piecewise constant function 𝜘

0

in the segment [𝑧
𝑚−1

, 𝑧
𝑚
].

We obtain the expression of the gradient of the residual
functional (9) by the statement of the conjugate problem

𝜓
𝑧𝑧
− (𝜆
2
− 𝜘)𝜓 = 0,

[𝜓]
𝑧𝑘
= 0, [𝜓

𝑧
]
𝑧𝑘
= 0, 𝑘 = 1,𝑁

𝑙
,

[𝜓]
𝑧∗
= 0, [𝜓

𝑧
]
𝑧∗
= −2 [𝑢 (0, 𝜔

0
, 𝜆) − 𝑔 (𝜔

0
)] ,

𝜓 󳨀→ 0 (𝑧 󳨀→ ±∞) .

(13)

Let the value 𝜘 be incremented 𝛿𝜘; then, the function 𝑢

will get increment 𝛿𝑢, which satisfies the following problem:

𝛿𝑢
𝑧𝑧
− 𝑘
2
𝛿𝑢 + 𝑢𝛿𝜘 = 0,

[𝛿𝑢]𝑧𝑘
= 0, [𝛿𝑢

𝑧
]
𝑧𝑘
= 0, 𝑘 = −1,𝑁

𝑙
,

𝑢 󳨀→ 0 (𝑧 󳨀→ ±∞)

(14)

(here for, simplicity, we set 𝑧
−1
= 𝑧
∗
).
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In this case, the increment of the residual functional up
the second order can be obtained as follows:

𝛿𝐽 [𝜘
0
] = Re[∑

𝜆

2ℎ
𝜆
(𝑢 − 𝑔) 𝛿𝑢] = −Re(∑

𝜆

ℎ
𝜆
[𝜓]
𝑧0
𝛿𝑢) .

(15)

Given statements of problems (14), (13), and the equality

∫

∞

−∞

𝑑

𝑑𝑧

(𝛿𝑢𝜓
𝑧
) 𝑑𝑧 = −𝛿𝑢|𝑧=𝑧0

[𝜓
𝑧
]
𝑧0
, (16)

we get

𝛿𝐽 [𝜘
0
] = Re[∑

𝜆

ℎ
𝜆
∫

𝑧𝑁𝑙

𝑧0

𝑢𝜓𝛿𝜘𝑑𝑥] . (17)

Since in each layer [𝑧
𝑚−1

, 𝑧
𝑚
], the function 𝜘 is constant and

takes the value 𝜘𝑚, we can write

𝛿𝐽 [𝜘
0
] =

𝑁𝑙

∑

𝑚=1

Re[∑
𝜔

ℎ
𝜔
∫

𝑧𝑚

𝑧𝑚−1

𝑢𝜓𝑑𝑧 ⋅ 𝛿𝜘
𝑚
] . (18)

Let

𝑁
𝑚
= ∫

𝑧𝑚

𝑧𝑚−1

𝑢𝜓𝑑𝑧. (19)

Then

Re [𝑁
𝑚
𝛿𝜘
𝑚
] = Re [𝑁

𝑚
] ⋅ 𝜔
2
𝜇
0
𝜀
0
𝛿𝜀
𝑚
+ Im [𝑁

𝑚
] ⋅ 𝜔𝜇
0
𝛿𝜎
𝑚

= Re [𝑁
𝑚
] ⋅

𝜔
2

𝜔
2

0

⋅ 𝜔
2

0
𝜇
0
𝜀
0
𝛿𝜀
𝑚

+ Im [𝑁
𝑚
] ⋅

𝜔

𝜔
0

⋅ 𝜔
0
𝜇
0
𝛿𝜎
𝑚

= Re [𝑁̂
𝑚
𝛿𝜘
𝑚

0
] ,

(20)

where

𝑁̂
𝑚
= Re [𝑁

𝑚
]

𝜔
2

𝜔
2

0

+ 𝑖 Im [𝑁
𝑚
]

𝜔

𝜔
0

. (21)

Therefore, the gradient of the residual functional 𝐽[𝜘
0
]

will have the form

𝐽
󸀠
[𝜘
0
] = (𝑗

1
, . . . , 𝑗

𝑚
, . . . , 𝑗

𝑁𝑙
) , 𝑗

𝑚
= ∑

𝜔

ℎ
𝜔
𝑁̂
𝑚
. (22)

4. Analytic Formulas for the Key Expressions

In order to solve the direct problem (2)–(5) and conjugate
problem (13), we will reduce the differential equation of the
second order to the Riccati equation. This method was suc-
cessfully used, for example, in [20–23].

For solving differential equation (2), we introduce the
function 𝑠 as follows:

𝑢
𝑧
(𝑧) = 𝑠 (𝑧) 𝑢 (𝑧) , (23)

which will satisfy the differential Riccati equation

𝑠
󸀠
+ 𝑠
2
= 𝑘
2
. (24)

If we calculate from the right to the left, then the solution of
(24) in each segment [𝑧

𝑚−1
, 𝑧
𝑚
] will be as follows:

𝑠 (𝑧) = 𝑘
𝑚

(𝑠
𝑚
+ 𝑘
𝑚
) 𝑒
2𝑘𝑚(𝑧−𝑧𝑚)

+ (𝑠
𝑚
− 𝑘
𝑚
)

(𝑠
𝑚
+ 𝑘
𝑚
) 𝑒
2𝑘𝑚(𝑧−𝑧𝑚) − (𝑠

𝑚
− 𝑘
𝑚
)

. (25)

If we calculate from the left to the right, then

𝑠 (𝑧) = 𝑘
𝑚

(𝑠
𝑚−1

+ 𝑘
𝑚
) + (𝑠

𝑚−1
− 𝑘
𝑚
) 𝑒
2𝑘𝑚(𝑧𝑚−1−𝑧)

(𝑠
𝑚−1

+ 𝑘
𝑚
) − (𝑠
𝑚−1

− 𝑘
𝑚
) 𝑒
2𝑘𝑚(𝑧𝑚−1−𝑧)

(26)

(here 𝑠𝑚 = 𝑠|
𝑧=𝑧𝑚

, 𝑘
𝑚
is the value of the piecewise constant

function 𝑘 in the segment [𝑧
𝑚−1

, 𝑧
𝑚
] and Re[𝑘

𝑚
] ≥ 0).

For solving Riccati equation (24), wewill do our recurrent
calculations from the layer up to the layermoving to the point
𝑧
∗
, where the source is disposed.
The condition of damping in infinity (5) enables

𝑠 (𝑧) = −𝑘
𝑁𝑙+1

, 𝑧 ∈ [𝑧
𝑁𝑙
,∞) . (27)

Due to conditions (6), we obtain the gluing conditions

[𝑠]𝑧𝑘
= 0. (28)

Therefore, we may set

𝑠
𝑁𝑙
= −𝑘
𝑁𝑙+1

(29)

and begin the recurrent calculation of 𝑠𝑚 from the right to the
left by formula

𝑠
𝑚−1

= 𝑘
𝑚

(𝑠
𝑚
+ 𝑘
𝑚
) 𝑒
−2𝑘𝑚ℎ𝑚

+ (𝑠
𝑚
− 𝑘
𝑚
)

(𝑠
𝑚
+ 𝑘
𝑚
) 𝑒
−2𝑘𝑚ℎ𝑚 − (𝑠

𝑚
− 𝑘
𝑚
)

,

ℎ
𝑚
= 𝑧
𝑚
− 𝑧
𝑚−1

.

(30)

Thus we get 𝑠∗ = 𝑠|
𝑧=𝑧∗+0

.
Analogously, taking into account damping in minus in-

finity (5) we get

𝑠 (𝑧) = 𝑘
0
, 𝑧 ∈ (∞, 𝑧

∗
] . (31)

Since the source is disposed in the half space (−∞, 0], wemay
immediately take

𝑠|𝑧=𝑧∗−0
= 𝑘
0
. (32)

Gluing condition (28) in the point 𝑧 = 𝑧
∗
allows us to

determine

𝑢|𝑧=𝑧∗
≡ 𝑢
∗
= −

𝑓 (𝜔) 𝜇0

𝑠
∗
− 𝑘
0

. (33)

Integrating (23) in the interval [𝑧
∗
, 0], we obtain

𝑢|
𝑧=0

≡ 𝑢
0
= 𝑢
∗ 2𝑘

0
𝑒
−𝑘0𝑧∗

(𝑠
0
+ 𝑘
0
) 𝑒
−2𝑘0𝑧∗ − (𝑠

0
− 𝑘
0
)

. (34)
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Further, integrating in each interval [𝑧
𝑚−1

, 𝑧
𝑚
] (23), we

derive the solution of the problem (2)–(5) in this interval

𝑢 (𝑧) = 𝑢
𝑚−1

𝑙 (𝑧) ,

𝑙 (𝑧) = 𝑒
𝑘𝑚(𝑧𝑚−1−𝑧)

(𝑠
𝑚
+ 𝑘
𝑚
) 𝑒
2𝑘𝑚(𝑧−𝑧𝑚)

− (𝑠
𝑚
− 𝑘
𝑚
)

(𝑠
𝑚
+ 𝑘
𝑚
) 𝑒
−2𝑘𝑚ℎ𝑚 − (𝑠

𝑚
− 𝑘
𝑚
)

.

(35)

The conjugate problem (13) is similar to direct problem
(2)–(5); therefore, it can be solved similarly. Moreover, since
the damping conditions in infinity are the same, the solution
of the Riccati equation introduced for the function 𝜓 will
coincide with 𝑠(𝑧) for all 𝑧 ∈ [0,∞). Therefore, we have

𝜓
󵄨
󵄨
󵄨
󵄨𝑧=0

≡ 𝜓
0
= −

2 [𝑢 (0, 𝜔, 𝜆) − 𝑔 (𝜔, 𝜆)]

𝑠
0
− 𝑘
0

(36)

and in each interval [𝑧
𝑚−1

, 𝑧
𝑚
].

𝜓 (𝑧) = 𝜓
𝑚−1

𝑙 (𝑧) . (37)

Taking into account (35) and (37), we can obtain the
formulas for the gradient components of 𝐽

𝜔
[𝜘
0
] (𝛼 = 𝜆, 𝜔);

that is, calculate the integral

∫

𝑧𝑚

𝑧𝑚−1

𝑢𝜓𝑑𝑧 =

𝑢
𝑚−1

𝜓
𝑚−1

𝑅
𝑚

[(𝑠
𝑚
+ 𝑘
𝑚
) 𝑒
−2𝑘𝑚ℎ𝑚 − (𝑠

𝑚
− 𝑘
𝑚
)]
2
, (38)

where

𝑅
𝑚
=

1 − 𝑒
−2𝑘𝑚ℎ𝑚

2𝑘
𝑚

× [(𝑠
𝑚
+ 𝑘
𝑚
)
2
𝑒
−2𝑘𝑚ℎ𝑚

+ (𝑠
𝑚
− 𝑘
𝑚
)
2
]

− 2ℎ
𝑚
(𝑠
𝑚
+ 𝑘
𝑚
) (𝑠
𝑚
− 𝑘
𝑚
) 𝑒
−2𝑘𝑚ℎ𝑚

.

(39)

5. Numerical Experiment

5.1. Reference Frequency of theMedium𝜔
0
. First we note, that

(see, e.g., formulas (25) and (35))

𝑢 = 𝑢 (𝑘) , (40)

where

𝑘
2
= 𝜆
2
− (𝜔
2
𝜇
0
𝜀
0
𝜀 − 𝑖𝜔𝜇

0
𝜎) ,

𝑘 =
4
√[𝜆
2
− 𝜔
2
𝜇
0
𝜀
0
𝜀]
2
+ [𝜔𝜇

0
𝜎]
2
𝑒
𝑖𝛽/2

,

𝛽 =

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

arctg
𝜔𝜇
0
𝜎

𝜆
2
− 𝜔
2
𝜇
0
𝜀
0
𝜀

, 𝜆
2
> 𝜔
2
𝜇
0
𝜀
0
𝜀,

𝜋

2

, 𝜆
2
= 𝜔
2
𝜇
0
𝜀
0
𝜀,

𝜋 + arctg
𝜔𝜇
0
𝜎

𝜆
2
− 𝜔
2
𝜇
0
𝜀
0
𝜀

, 𝜆
2
< 𝜔
2
𝜇
0
𝜀
0
𝜀.

(41)

That is, the variation of the solution of direct problem (2)–(5)
depends directly on how the function 𝑘 depends on variations
of the functions 𝜀 and 𝜎 in the layers.

Table 1: Model of the medium 1.

Number of the layer 1 2 3 4 5 6
𝜀 18.5 22.8 18.4 19.2 28.3 30.0
𝜎 0.017 0.024 0.016 0.017 0.022 0.024
𝑧
𝑘

0.11 0.21 0.39 0.58 0.82

Table 2: Model of the medium 2.

Number of the layer 1 2 3 4 5 6
𝜀 20.5 22.7 17.9 22.8 21.0 30.0
𝜎 0.021 0.023 0.020 0.021 0.020 0.025
𝑧
𝑘

0.11 0.22 0.39 0.62 0.82

Table 3: Model of the medium 3.

Number of
the layer 1 2 3 4 5 6

𝜀 2.05 2.27 2.05 2.08 1.93 2.50
𝜎 0.0021 0.0023 0.0020 0.0021 0.0020 0.0025
𝑧
𝑘

0.48 0.88 1.38 2.00 2.50

Evidently, the greatest influence on change in the value 𝑘
is rendered by variations 𝜀 and 𝜎, when

𝜔
2
𝜇
0
𝜀
0
𝜀 ≈ 𝜔𝜇

0
𝜎, 𝜆

2
∼ 𝜔
2
𝜇
0
𝜀
0
𝜀. (42)

We put 𝜔2𝜇
0
𝜀
0
𝜀 = 𝜔𝜇

0
𝜎, whence we get

𝜔
0
=

𝜎

𝜀
0
𝜀

. (43)

Thismeans that we know for certainmedium themean values
of dielectric permittivity and conductivity. Then we derive
and fix the value of reference frequency of the medium (43).

5.2. Dependence of the Properties of the Functional 𝐽[𝜘] from
the Value 𝜔. For numerical experiments below we choose
model shown in Table 1.

We set the mean values at 𝜀 = 20 and 𝜎 = 0, 020, and
then the reference angular frequency is 𝜔

0
= 1.12 ⋅ 10

8. The
capacity of the skin-layer, from here, is

ℎ
𝑠
= √

2

𝜔
0
𝜇
0
𝜎

≈ 0.84 (𝑚) . (44)

Fixing the values 𝜀
𝑚
and 𝜎
𝑚
(𝑚 = 2, 5), we will change the

values of dielectric permittivity and conductivity of the first
layer in the segment

𝜀
1
∈ [1.0, 40.0] , 𝜎

1
∈ [0.01, 0.03] , (45)

for different values of𝜔 = 𝑟𝜔
0
, where 𝑟 = {1/10, 1/7, 1/5, 1/2,

1, 2, 5, 7, 10} and we will observe the behavior of the value

Δ
𝜔
=
󵄨
󵄨
󵄨
󵄨
𝑢 (0, 𝜔, 𝜆

0
) − 𝑔 (𝜔, 𝜆

0
)
󵄨
󵄨
󵄨
󵄨

2
, (46)

which is one of the components of the residual functional (9).
Results of numerical experiment are presented in Figure 1.
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Figure 1: The behavior of Δ
𝜔
for various values 𝜔.
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Table 4: Model of the medium 4.

Number of the layer 1 2 3 4 5 6 7 8 9 10 11
𝜀 20.2 21.3 22.1 20.4 18.4 16.2 17.8 18.8 22.2 23.3 25.0
𝜎 0.0018 0.0021 0.0020 0.0021 0.0020 0.0018 0.0019 0.0021 0.0022 0.0023 0.0025
𝑧
𝑘

0.72 1.53 2.91 3.65 4.45 5.05 6.00 6.65 7.23 8.20

Table 5: Model of the medium 5.

Number of the layer 1 2 3 4 5 6 7 8
𝜀 20.2 19.3 20.2 20.9 21.1 19.2 23.4 2.50
𝜎 0.021 0.020 0.021 0.019 0.018 0.019 0.022 0.025
𝑧
𝑘

0.11 0.22 0.33 0.44 0.59 0.72 0.83

Table 6

𝜔
0

Frequency interval Number of
frequencies

Model of the
medium 1 1.12 ⋅ 10

8
[𝜔
0
/10, 10𝜔

0
] 2500

Model of the
medium 2 1.12 ⋅ 10

8
[𝜔
0
/10, 10𝜔

0
] 2500

Model of the
medium 3 1.12 ⋅ 10

8
[𝜔
0
/10, 10𝜔

0
] 2500

Model of the
medium 4 1.12 ⋅ 10

7
[𝜔
0
/40, 40𝜔

0
] 6000

Model of the
medium 5 1.12 ⋅ 10

8
[𝜔
0
/40, 40𝜔

0
] 6000

We note that first, if 𝜔 decreases with respect to the ref-
erence frequency of the medium 𝜔

0
, then the residual

functional loses sensitivity when 𝜀
1
varies. If 𝜔 increases,

then the functional loses the sensitivity when 𝜎
1
varies.

Secondly, the more the difference between 𝜔 and 𝜔
0
the less

the sensitivity of the residual functional 𝐽[𝜘] to the change of
desired unknown values, since it becomes more standing.

If 𝜀
𝑚
and 𝜎

𝑚
(𝑚 = 2, 5) vary, the behavior of Δ

𝜔
will be

similar; however, if the layer is lower, so is the sensitivity of
the functional.

Thus, the assumption that the value of the angular fre-
quency 𝜔must by such that

𝜔
2
𝜇
0
𝜀
0
𝜀 ≈ 𝜔𝜇

0
𝜎 (47)

is verified (see (42)).
In addition, we clarify the known geophysical condition

of quasistationarity of the electromagnetic field: 𝜔𝜀
0
𝜀 ≪ 𝜎.

The value of notation “≪” is lax. Proceeding from the numer-
ical experiment, we may account the quasistationary approx-
imation to be suitable if 𝜔𝜀

0
𝜀 ≤ 𝜎/10.

5.3. Dependence of the Properties of the Residual Functional
from the Value 𝜆. For themodel 1 (see Table 1), the numerical
experiment similar to those in the previous section was

developed. The values of the dielectric permittivity and con-
ductivity of the first layer were changing (in abovementioned
segments) and the values of the residual functional 𝐽[𝜘

0
]were

derived. The result is shown in Figure 2.
The tendency is seen as the greater 𝜆 the less is the sen-

sitivity of residual functional to variations of the unknown
parameters. The assumption that

𝜆
2
∼ 𝜔
2
𝜇
0
𝜀
0
𝜀 (48)

is verified.
For model 1 we obtain 𝜔2𝜇

0
𝜀
0
𝜀 ≈ 2.84. It is seen that with

increasing 𝜆 at first the residual functional 𝐽[𝜘
0
] loses the

sensitivity to the variations of 𝜎
1
and then to variations of 𝜀

1
.

When𝜆2 ≥ 2𝜔
2
𝜇
0
𝜀
0
𝜀, the sensitivity of the residual functional

rapidly decreases.

6. Numerical Examples of Solution of
the Inverse Problem

In order to test the operability of the proposed numerical al-
gorithm, we carry out a number of reconstruction of electro-
magnetic properties of the medium, using simulated data. In
order to obtain the additional information (6) we, first, solve
the direct problem (2)–(5). Then we add the random value
with this form

𝑔 (𝜔, 𝜆
0
) = 𝑔 (𝜔, 𝜆

0
) (1 +

𝑃

100

𝜉) , (49)

where 𝜉 is a random value from the unit circle and 𝑃 is
the percent of the introduced error. In Figure 3 we see the
example of using the additional information with this error.

In addition to the model of the medium 1 in Table 1 were
selected four more models (see Tables 2, 3, 4, and 5).

For each model of the medium the coordinate of the
boundary of the last layer 𝑧

𝑁𝑙
coincides with the value of

capacity of the skin-layer ℎ
𝑠
.

The parameters used in the construction of the residual
functional 𝐽[𝜘

0
] are collected in Table 6.

In each layer, the initial approximations were 𝜀
𝑁𝑙
and 𝜎
𝑁𝑙
.



Journal of Applied Mathematics 7

10.01

400.03

𝜎 𝜀

𝜆 =

10.01

400.03

𝜎 𝜀

𝜆 = 1

10.01

400.03

𝜎 𝜀

𝜆 = 5

10.01

400.03

𝜎 𝜀

𝜆 = 7

10.01

400.03

𝜎 𝜀

𝜆 = 10

10.01

400.03

𝜎 𝜀

𝜆 = 2

10.01

400.03

𝜎 𝜀

𝜆 = 3

10.01

400.03

𝜎 𝜀

𝜆 =

10.01

400.03

𝜎 𝜀

𝜆 = 7 · 10−15 · 10−13 · 10−1

Figure 2: The behavior of the residual functional 𝐽[𝜘
0
] for various values of 𝜆. 450 values of 𝜔 were taken from the segment [𝜔

0
/10; 10𝜔

0
]

with constant step.

𝜔

Im g(𝜔, 𝜆)

Re g(𝜔, 𝜆)

130

−60

Figure 3:The example of additional information 𝑔(𝜔, 𝜆) given with
the error𝑃 = 20% (𝜔 ∈ [𝜔

0
/50, 𝜔

0
/10], 𝜆 = 5⋅10

−1); the exact values
of real and imaginary parts of 𝑔(𝜔, 𝜆) are shown by the smooth line.

For minimizing of the residual functional 𝐽[𝜘
0
] the con-

jugate gradient method modified for complex values used

𝜘
𝑛+1

0
= 𝜘
𝑛

0
− 𝛼
𝑛
𝑝
𝑛
,

𝑝
𝑛
= 𝐽
󸀠
[𝜘
𝑛

0
] − 𝛽
𝑛
𝑝
𝑛−1

, 𝑝
0
= 𝐽
󸀠
[𝜘
0

0
] ,

𝛽
𝑛
= −

󵄩
󵄩
󵄩
󵄩
󵄩
𝐽
󸀠
[𝜘
𝑛

0
]

󵄩
󵄩
󵄩
󵄩
󵄩

2

󵄩
󵄩
󵄩
󵄩
𝐽
󸀠
[𝜘
𝑛−1

0
]
󵄩
󵄩
󵄩
󵄩

2
,

𝛼
𝑛
= argmin

𝛼>0

𝐽 [𝜘
𝑛

0
− 𝛼𝑝
𝑛
] .

(50)

The results of restoration of piecewise constant functions
𝜀 and 𝜎 are shown in Figure 4.

Remember that we used the value of the reference angular
frequency 𝜔

0
such that the condition 𝜔

2

0
𝜇
0
𝜀
0
𝜀 ≈ 𝜔

0
𝜇
0
𝜎 is

satisfied. Recovery experiment shows that the less the value
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Figure 4: The examples or recovery 𝜀 and 𝜎: (a) model of the medium 1, (b) model of the medium 2, (c) model of the medium 3, (d) model
of the medium 4, and (e) model of the medium 5.The exact solution is shown by the continuous line. The recovered solution is shown by the
dotted line. For all the examples 𝑃 = 20%.
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of 𝜔𝜇
0
𝜎, the more difficult restoring of the functions 𝜀 and

𝜎 is, since small values of 𝑘2 in the differential equation (2)
render little impact on changing values of the solution of the
equation.The consequence of this is the large “flatness” of the
residual functional and its low sensitivity to variations of 𝜀
and 𝜎. Note: 𝜔

0
𝜇
0
𝜎 = 2/ℎ

2

𝑠
.

7. Conclusions

In this paper, the authors suggested the generalization of the
known technique of constructing the gradient of the residual
functional with the use of the statement of the conjugate
problem, when the unknown function is complex.

The numerical examples had shown that the conjugate
gradient method in the case of complex valued gradient of
the residual functional and the known function is applicable
and we can find the minimum of the functional.

Efficiency rate of the method is confirmed by examples
of simultaneous reconstruction of the dielectric permittivity
and conductivity on synthetic data with introduced random
error.
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