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The existence and multiplicity of sign-changing solutions for a class of fourth elliptic equations with Hardy singular terms are
established by using the minimax methods.

1. Introduction

Consider the following Navier boundary value problem:

△
2
𝑢 (𝑥) −

𝑁
2
(𝑁 − 4)

2

16

𝑢

|𝑥|
4
= 𝑓 (𝑥, 𝑢) , in Ω,

𝑢 = △𝑢 = 0 on 𝜕Ω,

(1)

whereΩ is a bounded smooth domain inR𝑁 (𝑁 ≥ 5), 0 ∈ Ω.
The conditions imposed on 𝑓(𝑥, 𝑡) are as follows:

(𝐻
1
) there exists 𝐶 > 0 such that

𝑓 (𝑥, 𝑡)
 ≤ 𝐶 (1 + |𝑡|

𝑝
) , ∀𝑡 ∈ R, ∀𝑥 ∈ Ω, (2)

where 1 < 𝑝 < (𝑁 + 4)/(𝑁 − 4);

(𝐻
2
) 𝑓 ∈ 𝐶(Ω ×R,R), 𝑓(𝑥, 𝑡)𝑡 ≥ 0 for all 𝑥 ∈ Ω, 𝑡 ∈ R;

(𝐻
3
) lim
|𝑡|→0

𝑓(𝑥, 𝑡)/𝑡 = 𝑓
0
, lim
|𝑡|→∞

𝑓(𝑥, 𝑡)/𝑡 = 𝑙

uniformly for 𝑥 ∈ Ω, where 𝑓
0
and 𝑙 are constants;

(𝐻
4
) lim
|𝑡|→∞

[𝑓(𝑥, 𝑡)𝑡−2𝐹(𝑥, 𝑡)] = −∞ uniformly for 𝑥 ∈
Ω, where 𝐹(𝑥, 𝑡) = ∫𝑡

0
𝑓(𝑥, 𝑠)𝑑𝑠;

(𝐻
5
) there exist 𝜇 > 2 and 𝑅 > 0 such that

0 < 𝜇𝐹 (𝑥, 𝑡) ≤ 𝑓 (𝑥, 𝑡) 𝑡, 𝑥 ∈ Ω, |𝑡| ≥ 𝑅; (3)

(𝐻
6
) 𝑓(𝑥, 𝑡) is odd in 𝑡.

In recent years, this fourth-order semilinear elliptic problem:

△
2
𝑢 (𝑥) + 𝑐 △ 𝑢 = 𝑓 (𝑥, 𝑢) , in Ω,

𝑢 = △𝑢 = 0 on 𝜕Ω,

(4)

can be considered as an analogue of a class of second-order
problems which have been studied by many authors. In [1],
there was a survey of results obtained in this direction. In
[2], Micheletti and Pistoia showed that (4) admits at least
two solutions by a variation of linking if 𝑓(𝑥, 𝑢) is sublinear.
And in [3], the authors proved that the problem (4) has at
least three solutions by a variational reduction method and a
degree argument. In [4], Zhang and Li showed that (4) admits
at least two nontrivial solutions by Morse theory and local
linking if 𝑓(𝑥, 𝑢) is superlinear and subcritical on 𝑢.

To the authors’ knowledge, there seem few results about
the sign-changing solutions on problem (1) with hardy sin-
gular terms. In this paper, motivated by [5–8], the existence
and multiplicity of sign-changing solutions for problem (1)
are obtained by introducing a compact embedding theorem
and a maximum principle. Our results are new.

2. Preliminaries and Auxiliary Lemmas

We introduce the new working space 𝐸 which is obtained by
the completion of 𝐶∞

0
(Ω) with respect to the norm (see [5])

‖𝑢‖ = (∫
Ω

(|△𝑢|
2
−
𝑁
2
(𝑁 − 4)

2

16

|𝑢|
2

|𝑥|
4
)𝑑𝑥)

1/2

(5)



2 Journal of Applied Mathematics

associated with the inner product

⟨𝑢, V⟩ = ∫
Ω

(△𝑢 △ V −
𝑁
2
(𝑁 − 4)

2

16

𝑢V

|𝑥|
4
)𝑑𝑥. (6)

Throughout this paper, we denoted by ‖ ⋅ ‖
𝑝
the 𝐿𝑝(Ω)

norm.
At first, we here give two important lemmas.

Lemma 1. 𝐸 →→ 𝐿
2
(Ω) (see [5]).

Lemma2 (see [6, Corollary 4.1]). Assume𝑁 ≥ 5,𝑉 ∈ 𝐿∞(Ω),
and 𝑉 ≥ 0. Let us suppose that the operator △2 − (𝑉/|𝑥|4) is
coercive on 𝐻2(Ω) ∩ 𝐻1

0
(Ω). Let 𝑓 ∈ 𝐿2(Ω) such that 𝑓 ≥ 0.

Let 𝑢 ∈ 𝐻2(Ω) be a solution of

△
2
𝑢 (𝑥) −

𝑉

|𝑥|
4
𝑢 = 𝑓, 𝑖𝑛 Ω,

𝑢 = △𝑢 = 0 𝑜𝑛 𝜕Ω.

(7)

Then 𝑢 ≥ 0 in Ω.

Now, we consider the following eigenvalue problem:

△
2
𝑢 (𝑥) −

𝑁
2
(𝑁 − 4)

2

16|𝑥|
4

𝑢 = 𝜆𝑢, in Ω, (8)

𝑢 = △𝑢 = 0 on 𝜕Ω. (9)

The first eigenvalue of this problem is given by

𝜆
1
= inf {‖𝑢‖2 : 𝑢 ∈ 𝐸, ‖𝑢‖2 = 1} . (10)

By Lemma 1, 𝐸 → 𝑊
1,𝑝
(Ω) →→ 𝐿

2
(Ω) for 𝑝 → 2

−.
The minimizing sequence is compact in 𝐿2(Ω). By standard
argument, we may assume that the first eigenfunction 𝜙

1
is

positive in Ω (see [9, page 167]). The second eigenvalue is
given by

𝜆
2
= inf {‖𝑢‖2 : 𝑢 ∈ 𝐸, ∫

Ω

𝑢𝜙
1
= 0, ‖𝑢‖2 = 1} (11)

which possesses a sign-changing eigenfunction 𝜙
2
. Similarly,

we can characterize the 𝑛th eigenvalue 𝜆
𝑛
with a sign-

changing eigenfunction. By standard elliptic theory, 𝜆
𝑛
→

∞ as 𝑛 → ∞.
It follows from (𝐻

1
) that the functional

𝐼 (𝑢) =
1

2
∫
Ω

|△𝑢|
2
𝑑𝑥 −

𝑁
2
(𝑁 − 4)

2

32

× ∫
Ω

𝑢
2

|𝑥|
4
− ∫
Ω

𝐹 (𝑥, 𝑢) 𝑑𝑥

(12)

is of 𝐶1 on the space 𝐸. Under the condition (𝐻
1
), the critical

points of 𝐼 are solutions of problem (1).
If 𝑙 in the above condition (𝐻

3
) is an eigenvalue of (△2 −

(𝑁
2
(𝑁 − 4)

2
/16)(1/|𝑥|

4
), 𝐸), then the problem (1) is called

resonance at infinity. Otherwise, we call it nonresonance.
For looking for sign-changing solutions of problem (1),

we recall a very useful result.

Proposition 3 (see [10, Theorem 3.2]). Let 𝑋 be a Hilbert
space and 𝑓 be a 𝐶1 functional defined on 𝑋. Assume that 𝑓
satisfies the (PS) condition on 𝑋 and 𝑓(𝑢) has the expression
𝑓

(𝑢) = 𝑢 − 𝐴𝑢 for 𝑢 ∈ 𝑋. Assume that 𝐷

1
and 𝐷

2
are

open convex subset of 𝑋 with the properties that 𝐷
1
∩ 𝐷
2
̸= 0,

𝐴(𝜕𝐷
1
) ⊂ 𝐷

1
, and 𝐴(𝜕𝐷

2
) ⊂ 𝐷

2
. If there exists a path

ℎ : [0, 1] → 𝑋 such that

ℎ (0) ∈ 𝐷
1
\ 𝐷
2
, ℎ (1) ∈ 𝐷

2
\ 𝐷
1
,

inf
𝑢∈𝐷
1
∩𝐷
2

𝑓 (𝑢) > sup
𝑡∈[0,1]

𝑓 (ℎ (𝑡)) ,
(13)

then f has at least four critical points, one in 𝐷
1
∩ 𝐷
2
, one in

𝐷
1
\ 𝐷
2
, one in𝐷

2
\ 𝐷
1
, and one in𝑋 \ (𝐷

1
∪ 𝐷
2
).

Remark 4. If 𝑓 satisfies the (𝐶)
𝑐
condition, then this propo-

sition still holds (see [11]).

3. Main Results

Let us now state the main results.

Theorem5. Assume conditions (𝐻
2
) and (𝐻

3
) hold. If𝑓

0
< 𝜆
1

and 𝑙 ∈ (𝜆
𝑘
, 𝜆
𝑘+1
) for some 𝑘 > 2, then problem (1) has

a positive solution, a negative solution, and a sign-changing
solution.

Remark 6. This result is similar to [7, Theorem 1.1]. As far
as verifying the (PS) condition is concerned, our method is
more simple than that in [12, 13].

Theorem 7. Assume conditions (𝐻
2
)–(𝐻
4
) hold. If 𝑓

0
< 𝜆
1

and 𝑙 = 𝜆
𝑘
for some 𝑘 > 2, then problem (1) has a positive

solution, a negative solution, and a sign-changing solution.

Remark 8. When 𝑙 = 𝜆
𝑘
(𝑘 > 2), the case is called resonance

and not considered by [7]. This result is completely new.

Theorem 9. Assume conditions (𝐻
1
), (𝐻
5
), and (𝐻

6
) hold. If

𝑓
0
= 0, then problem (1) has infinitely many sign-changing

solutions.

Lemma 10. Under the assumptions of Theorem 5, if 𝜆
𝑘
< 𝑙 <

𝜆
𝑘+1

, then 𝐼 satisfies the (PS) condition.

Proof. Let {𝑢
𝑛
} ⊂ 𝐸 be a sequence such that |𝐼(𝑢

𝑛
)| ≤ 𝑐, <

𝐼

(𝑢
𝑛
), and 𝜙 >→ 0. Since

⟨𝐼

(𝑢
𝑛
) , 𝜙⟩

= ∫
Ω

(△𝑢
𝑛
△ 𝜙 −

𝑁
2
(𝑁 − 4)

2

16

𝑢
𝑛
𝜙

|𝑥|
4
)𝑑𝑥

− ∫
Ω

𝑓 (𝑥, 𝑢
𝑛
) 𝜙𝑑𝑥 = 𝑜 (

𝜙
)

(14)

for all 𝜙 ∈ 𝐸. If ‖𝑢
𝑛
‖
2
is bounded, we can take 𝜙 = 𝑢

𝑛
. By (𝐻

3
),

there exists a constant 𝑐 > 0 such that |𝑓(𝑥, 𝑢
𝑛
(𝑥))| ≤ 𝑐|𝑢

𝑛
(𝑥)|,

a.e. 𝑥 ∈ Ω. So 𝑢
𝑛
is bounded in 𝐸. If ‖𝑢

𝑛
‖
2
→ +∞, as 𝑛 →

∞, set V
𝑛
= 𝑢
𝑛
/‖𝑢
𝑛
‖
2
, then ‖V

𝑛
‖
2
= 1. Taking 𝜙 = V

𝑛
in (14),
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it follows that ‖V
𝑛
‖ is bounded. Without loss of generality, we

assume V
𝑛
⇀ V in 𝐸, and then V

𝑛
→ V in 𝐿2(Ω). Hence,

V
𝑛
→ V a.e. in Ω and |V

𝑛
| ≤ 𝑞(𝑥) (𝑞(𝑥) ∈ 𝐿2(Ω)). Dividing

both sides of (14) by ‖𝑢
𝑛
‖
2
, for all 𝜙 ∈ 𝐸, we get

∫
Ω

(△V
𝑛
△ 𝜙 −

𝑁
2
(𝑁 − 4)

2

16

V
𝑛
𝜙

|𝑥|
4
)𝑑𝑥

− ∫
Ω

𝑓 (𝑥, 𝑢
𝑛
)

𝑢𝑛
2

𝜙𝑑𝑥 = 𝑜(

𝜙


𝑢𝑛
2

) .

(15)

Then for a.e. 𝑥 ∈ Ω, we have 𝑓(𝑥, 𝑢
𝑛
)/‖𝑢
𝑛
‖
2
→ 𝑙V as

𝑛 → ∞. In fact, if V(𝑥) ̸= 0, by (𝐻
3
), we have

𝑢𝑛 (𝑥)
 =

V𝑛 (𝑥)


𝑢𝑛
2
→ +∞,

𝑓 (𝑥, 𝑢
𝑛
)

𝑢𝑛
2

=
𝑓 (𝑥, 𝑢

𝑛
)

𝑢
𝑛

V
𝑛
→ 𝑙V.

(16)

If V(𝑥) = 0, we have
𝑓 (𝑥, 𝑢𝑛)


𝑢𝑛

2

≤ 𝑐
V𝑛
 → 0. (17)

Since |𝑓(𝑥, 𝑢
𝑛
)|/‖𝑢
𝑛
‖
2
≤ 𝑐|V
𝑛
| ≤ 𝑐𝑞(𝑥), by (15) and the

Lebesgue dominated convergence theorem, we arrive at

∫
Ω

△V△ 𝜙𝑑𝑥 −
𝑁
2
(𝑁 − 4)

2

16

V𝜙

|𝑥|
4
− ∫
Ω

𝑙V𝜙𝑑𝑥 = 0, ∀𝜙 ∈ 𝐸.

(18)

It is easy to see that V ̸≡ 0. In fact, if V ≡ 0, then
‖V‖
2
= 0 contradicts lim

𝑛→∞
‖V
𝑛
‖
2
= ‖V‖

2
= 1. Hence,

𝑙 is an eigenvalue of (△2 − (𝑁
2
(𝑁 − 4)

2
/16)(1/|𝑥|

4
), 𝐸).

This contradicts our assumption. Thus {𝑢
𝑛
} is bounded. By

standard argument (see the proof of our Lemma 12 below),
{𝑢
𝑛
} → 𝑢 in 𝐸. The lemma is proved.

Lemma 11. Under the assumptions of Theorem 7, if 𝑙 = 𝜆
𝑘
,

then the functional 𝐼 satisfies the (𝐶) condition which is stated
in [11].

Proof. Suppose 𝐼 satisfies

𝐼 (𝑢
𝑛
) → 𝑐 ∈ R, (1 +

𝑢𝑛
)

𝐼

(𝑢
𝑛
)

→ 0

as 𝑛 → ∞.

(19)

In view of (𝐻
3
), it suffices to prove that 𝑢

𝑛
is bounded in

𝐸. Similar to the proof of Lemma 10, we have

∫
Ω

(△V△ 𝜙 −
𝑁
2
(𝑁 − 4)

2

16

V𝜙

|𝑥|
4
)𝑑𝑥

− ∫
Ω

𝑙V𝜙𝑑𝑥 = 0, ∀𝜙 ∈ 𝐸.

(20)

Therefore V ̸≡ 0 is an eigenfunction of 𝜆
𝑘
, and then

|𝑢
𝑛
(𝑥)| → ∞ for a.e. 𝑥 ∈ Ω. It follows from (𝐻

4
) that

lim
𝑛→+∞

[𝑓 (𝑥, 𝑢
𝑛
(𝑥)) 𝑢

𝑛
(𝑥) − 2𝐹 (𝑥, 𝑢

𝑛
(𝑥))] = −∞ (21)

holds uniformly in 𝑥 ∈ Ω, which implies that

∫
Ω

(𝑓 (𝑥, 𝑢
𝑛
) 𝑢
𝑛
− 2𝐹 (𝑥, 𝑢

𝑛
)) 𝑑𝑥 → −∞ as 𝑛 → ∞.

(22)

On the other hand, (19) implies that

2𝐼 (𝑢
𝑛
) − ⟨𝐼


(𝑢
𝑛
) , 𝑢
𝑛
⟩ → 2𝑐 as 𝑛 → ∞. (23)

Thus

∫
Ω

(𝑓 (𝑥, 𝑢
𝑛
) 𝑢
𝑛
− 2𝐹 (𝑥, 𝑢

𝑛
)) 𝑑𝑥 → 2𝑐 as 𝑛 → ∞, (24)

which contradicts (22). Hence 𝑢
𝑛
is bounded.

Lemma 12. Assume (𝐻
1
) and (𝐻

5
) hold. Then 𝐼 satisfies the

(PS) condition.

Proof. Assume that {𝑢
𝑛
} is a (PS) sequence; ‖𝐼(𝑢

𝑛
)‖ → 0 and

{𝐼(𝑢
𝑛
)} is bounded. A routine argument implies that {‖𝑢

𝑛
‖} is

bounded. By [6, Theorem A.2], we have

𝐸 → 𝑊
1,𝑞

0
(Ω) , (25)

where 1 ≤ 𝑞 < 2. For 𝑝 given in (𝐻
1
), 𝑝 < (𝑛+ 4)/(𝑛 − 4), and

we may choose 𝑞 such that (𝑝 + 1) < 𝑞𝑁/(𝑁 − 𝑞), 𝑞 < 2. By
the Sobolev embedding theorem, we have

𝑊
1,𝑞
(Ω) →→ 𝐿

𝑡
(Ω) , ∀𝑡 <

𝑁𝑞

𝑁 − 𝑞
. (26)

We infer from (26) that {𝑢
𝑛
} is compact in 𝐿𝑝+1(Ω). By (𝐻

1
),

𝑢𝑛 − 𝑢𝑚


2

= ∫
Ω

𝑓 (𝑥, 𝑢𝑛) − 𝑓 (𝑥, 𝑢𝑚)


𝑢𝑛 − 𝑢𝑚
 𝑑𝑥 + 𝑜 (1)

≤ 𝐶(∫
Ω

|𝑢
𝑛
− 𝑢
𝑚
|
𝑝+1
𝑑𝑥)

1/(𝑝+1)

+ 𝑜 (1) → 0.

(27)

This completes the proof of this lemma.

For the aim of using Proposition 3 that proves our main
results, we prove an important lemma below.

From previous Section 1, we know that 𝐼 is 𝐶1 functional
and its gradient at 𝑢 is given by

𝐼

(𝑢) = 𝑢 − 𝐴 (𝑢) , 𝐴 : 𝐸 → 𝐸,

𝐴 (𝑢) = (△
2
−
𝑁
2
(𝑁 − 4)

2

16

1

|𝑥|
4
)

−1

𝑓 (𝑥, 𝑢) .

(28)

Then ⟨𝐴(𝑢), 𝜙⟩ = ∫
Ω
𝑓(𝑥, 𝑢)𝜙𝑑𝑥 for all 𝜙 ∈ 𝐸. We

consider the convex cones 𝑃 = {𝑢 ∈ 𝐻 : 𝑢 ≥ 0} and
−𝑃 = {𝑢 ∈ 𝐸 : 𝑢 ≤ 0}; moreover, for 𝜖 > 0, assume

𝑃
𝜖
= {𝑢 ∈ 𝐸 : dist (𝑢, 𝑃) < 𝜖} ,

−𝑃
𝜖
= {𝑢 ∈ 𝐸 : dist (𝑢, −𝑃) < 𝜖} .

(29)

Note that 𝑃
𝜖
and −𝑃

𝜖
are open convex subsets of 𝐸 and

𝐸 \ (𝑃
𝜖
∪ (−𝑃

𝜖
)) contains only sign-changing functions.
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Lemma 13. Assume (𝐻
2
) and (𝐻

3
) hold. Then, there exists

𝜖
0
> 0 such that for 0 < 𝜖 ≤ 𝜖

0
there holds

𝐴 (𝜕 (±𝑃
𝜖
)) ⊂ ±𝑃

𝜖
. (30)

Moreover, if 𝑢 ∈ ±𝑃
𝜖
is a nontrivial solution of problem

(1), then 𝑢 is positive (negative) in the sense that 𝑢 > 0 (𝑢 <

0) inΩ.

Proof. Indeed, if 𝑢 ∈ 𝐸 and 𝑢+ = max{𝑢, 0}, 𝑢− = min{𝑢, 0},
then

dist (𝐴 (𝑢) , 𝑃) ≤ inf
𝑤∈𝑃

‖𝐴 (𝑢) − 𝑤‖

= inf
𝑤∈𝑃

𝐴(𝑢)
+
+ 𝐴(𝑢)

−
− 𝑤

 ≤
𝐴(𝑢)

− .

(31)

For every 𝑠 ∈ (2, 2𝑁/(𝑁 − 4)), there exists 𝐶
𝑠
> 0 such

that
𝑢
±𝑠

≤ inf
𝑤∈∓𝑃

‖𝑢 − 𝑤‖𝑠 ≤ 𝐶𝑠 dist (𝑢, ∓𝑃) . (32)

Choose 𝜖 > 0 such that (𝑓
0
+ 𝜖

) < 𝜆

1
. Using (32), the

Hölder inequality, the Poincaré inequality, and the Sobolev
embedding theorem, we have

dist (𝐴 (𝑢) , 𝑃) 𝐴(𝑢)
−

≤
𝐴(𝑢)

−

2

= ∫
Ω

𝑓 (𝑥, 𝑢) 𝐴(𝑢)
−
𝑑𝑥

≤ ∫
Ω

𝑓 (𝑥, 𝑢
−
) 𝐴(𝑢)

−
𝑑𝑥

≤ ∫
Ω

((𝑓
0
+ 𝜖

)
𝑢
− + 𝐶



𝜖

𝑢
−

𝑝

)𝐴(𝑢)
−
𝑑𝑥

≤ (𝑓
0
+ 𝜖

)
𝑢
−2

𝐴(𝑢)
−2

+ 𝐶


𝜖

𝑢
−

𝑝

𝑝+1

𝐴(𝑢)
−𝑝+1

≤ (𝑓
0
+ 𝜖

) inf
𝑤∈𝑃

‖𝑢 − 𝑤‖2
𝐴(𝑢)

−2

+ 𝐶 inf
𝑤∈𝑃

‖𝑢 − 𝑤‖
𝑝

𝑝+1

𝐴(𝑢)
−𝑝+1

≤
𝑓
0
+ 𝜖


𝜆
1

dist (𝑢, 𝑃) 𝐴(𝑢)
−

+ 𝐶 dist (𝑢, 𝑃)𝑝 𝐴(𝑢)
− ,

(33)

where 𝐶
𝜖
, 𝐶 > 0 are constants. Hence

dist (𝐴 (𝑢) , 𝑃) ≤ (𝛿 + 𝐶 dist (𝑢, 𝑃)𝑝−1) dist (𝑢, 𝑃) , (34)

where 𝛿 = (𝑓
0
+ 𝜖

)/𝜆
1
< 1. Take 𝜖

0
such that 𝛿

1
= 𝛿 +

𝐶𝜖
𝑝−1

0
< 1. Now if dist(𝑢, 𝑃) < 𝜖 < 𝜖

0
, then we have

dist (𝐴 (𝑢) , 𝑃) ≤ 𝛿
1
dist (𝑢, 𝑃) . (35)

Thus for every 𝑢 ∈ 𝜕𝑃
𝜖
, by (35) we have

dist (𝐴 (𝑢) , 𝑃) ≤ 𝛿
1
𝜖; (36)

thus 𝐴(𝑢) ∈ 𝑃
𝜖
. Hence 𝐴(𝜕𝑃

𝜖
) ⊂ 𝑃

𝜖
. In a similar way,

𝐴(𝜕(−𝑃
𝜖
)) ⊂ (−𝑃

𝜖
). If 0 < 𝜖 ≤ 𝜖

0
, and 𝑢 ∈ 𝑃

𝜖
(resp.,—𝑃

𝜖
)

is a nontrivial solution of problem (1), then 𝐼(𝑢) = 0. By (35)
we have dist(𝑢, 𝑃) = 0; that is, 𝑢 ∈ 𝑃 (resp., 𝑢 ∈ −𝑃). By
Lemma 2, we imply that 𝑢 > 0 (𝑢 < 0) in Ω.

Lemma 14. Assume (𝐻
1
), (𝐻
2
), and (𝐻

5
) hold. Then, there

exists 𝜖
0
> 0 such that for 0 < 𝜖 ≤ 𝜖

0
there holds

𝐴 (𝜕 (±𝑃
𝜖
)) ⊂ ±𝑃

𝜖
. (37)

Proof. The proof is quite similar to that of Lemma 4.2 in [8].
We omit it here.

Lemma 15. Assume (𝐻
5
) holds. Then

𝐼 (𝑢) → −∞, ∀𝑢 ∈ 𝐸
𝑘
, (38)

where the definition of𝐸
𝑘
introduced in our proof ofTheorem 9.

Proof. Because dim𝐸
𝑘
< ∞, then by (𝐻

5
),

𝐼 (𝑢)

‖𝑢‖
2
≤
1

2
− ∫
Ω

𝐹 (𝑥, 𝑢)

‖𝑢‖
2
𝑑𝑥 → −∞ (39)

as ‖𝑢‖ → ∞, 𝑢 ∈ 𝐸
𝑘
. This lemma follows immediately.

Lemma 16. Assume (𝐻
2
) and (𝐻

3
) hold. Let 0 < 𝜖 ≤ 𝜖

0
, and

then there exists 𝐶
0
> −∞ such that inf

𝑃
𝜖
∩(−𝑃
𝜖
)
𝐼(𝑢) = 𝐶

0
.

Proof. By the conditions (𝐻
2
) and (𝐻

3
), we know that, for any

𝜖

> 0, there exists 𝐶 > 0, such that

𝑓 (𝑥, 𝑡)
 ≤ (𝑓0 + 𝜖


) |𝑡| + 𝐶|𝑡|

𝑝
(1 < 𝑝 <

𝑁 + 4

𝑁 − 4
) . (40)

Using (40) and the Sobolev embedding theorem, we have

𝐼 (𝑢) =
1

2
‖𝑢‖
2
− ∫
Ω

𝐹 (𝑥, 𝑢) 𝑑𝑥

≥
1

2
‖𝑢‖
2
−
1

2
(𝑓
0
+ 𝜖

)∫
Ω

𝑢
2
𝑑𝑥 − 𝐶‖𝑢‖

𝑝+1

𝑝+1

≥ −
1

2
(𝑓
0
+ 𝜖

) ‖𝑢‖
2

2
− 𝐶‖𝑢‖

𝑝+1

𝑝+1
.

(41)

By (32) we have ‖𝑢±‖
𝑠
≤ 𝐶
𝑠
𝜖
0
for every 𝑢 ∈ 𝑃

𝜖
∩ (−𝑃
𝜖
). So

there exists 𝐶
0
> −∞ such that

inf
𝑃
𝜖
∩(−𝑃𝜖)

𝐼 (𝑢) = 𝐶
0
. (42)

Hence this lemma is proved.
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4. Proof of the Main Results

Proof of Theorem 5 andTheorem 7. Motivated by the Proof of
Theorem 4.2 in [10], we still define a path ℎ

𝑅
: [0, 1] → 𝐸 as

ℎ
𝑅
(𝑡) = 𝑅𝜙

1
cos𝜋𝑡 + 𝑅𝜙

2
sin𝜋𝑡, 0 ≤ 𝑡 ≤ 1. (43)

Obviously, ℎ
𝑅
(0) ∈ 𝑃

𝜖
\ (−𝑃
𝜖
) and ℎ

𝑅
(1) ∈ (−𝑃

𝜖
) \ 𝑃
𝜖
. By

the Fatou’s lemma, the condition (𝐻
3
)with 𝑙 > 𝜆

2
and a direct

computation shows that

lim
𝑅→+∞

sup
𝑡∈[0,1]

𝐼 (ℎ
𝑅
(𝑡)) = −∞. (44)

So, it yields that there exists 𝑅
0
such that 𝐼(ℎ

𝑅
0

(𝑡)) < 𝐶
0
−

𝑐
∗
(𝑐
∗
> 0). Hence we obtain

inf
𝑃
𝜖
∩(−𝑃𝜖)

𝐼 (𝑢) > sup
𝑡∈[0,1]

𝐼 (ℎ (𝑡)) . (45)

By using Lemmas 10, 11, and 13, Proposition 3, and Lemma 16,
we can find a critical point in 𝑃

𝜖
\ (−𝑃
𝜖
) which is a positive

solution, a critical point in (−𝑃
𝜖
) \ 𝑃
𝜖
which is a negative

solution, and a critical point in 𝐸 \ (𝑃
𝜖
∪ (−𝑃

𝜖
)) which is a

sign-changing solution.

Before beginning our proof of Theorem 9, we need the
following important proposition.

Proposition 17 (see [9, Theorem 5.6]). Assume 𝐸 is a Hilbert
space with inner product <, > and the corresponding norm
‖ ⋅ ‖, 𝐼 ∈ 𝐶1(𝐸, 𝑅) and 𝐼(𝑢) = (1/2)‖𝑢‖2 − 𝐺(𝑢), 𝑢 ∈ 𝐸, where
𝐺 ∈ 𝐶

1
(𝐸, 𝑅). 𝑃 denotes a positive closed convex cone of 𝐸.

(𝐴) Assume that 𝐴(±𝐷
0
) ⊂ ±𝐷

0
, where 𝐷

0
:= {𝑢 ∈ 𝐸 :

dist(𝑢, 𝑃) < 𝜇
0
}, 𝜇
0
> 0, and 𝐴 = 𝐺.

(𝐴
∗

1
) Assume that, for any 𝑎, 𝑏 > 0, there is a constant 𝐶 > 0
such that

𝐺 (𝑢) ≤ 𝑎, ‖𝑢‖∗ ≤ 𝑏 ⇒ ‖𝑢‖ ≤ 𝐶, (46)

where ‖ ⋅ ‖
∗
denotes another norm of 𝐸 such that ‖𝑢‖

∗
≤ 𝐶‖𝑢‖

for all 𝑢 ∈ 𝐸.

(𝐴
∗

2
) Assume that lim

𝑢∈𝑌,‖𝑢‖→∞
𝐼(𝑢) = −∞, sup

𝑌
𝐼 := 𝛽.

If the even functional 𝐼 satisfies (𝑃𝑆) condition at level 𝑐 for each
𝑐 ∈ [𝛾, 𝛽], then

K [𝛾 − 𝜖, 𝛽 + 𝜖] ∩ (𝐸 \ (−𝑃 ∪ 𝑃)) ̸= 0 (47)

for all 𝜖 > 0 small, where (sup
𝑌
𝐼 := 𝛽 (𝑌 𝑎𝑛𝑑 𝑀 are two

subspaces of 𝐸 with dim𝑌 < ∞, dim𝑌 − codimM ≥ 1),
inf
𝑄
∗∗𝐼 := 𝛾, and 𝑄∗∗ := 𝑄

∗
(𝜌) ∩ 𝐼

𝛽
(𝑄
∗
(𝜌) := {𝑢 ∈ 𝑀 :

(‖𝑢‖
𝑝

∗
/‖𝑢‖
2
) + ((‖𝑢‖‖𝑢‖

∗
)/(‖𝑢‖ +𝐷

∗
‖𝑢‖
∗
)) = 𝜌}, where 𝜌 > 0,

𝐷
∗
> 0, and 𝑝 > 2 are fixed constants.

Now, we give an outline proof for our Theorem 9.

Proof of Theorem 9. Let 𝑁
𝑘
denote the eigenspace of 𝜆

𝑘
. We

fix 𝑘 and let 𝐸
𝑘
:= 𝑁
1
⊕ ⋅ ⋅ ⋅ ⊕ 𝑁

𝑘
. Consider another norm

‖ ⋅ ‖
∗
:= ‖ ⋅ ‖

𝑝+1
of 𝐸, 𝑝 ∈ (1, ((𝑁 + 4)/(𝑁 − 4))). Write 𝐸 =

𝐸
𝑘−1

⊕ 𝐸
⊥

𝑘−1
.

Let

𝑄
∗
(𝜌) :=

{

{

{

𝑢 ∈ 𝐸
⊥

𝑘−1
:

‖𝑢‖
𝑝+1

𝑝+1

‖𝑢‖
2
+

‖𝑢‖ ‖𝑢‖
𝑝+1

‖𝑢‖ + 𝐷∗‖𝑢‖𝑝+1

= 𝜌
}

}

}

,

(48)

where 𝜌,𝐷
∗
are fixed constants. By our assumptions, we may

find a constant 𝐶 > 0 such that

𝐹 (𝑥, 𝑡) ≤
1

4
𝜆
1
𝑡
2
+ 𝐶|𝑡|

𝑝+1
, ∀𝑥 ∈ Ω, 𝑡 ∈ 𝑅, (49)

where 1 < 𝑝 < (𝑁 + 4)/(𝑁 − 4). For any 𝑎, 𝑏 > 0, there is a
constant 𝐶 > 0 such that

𝐼 (𝑢) ≤ 𝑎, ‖𝑢‖𝑝+1 ≤ 𝑏 ⇒ ‖𝑢‖ ≤ 𝐶. (50)

By Lemma 15,

lim
𝑢∈𝑌,‖𝑢‖→∞

𝐼 (𝑢) = −∞, (51)

where 𝑌 = 𝐸
𝑘
. Then (𝐴

∗

1
) and (𝐴

∗

2
) are satisfied. By

Lemma 14, the condition (𝐴) holds.
Now, we define

sup
𝑌

𝐼 := 𝛽. (52)

Let

𝑄
∗∗
:= 𝑄
∗
(𝜌) ∩ 𝐼

𝛽
, inf
𝑄
∗∗

𝐼 := 𝛾. (53)

By Lemma 12, 𝐼 satisfies the (PS) condition. Thus, by
Proposition 17 and the Proof of Theorem 5.7 in [9], we
know that the functional 𝐼 posses a sequence sign-changing
solution {𝑢

𝑘
}.
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